JADE の使用例(15) 全パターンフィッティング/Rietveld 解析による定量1

以下のようなごく簡単な流れで解析を行ってみましょう。

 データを読み込み、相同定を実行
 同定したデータの構造をもとに WPF/Rietveld 解析で定量

WPF は非常に多くのパラメータを含んでおり、ダイアログで設定できる項目もたくさんあ りますが、JADE はすべてのパラメータを適切な値に事前初期化するため、ほとんどのパラ メータを無視して、精密化を実行できます。

ただ、適切に解析を行うためには WPF/Rietveld がどのように機能するかについてある程度 理解している必要があります。解析の詳細については、リートベルト解析に関する内容を含 む XRD の書籍などをご参照ください。

↓プロットウィンドウの下にある「WPF」ボタンから実行します

🔽 全 ^{パ ター} ンフィッティング (WPF)とRietveld 解析 [DEMO06.MDI 🖲 Red Paint Pigment Mixture]											
× 閉じる 設定 - 保存 - ト 精密化	≣▼ 実行 🖭 V 解析C.wpf.xml			🋝 🕀 加える	1 相/=ュ- ▼	🔄 レイアウト 💠					
R=19.1%	🕞 R% グラフ 🗸	🛔 相 ID (3>1)	化学式	🗊 PDF-#	₩ t% (σ) RIR	μ					
2=17.9%	C 1 701	Rutile	TIO ₂	98-000-0375	54.7 (0.3) 3.31	548.0					
3=11.4%	04.7%	Hematite	Fe ₂ O ₃	98-000-0240	26.4 (0.2) 3.09	1150.3					
		Minatase	1102	- 30 000 0001	10.0 (0.2) 4.37	002.7					
	18.8%	♣ Rutile TiO ₂	(モスクロールして閲覧)	[9	8-000-0375]					
· · · · · · · · · · · · · · · · · · ·	20.478	相充与 回折線 1	Mt%+XRF 原子	関連 🌔	🗌 1相表示						
	D-0.049	☑ LC 4.59741	4.59741 2.96	i 185 90.0	90.0 90.0	ø					
	E=6.96%	1% 0.0001	0.0001 0.00	1007 正方晶系	s P42/mnm (136)	5					
	+ (D/C 110) =	一強度スケール因子、温	温度因子、選択酯	。 向補正…————————————————————————————————————	TFI	<u>H</u>					
1 積留11には収集しまし	//2 (R/ E= 1.19) 🔹	SF 125.791	0.48516	🙁 🗌 TF 0.0	(esd)						
- 精密化範囲と閾値、バックグラウントフィッティ	ンゲーク EP:	PO 1.0	(esd)	TS 0.0	(esd)						
2θ(°):20.0 ÷ 78.0 ÷ Ξ▼	♦ 表示 4 ♀ ε 0.5 ♀ ○	March 関数:[🚔 🗌 球面調利	- 関数 🔽 スピナー						
固定された現在の BG 曲 🗸 🔒 📀	8 0-1 8次多項式 ~ ▼	-すべての7 ロファイル 形	ジズ関数(PSF)と#	1約ハ⁰ラメーター−	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
		個々のFWHM 曲線	✓ PSF:掛	≹Voigt ∨	☑ 一定 FWHM	= 0.1° 🗸 🗸 🗸					
ZO 0.06791 0.00079	🗹 2 θ 22.0	🗹 f0 0.15761	🗹 s0	0.63052	☑ p0 0.75291						
○ SD 0.0 (esd)	✓ HT 0.0	☑ f1 -0.17448	⊠ s1	-0.43181	✓ p1 0.33412						
O DS 0.0 (esd)	✓ FW 6.0	✓ f2 0.12768	🗹 s2	-0.00372	p2 0.0						
α 2 0.5 (esd)	₽ 2.5 0.0% # 1 🛓	□ 弐(UVW) □ f	朙帽 ☑ s0,1	.2を統一 🔽 r1	☑ p0.1.2を統一	✓ r1					
MC 1.0 ? (esd)	#制御により複数の非晶質	foかWのみ	リンク EWI	HM 曲線 TPC 📃	凸な曲線が存在し	<i>t</i> ⊒ 1%					
ビームのはみ出す角度 - 2 θ: 0.0	部重量燃標準相を使う場合、	5.0 2.00	緑幅ブロードニンク	の上限	⑦ 1%最小):0	.01					
□ 非対称スキャン IBA(0.0	のるいは密度から非晶質重 量料が見積もられるときには不 一一です	ヒント:このタブのほとん キーを押したままにすれ	どのパラメーターはス いば粗い調整ある(カールホイールで変更 いは細かい調整(5f	できて、Ctrl または 音)ができます。もし	Shift 多くの					
Q=3 P=24 E=6.96% R=8.25%	♣ ラウンド=4, 繰り返す=3, P=20, R=8	.25%	(ここをスクロ)	ール又は左/右り/ック	して相を閲覧)						

