Tutorials for Origin

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab Corporation. Other product and company names mentioned herein may be the trademarks of their respective owners.

OriginLab Corporation
One Roundhouse Plaza
Northampton, MA 01060
USA
(413) 586-2013
(800) 969-7720

Fax (413) 585-0126

Table of Contents

Tutorials for Origin 1
Table of Contents iii
1 Getting Started 1
1.1 Getting Started 1
1.2 My First Graph 1
1.3 Graph Templates and Batch Plotting 4
1.4 Data Selection 7
1.5 Merge and Arrange Graphs 11
1.6 Publishing Graphs 15
1.7 3D and Contour 18
1.8 Gadgets 20
1.9 Curve Fitting 22
1.10 Peak Analysis 25
1.11 Statistics 28
1.12 Analysis Template 31
1.13 Apps in Origin 33
2 Video Tutorials 37
3 User Interface 39
3.1 User Interface 39
3.2 Origin GUI 39
4 Data Analysis 55
4.1 Data Analysis 55
4.2 Gadgets 58
4.3 Curve Fitting 137
4.4 Signal Processing 348
4.5 Peak Analysis 438
4.6 Data Manipulation 489
4.7 Analysis Templates 550
4.8 Analysis Themes 562
4.9 Batch Processing 566
5 Statistics 585
5.1 Statistics 585
5.2 Descriptive Statistics 586
5.3 Hypothesis Tests 620
5.4 ANOVA 631
5.5 Nonparametric Tests 666
5.6 Survival Analysis 677
5.7 Multivariate Analysis 693
5.8 Power and Sample Size 729
5.9 ROC curve 734
6 Graphing 739
6.1 Graphing 739
6.2 Plotting 743
6.3 Axis 844
6.4 Compare Graphs Dynamically by Changing Data Filters 871
6.5 Layers 886
6.6 Graph Template and Theme 920
6.7 Line and Symbol 921
6.8 Column, Bar and Pie 1024
6.9 Multi-Axis and Multi-Panel 1106
6.10 Contour 1175
6.11 Statistics. 1254
6.12 Polar 1473
6.13 3D Graphs 1565
6.14 Plot Functions with Parameters Defined in a Worksheet 1761
6.15 Windrose Graph 1767
6.16 2D Vector Graph 1778
6.17 Piper Diagram 1780
6.18 Waterfall. 1785
6.19 Open-High-Low-Close-Volume Stock Chart 1800
7 Data Management 1809
7.1 Data Management 1809
7.2 Working with Multi-Sheet Workbooks 1809
7.3 Adding Objects to Worksheet 1815
8 Data Exploration 1823
8.1 Data Exploration 1823
8.2 Data Reader Tool 1823
8.3 Use Data Cursor to Show the Difference between the Data 1831
9 Importing Data 1837
9.1 Importing Data 1837
9.2 ASCII 1837
9.3 Database 1863
9.4 Digitizer 1932
10 Exporting and Presentation 1959
10.1 Exporting and Presentation 1959
10.2 Exporting 1959
10.3 Presentation 1965
11 Collaboration and Connectivity 1975
11.1 Collaboration and Connectivity. 1975
11.2 Connectivity 1975
12 Programming 1993
12.1 Programming 1993
12.2 LabTalk 1994
12.3 Origin C 1998
12.4 X-Functions 2043
Index. 2095

1 Getting Started

1.1 Getting Started

If you are new to Origin, or have used a much older version in the past, it is highly recommended that you start with these tutorials. Once you have familiarized yourself with the interface and key concepts of graphing and analysis introduced in these lessons, you can then move on to other chapters that cover Origin features in more detail.

At the end of each lesson, we ask you to save the project. Please work through the tutorials sequentially as some build on previous lessons.

- My First Graph
- Graph Templates and Batch Plotting
- Data Selection
- Merge and Arrange Graphs
- Publishing Graphs
- 3D and Contour
- Gadgets
- Curve Fitting
- Peak Analysis
- Statistics
- Analysis Template
- Apps in Origin

1.2 My First Graph

In this first lesson, we will generate some data, create a graph, do some simple customization of the graph, and save the data and graph as an Origin project.

1.2.1.1 Generate data and graph

1. Launch Origin. You will see an empty workbook with one worksheet containing two columns.
2. Right-click on column A, expand the context menu if needed, and select Fill Column with: A set of

Numbers....

You can turn off collapsible menus by unchecking the Enable Collapsible Menus check box on the Miscellaneous tab of the Preference: Options dialog.
3. In the dialog, set From as -10, keep To as 10, set Increment as 0.1 . Click $\mathbf{O K}$ to close the dialog. Column A will be filled with numbers in the specified range.
4. We will now set column B as a function of column A. Double-click in $\mathbf{F}(\mathbf{x})$ label row of column B. This will place you in edit mode for that cell. Type the formula:

	$A(X)$	$B(Y)$
Long Name		
Units		
Comments		
		$\sin (\mathbf{x})=$

5. Now let us create a graph. Click on the header of column B to select the entire column. Then click the Line button \square in the 2D Graphs toolbar docked at the bottom left of the interface. A graph window will open, with the data plotted as a line.