操作方法

ごく簡単な例で使い方の流れを把握しましょう。

① データを読み込み、相同定を実行

1. 解析したいデータを JADE で開きます。

※適当なサンプルデータがない場合、JADE のサンプルデータに含まれる「DEMO06.MDI」(下図)を開い てください。

2. プロットウィンドウの右下にある「S/M」ボタンをクリックし、相同定を実行します。

 データベースとの照合が行われ、「相リスト」タブに候補の一覧が表示されます。回折 パターンとデータベースのピークとその強度のリストを見比べるなどして、サンプル に含まれていると思われる相にチェックを付けてください。

チェックを付けた相以外を候補リストから削除するには「除去/トリミング」ボタンを クリックします。

プロットウィンドウの右下にある「WPF」ボタンをクリックして、WPF(全パターンフィッティング)/Rietveld 解析による定量を行います。

5. WPF(全パターンフィッティング)/Rietveld 解析を行うためのダイアログ(下図)が開き ます。右上の相リストを表示する欄に、事前に相同定を行った結果の結晶相が含まれて いることを確認してください。

※ダイアログの中には使い方のヒントなども表示されており、役立つ内容です。これらについても一 通り目を通してみてください。

Li 全バターンフィッティング(WPF)とRietveld 解析 [DEMO06.MDI ● Red Paint Pigment Mixture] X										
× 閉じる 設定 - 保存 - ▶ 精密化 =- 実行 全 - 1.wpf.xml	▲ ④ 加える ⅲ 相/=ューマ 🕞 レ(7ウト 💠									
R=% (3) R% 5/57 ~	▲ 相 ID (3>1) 化学式 輝 PDF-# Wt%(σ) RIR μ. ✓ Rutile 71O ₂ 98-000-0375 56.5 (0.0) 3.31 549.6 ✓ Hematite Fe ₂ O ₃ 98-000-0240 27.1 (0.0) 3.09 1153.5 ✓ Appendix Provided App									
▶ 精密化 27.1%	 ► Rutile TiO2 ► Rutile TiO2 ► CCEをスタワールして閲覧 ● Rutile TiO2 ● R									
● 現在の相リストをロードしました ●	✓ LC 4.593 4.593 2.959 LC 固定、リンク等のパュー 6									
 精密化の繰り返し	□ 1% (esd) (esd) (esd) 正方晶系 P42/mnm (136) 5									
- 精密化範囲と閾値、バッグがラウンドフィッティンが () () () () () () () () () () () () ()	✓ SF 102.044 (esd) (esd) TF 0.0 (esd) PO 1.0 (esd) TS 0.0 (esd) March 閲数: 0 ÷ 0 ÷ □ 球面調和閲数 ✓ Zとゲー									
	~すべての7泊7ァイル形状関数(PSF)と制約フベラメーター ⑦ @ - ヘ									
● ZO 0.0 0.25 ÷ 2 θ 22.0										
O SD 0.0 (esd)	✓ f0 0.12689 ✓ s0 0.1 ✓ p0 0.5									
■ C 10 2 (esd) # 1 2 0.0% # 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
のこぶがフィット可能ですが、内										
□ 非対称スキャン IBA(0.0 量が見着もられるときには不	5.0 字 2.00 🛟 線幅7泊ートニングの上限 🕐 1%最小): 0.01 🚖									
	ビル:このなかのほとんどのハウィーターはスクロールホイールで変更できて、CtrlまたはShift キーを押したままにすれば知い調整あるいな細胞の、調整(5倍)ができます。もし多くの 鋭いビークを持つ高分解能ハターンの場合には道常のようにごり取りかりハウツ中のスームと ハンで作業をするよりこのダイワログの回折線となわから選択してフィットを確認する方が容 易です。リスト中の一つの回折線をなりルグリックしてスームインをしてください。他の回折線 を選択してJADE に自動ハウをさせてください。									
Q=3 ▶ P=28 E=6.96% R=19.61% [+] Rutile ● TiO2	(ここをスクロール又は左/右クリックして相を閲覧)									

 バックグラウンドや精密化範囲を変更したり、パラメータを固定する項目を決めるな ど細かい設定もできますが、今回は JADE の初期設定のまま「精密化」ボタンをクリッ クし、精密化を実行してみましょう。

🔄 全バターンフィッティンダ (WPF)とRietveld 解析 [DEMO06.MDI ● Red Pa	aint Pigment Mixture]	×
× 閉じる 設定 ▼ 保存 → 精密化 =▼ 実行 全 ▼ 1.wpf.xml	▲ 🖲 加える 🏢 相/=ューマ 🕞 И	70ኑ ᅌ
R=%	🛔 相 ID (3>1) 化学式 📁 PDF-# Wt%(σ) RIR μ	
椿密化を開始(F5) 制御ファイルを保存)	✓ Rutile 7/O2 ● 98-000-0375 56.5 (0.0) 3.31 549	.6
50.5%	Hematite Fe2O3 98-000-0240 27.1 (0.0) 3.09 1153	.5
	Matase 1/02 • 98−000−0081 10.4 (0.0) 4.97 503	.4
16.4%		
精密化	 ◆ Rutile TiO2 (ここをスカロールして開発) [98-000 	-0375]
	相テシータ 回折線 Wt%+XRF 原子関連	
● 現在の相リストをロードしました ●	✓ LC 4.593 4.593 2.959 LC 固定、リンク等のバニュー 母	
	□ 1% (esd) (esd) (esd) 正方晶系: P42/mnm (136) 5	
精密化の繰り返し		
- 精密化範囲と閾値、 バックケラウント フィッティング ―――― (1)・2・2・2	✓ SF 102.044 (esd) @リンク □ TF 0.0 (esd)	
2θ(*):20.0 ♀ 78.0 ♀ =▼ ♀表示 1 ♀ & 0.5 ♀	PO 1.0 (esd) TS 0.0 (esd)	
精密化可能な多項式 BC ~ 🔒 C-3 🛛 C-1 🛛 3次多項計 ~ 🗨	March 関数: 0 0 0 0 0 0 丁 球面調和関数 ビスピケー	
	-すべてのプロファイル形状関数(PSF)と制約パラメーター	
O ZO 0.0 0.25 ★ 2 θ 22.0	個々のFWHM曲線 〜 PSF:擬 Voigt 〜 図 一定 FWHM = 0.1*	\sim
O SD 0.0 (esd)	r f0 0.12689 r s0 0.1 r p0 0.5	