1.2.1.2 Customize the graph

1. We will now do some simple customization of the graph. Right-click on the X axis, and from the context menu, select Hide Grids. This will add grid lines for the X axis. Do the same for Y axis.
2. Click on the line plot to select it. Then from the Style toolbar docked at top middle of the interface, change the color to Blue by using the Line/Border Color button.
3. Change the width to $\mathbf{3}$ by using the the Line/Border Width drop-down list $0.5 \vee$
4. Single-click inside the layer, but not on the grid lines or plot. You may need to click once to deselect your plot and then again to select the layer. The graph layer will be selected, and this will be indicated by selection handles. Change the layer background color to LT Yellow by using the Fill Color button $\stackrel{\sim}{\infty}$ in the Style toolbar.
5. In column A, double-click the cell for Long Name and type my \mathbf{x}.
6. For column B, type my y into Long Name, mV into Units, and Sine Wave into Comments.
7. Click and select the graph window. The X and Y axis title and legend on graph will be updated accordingly. Your graph should look like below:

1.2.1.3 Explore data graphically

1. Let us now explore the data graphically. Make sure the graph window is active by clicking on the title bar.

- Hold the \mathbf{Z} key down and use the mouse wheel to zoom in and out on the X axis.
- Hold the X key down, and use mouse wheel to pan across the x axis.

Hold the Shift key down along with Z / X keys to zoom/pan in Y direction.

- Bring the plot back to full scale by clicking the Rescale button ${ }^{\uparrow}$ in the Graph toolbar docked to the right side of the interface.

Use shortcut CTRL+R to rescale plots in the graph layer.

2. Click the Data Reader 커 button from the Tools toolbar docked to the left side of the interface. $^{\text {a }}$.
3. Place the cursor on the curve. You can now use arrow keys to move the cursor along the data plot and read coordinate values. Or, you can click anywhere on the curve to read the coordinate values at that
location.

1.2.1.4 Save the Project

We will now save this Origin project for later use.

1. Move mouse over to the Project Explorer bar on the left side of the work space to expand it.
2. Right click on the Folder1 in the upper folders panel and choose Rename from the context menu. Type My First Graph to rename the folder.
3. Choose menu File: Save Project to save the project. Give the project a name such as Getting Started Tutorials.

Files created by the user such as projects, graph templates, fitting functions etc are by default saved in the User Files Folder (UFF). You can access the UFF and other useful folder locations with the main menu Help: Open Folder.

1.3 Graph Templates and Batch Plotting

In this lesson we will learn about graph templates, and also how to perform batch plotting.

1.3.1 Graph Templates

Let's start with the project file we saved in lesson one: My First Graph. Click to select the graph window.

You can quickly open recently-saved project files from the File: Recent Projects list.

1. Double-click on the axis tick label to open the Axis Dialog.
2. Press the Ctrl key and select the Top and Right icons in the left list box. Choose the Line and Ticks tab and select the Show Line and Ticks check box then press OK.

3. Now let's save the graph as a template. Right-click on the graph title bar, and choose Save Template As... from the context menu.
4. In the dialog, set the Template Name as My Line and click OK to save the template.
5. We will now generate a new column of data. Activate the worksheet, right-click on the gray area to the right of the columns, and select Add New Column from the context menu.
6. Click inside the $\mathbf{F}(\mathbf{x})$ cell of this column, then right-click and select Open Dialog... from the context menu. You can use the shortcut $\mathbf{C t r l}+\mathbf{Q}$ instead of the context menu.
7. In the dialog, enter the following expression into the top panel:

Use the Formula: Load Samples menu in this dialog to view various examples on setting column values. The Function menu offers a large selection of functions. You can also search for suitable functions using the search button located in the top right side of the formula edit box.
8. Click $\mathbf{O K}$ to close the dialog and see the values in column C. Type $\boldsymbol{\operatorname { s i n }}(\mathbf{x}) / \mathbf{x}$ into the Comments cell of the column.
9. Click on the header of column C to select the entire column. From the menu, choose Plot: Templates > User and from the drop-down menu select the My Line template we created before. A new graph will be created using data from column C .

1.3.2 Batch Plotting

In this section, we will perform batch plotting by first creating one graph and then cloning that graph using other data.

1. Go to Project Explorer. In the upper panel, right-click on the root level and choose New Folder.
2. Right-click on newly created folder, select Rename, and assign the name Batch Plotting. Click on the empty folder to open it.
3. Using Windows Explorer outside of Origin, navigate to the folder <Origin EXE Path>|Samples\Import and Export \backslash. Press the Shift key and choose the following three files:

- S15-125-03.dat
- S21-235-07.dat
- S32-014-04.dat

4. Drag and drop the selected files onto the Origin workspace. The selected files are imported into three new workbooks.

Note: To import data files by drag-and-drop, you must not be running Origin as an administrator.
5. Select one of the workbooks, then click on the header of column B and drag the mouse to column D, selecting all three columns. Then select the menu: Plot > 2D: Multi-Y: 3Ys Y-YY.