- 金パターンフィッティング (WPF)とRietveld 解析 [DEMO06.MDI Red Paint Pigment Mixture] × × 閉じる 設定 - 保存 - ト 精密化 ミー実行 雪 - 1.wpf.xml ▲ 🖲 加える 🏢 相メニュー マ 🕞 レイアウト 💠 R=19.7% 🕞 R% がラフ 🗸 ø ▲ 相 ID (3>1) 化学式 PDF-# Wt% (σ) RIR и. ✓ Rutile✓ Hematite✓ Anatase 2=17.5% TIO₂ 98-000-0375 54.4 (0.3) 3.31 548.0 ٠ 3=11.2% Fe₂O₃ 98-000-0240 26.7 (0.2) 3.09 1150.3 . 98-000-0081 18.9 (0.2) 4.97 TIO₂ 502.7 しここをスクロールして研究し Rutile TiO₂ [98-000-0375] 🔵 🗌 1相表示 相テ^{゙_タ} 回折線 Wt%+XRF 原子関連 ☑ LC 4.5974 4.5974 90.0 90.0 90.0 2 96 182 - R-7 00% ----ø E=6.96% 正方晶系: P42/mnm (136) 1% 0.0001 0.0001 0.00007 5 精密化は収束しました (R/E=1.16) 🍙 -強度スケール因子、温度因子、選択配向補正 -- TF -- 🗷 - 🔣 SF 126.032 0.49073 🔘 🗌 TF 0.0 (esd) 精密化範囲と閾値、バックグラウントフィッティング - 🛈 • 🕢 • 🧭 □ PO 1.0 (esd) TS 0.0 (esd) θ(°):20.0 🗘 78.0 🗘 Eマ 💊 表示 🛛 4 🗘 ε 0.5 ф March 関数: 0 0 0 0 0 0 0 球面調和関数 🗹 スピー 精密化可能な多項式 BC 🗸 🔒 C-3 🛛 C-1 🛛 3次多項式 🗸 🔻 すべてのプロファイル形状関数(PSF)と制約ハプラメーター ... ● -□ 非晶質のこぶ ---Ø 個々のFWHM曲線 〜 PSF:擬 Voigt 〜 図 一定 FWHM = 0.1* 2 0 22.0 0.00079 ZO 0.06767 ✓ f0 0.14429 ▼ s0 0.62583 ✓ p0 0.73012 ○ SD 0.0 (esd) HT 0.0 ✓ f1 -0.13876 ☑ s1 -0.42986 ✓ p1 0.36908 (esd) V FW 6.0 S12300 O DS 0.0 ✓ f2 0.1067 p2 0.0 ₽ 2.5 0.0% # 1 🔹 α2 0.5 (esd) □ 式(UVW) □ 個別幅 🔽 s0,1,2を統一 🔽 r1 🔽 p0,1,2を統一 ⊠ r1 # 制御により複数の非晶質 のこぶがフット可能ですが、内 部重量対票準相を使う場合、 あるいは密度から非晶質重 量が現着もられるときには不 要です。 MC 1.0 ? (esd) □ f0かWのみ (0.9ンク...) FWHM 曲線 TPC □ 凸な曲線が存在した 3% 🗌 ビームのはみ出す角度 - 20: 0.0 5.0 🝦 2.00 💠 線幅7泊ートニングの上限 🕐 1%(最小): 0.01 👙 □ 非対称スキャン ------ IBA(0.0 大王:データの15 以下と90 以上の領域にはっきりしたビーが現れ、主相の格子定数を指密化しなければ(してボックス をアンチャクカ)、20パラナーターとSP レートークワンプのほとんどのハラメーターはスクロールネイールで変更できて、ChrlまたはShift キーを押したままにすれば粗い調整あるいは細かい調整(5倍)ができます。もし多くの 銘いビークを持つ高う解絶ハターンの場合には通常のようにフロットクレトウ中のストムと ハッで作業をするよりこのゲイアロケの回折線リストから選択してフィットを確認する方が容 見です。リスト中の一つの回折線をなフルクリックしてストムインをしてください。他の回折線 を選択してJADE に自動ハックをさせてください。 ツチェック)、ZO ハラメーターと SD ラメーターも一緒に精密化できるかもし れません。 ② Q=3 ▶ P=28 | E=6.96% | R=8.08% | ♣ ラウンド=4, 繰り返す=3, P=24, R=8.08%
 〔ここをス知ール又は左/右切ックして相を閲覧)
 〕
- 7. 精密化の結果が表示されます。左上のグラフには、重量%濃度で組成が表示されます。

8. 下図のドロップダウンメニューで、グラフの種類を変更したり、FWHM 曲線を表示さ せることができます。

9. 「相データ」タブについては、同じ WPF/Rietveld ダイアログにある相リストで相を選 ぶことで、どの相のパラメータが表示されるか切り替わります。

006.MDI 🗨 Red Pair	nt Pigment Mixture]								×		
■ 1.wpf.xml	- 1.wpf.xml										
🕤 棒 グラフ 🗸	▲ 相 ID (3>1) ✓ Rutile ✓ Hematite	化学式 TiO2 Fe2O3	Ø •	PDF-# 98-000-0375 98-000-0240	Wt% (σ) 54.4 (0.3) 26.7 (0.2)	RIR 3.31 3.09	μ 548.0 1150.3				
54.4%	Anatase	TIO ₂	98-000-0081	4.97 502.7			3751				
Rutile	村日 ^{7℃} -9 回折線 Wt%+ ✓ LC 4.5974 4.59 □ 1% 0.0001 0.00	XRF 原子関連 974 2.96182 90. 901 0.00007 正	①) 方晶系	□ 1相表示 90.0 90. 系 P42/mnm (1	0 🗗 36) 5						
	- 強度スケール因子、温度に ダ SF 126.032 PO 1.0 March 閲数: 0 - すべての7カファイル形状間	因子、選択配向補正 0.49073 € □ TF (esd) □ TS 章 □ 章 □ 章 □ 球 閉数(PSF)と制約ハッテメーター	0.0 0.0 面調	□ TF (esd (esd 和関数 ☑ スピ	-@·H -)) ∀- 2-@-∞-						
0.0% # 1 0.0% # 1 0.0% # 1 つ 値数の非晶質 か可能ですが、内 準相を使う場合、 度から非晶質重 ちられるとさには不	(個々のFWHM曲線) ✓ f0 0.14429 ✓ f1 -0.13876 ✓ f2 0.1067 Ţ2 0.1067 Ţ(UVW) (個別州) (0かWのみ ●リン 5.0 ÷ 2.00 ÷ 線桁	 PSF: 擬 Voiet シ s0 0.62583 シ s1 -0.42986 シ s2 -0.00429 幅 シ s0.1.2を統一 5 FWHM 曲線 TPC FWHM 曲線 TPC FWHM 曲線 TPC 	7	 ○ 一定 FWI ○ P0 0.7301 ○ P1 0.3690 ○ P2 0.0 ○ P0.1.2を統- ○ Cab曲線が存 ② 図場小 	HM = 0.1* 2 8 - マr1 在したマ1% たしたマ1%				~		

※例えば相リストで「Hematite」を選べば、「相データ」 タブに表示される格子定数などの相パラメータは Hematite のパラメータが表示されます。

Ӿ 設定 🕶 保存	• • ==	実行 🖻	~	M	• 🏢	相归。	- • 🕃
🛔 相 ID (3>2)	化学式	ار		餌	PDF	-#	重量%(
🗹 Rutile	TiO ₂				98-000	-0375	55.4 (0
🗹 Hematite	Fe ₂ C)3			98-000	-0240	26.3 (
🗹 Anatase	hs TiO2			•	98-000	-0081	18.3 (1
<			P				>
Hematite Fe ₂ O ₃) (·	टटर्कर/म-	-#L T 🕏	(篇)		[98-00	0-0240]
共通項 相データ	回折線 重	_ 量%+XRF	原子關	関連		1	相表示
☑ LC 5.0355	5.0355	13.7471	90.0		90.0	120.0	ø
1% (esd)	(esd)	(esd)	一六方	晶系	s R-3c (167) 🌑	5
- 強度スケール因子、派	」 温度因子、j	望択配向補	訂正 —			TF —	🕗 Н -
SF 40.9642	(esd C	ອ リンク	TF	0.0		(esd)	
D PO 1.0	(esd)		🗌 TS	0.0		(esd)	
March 関数: 〔	1 0 0	0 *	🗌 球面	調和	関数 🛛	コスピナ	-
- すべてのフ ゚ロファイル 用	≷状関数(PS	SF)と制約パ	N°∋x-b-				
個々のFWHM 曲線	\sim P:	SE: 糠 Voi	et	\sim h	ĭ → =	EWHN	1 = 0 🗸

🗙 設	定 ▼ 保存	-	▼実行 塗	- ~	M	🔁 i	1 相片:	- • 🖻	
🛔 相)	ID (3>3)	化	餌	Р	重量%(
🗹 Ruti	le	Ti	O ₂		٠	98-0	00-0375	55.4 (0	
🗹 Henr	atite	Fe	≥ ₂ O ₃		٠	98-0	00-0240	26.3 (1	
🗹 Ana	tase	Ti	0 ₂		٠	98-0	00-0081	18.3	
<						F		>	
👲 Anat	ase TiO ₂	1	(टटर्कर/म-)	ルレて囲り	Ē)		[98-00	0-0081]	
共通項	相データ	回折線	重量%+XRF	原子眼	堕			相表示	
⊡ LC	3.785	3.785	9.514	90.0		90.0	90.0	ø	
1%	(esd)	(esd)	(esd)	正方	晶系	s I41/a	amd (141)) 5	
- 強度ス	ケール因子、	温度因子	、選択配向社	甫正 … —		[_ TF —	- 🕑 - H -	
🗹 SF	28.4454	(es	ፅ 😟 ሃንታ	TF	0.0		(esd)		
🗆 PO	1.0	(es	d)	🗌 TS	0.0		(esd)		
Mar	ch 関数:	0 🗘 0		球面	調和	関数	🗹 ಸುಗ		
-すべて(ฏว °บว_ิว/เป	形状関数	(PSF)と制約/	1°5x-b-					
個々の	FWHM 曲制	泉 ~	PSF: 擬 Vo	igt ·	∠ j	<u> –</u>	定 FWHM	A = 0 🗸	
🗹 f0	0.29254		🗹 s0 0.1			✓ p0	0.5		
✓ f1	0.0		🗹 s1 0.0			🗹 p 1	0.0		
⊡ f2	0.0		🔽 s2 0.0			D p2 0.0			

※相リストで「Anatase」を選べば、「相データ」タブは Anatase の相パラメータになります。

※「原子関連」タブの情報には、JADE PRO を購入した場合のみアクセスできます。JADE Standard Level 2B や Level 3 の WPF/Rietveld 機能では利用できません。

Red Paint Pigment Mixture]											\times		
ml	៣/ ● 加える 前相/4-1- マ 🕃 レイアウト											\$	
, ~	≜ 相 ID ✓ Hemat ✓ Anatas ✓ Rutile	(3>3) ite :e	ft F 7 7	:学式 e ₂ O; <mark>1O2</mark> 1O2	3		Ø	PDF-# 98-000-0240 98-000-0081 98-000-0375	Wt% (σ) 26.7 (0.2) 18.9 (0.2) 54.4 (0.3)	RIR 3.09 4.97 3.31	μ 1150.3 502.7 548.0		
	◆ <i>Rutile</i> 1 相テ [、] -タ 〔	<mark>TiO</mark> 2 回折線	Wt%+XF	RF (原子関連	.ट.के.र.) 0 -1	して閲覧) 1相表示			[98-0	00-0	375]
_	□ л°	価値	シフト	σ	711291	原子	·ID						
€. 5. ↓	x1 y1 21 B1 n1 x2 y2 z2 B2 B2	0.0 0.0 0.4 1.0 0.305 0.305 0.0 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7/17 = 2 7/17 = 4 (y=x)		Ti+4> Ti+4> Ti+4> Ti+4> Ti+4> D -2> D -2> D -2> D -2>						
	□ n2	1.0	0.0	0.0		0 <0) -2>						