Origin will look to the left of the selection to find the X column and plot the selected data against the the 1st column in the worksheet.
6. Double-click inside the layer to open the Plot Details dialog. In the left panel, we can see there are three layers. Expand Layer1 and choose the plot under it. Then in the right panel, change the line width by choosing the Line tab and setting Line Width as 3. Repeat the line width setting for the plots in the other two layers by selecting them from the left panel. Click OK to close the dialog and apply the settings.
7. Now we will clone this graph using data in the other workbooks. Right-click on the title bar of the graph and select Duplicate(Batch Plotting), and then the Select Workbook dialog will be opened.
8. In the dialog, press the Shift key and select the two workbooks in the top box.

You can set the Match Plot Columns by drop-down appropriately to find worksheets in the project that match the data configuration of the current graph.
9. Click OK. If prompted to rescale the axes to show all data, answer Yes and click OK. Two similar graphs will be created with data from the other two books.

10. From the menu, choose File: Save Project and save your modified project.

1.4 Data Selection

In this lesson we will learn about flexible ways of selecting data for plotting.

1.4.1.1 Plotting Data from Multiple Worksheets

1. Let's start with the project we saved in lesson two: Graph Templates and Batch Plotting. Select any workbook, and make sure no data columns are selected. You can click in the gray area outside of columns to remove selection.
2. Select menu Plot > 2D: Line: Line. The Plot Setup dialog will open.
3. Click the $\hat{\wedge}$ button on the right side to expand the upper panel if it is not already open.
4. Set the Available Data: drop-down list in the left panel to Worksheets in Folder.

To pick up worksheets from anywhere in your project, set the drop down to Worksheets in Project.
5. Hold down shift key and select all three data sheets named Trial Run 1, Trial Run $\mathbf{2}$ and Trial Run 3.
6. Using the check boxes in the middle panel, assign Time as \mathbf{X} and Position as \mathbf{Y}. Click OK button to create the graph.

This dialog has a third bottom panel which can be used to assign data to different layers in a multi-layer graph. If that panel is open, you can simply collapse it and then click OK to create the graph.

8. We will now customize the legend for this graph. Right click on the legend and select Legend: Update

Legend...
9. In the dialog that opens, set Auto Legend Transition Mode as Custom. Then click the $\rangle_{\text {button on the }}$ right of Legend Custom Format (@D, @LU etc) edit box, and in the fly-out menu select @WS: Sheet Display Name.
10. In the edit box, type a hyphen - after the string@WS, and again click the right arrow button. This time select @LD"Sample": Sample, which corresponds to column header row Sample in the worksheet. Click the OK button. The legend will now display the sheet name and the sample name.

Update Mode	Update	
Auto Legend Translation Mode	Custom	
Legend Custom Format(@D,@LU etc)	@W' - @LD"Sample"	
Show Legend for Visible Plots Only	\square	
Hide Legend for Fitted Curves	\square	

1．4．1．2 Using another Column to Set Color of a Plot

1．Go to Project Explorer．In the upper panel，right－click on the root level and choose New Folder．
2．Right－click on newly created folder，select Rename，and assign the name Data Selection．Click on the empty folder and open it．
3．Click Import Single ASCII button $\stackrel{\substack{127 \\ \hline ⿴ 囗 十 丌}}{ }$ and browse to＜Origin EXE Path＞ \mid Samples \backslash Graphing folder and select the file US Mean Temperature．dat and import it．
4．We want to plot the positions of US major cities（columns Longitude and Latitude）as a scatter plot and then colormap the data points with the annual mean temperature（column Annual）．Click on the header of column named January and drag and expand the selection all the way to the column named December． Then right click to choose Hide／Unhide Columns：Hide．
5．Select the Longitude columns，then right－click and select Set As：X．
6．Select the Latitude and click Scatter button ：＂｜on the bottom left toolbar to create the plot of longitude vs．latitude．
7．Double－click on any of the data points to bring up Plot Details－Plot Properties dialog．
8．With the data plot node［US Mean Temperature．dat］．．．under Layer1 selected in the left panel，activate the Symbol tab on the right panel．Click the Symbol Color drop－down and in the fly－out，switch to the By Points tab．
9．Click the Color Mapping drop－down and select Color Mapping：Col（P）：＂Annual＂．Click Apply to see the effect，still keeping the dialog open．
10.

Symbol Color	Map．Col（P）．＂A．．．${ }^{\text {－}}$
	Singe By Points
	Use column values Indexing v Drect RGB－
	Map．Col（P）．＂Amual＂＊

11．Let us now set the axes lengths to scale with the range of X and Y values represented in the graph．Click to select Layer1 node on the left panel．Then go to the Size／Speed tab on the right side．Check the Link Axis Length to Scale with X：Y Ratio box and keep the ratio as 1．Click OK to exit the dialog and see the effect．

12．The colormap by default is set to Rainbow．Click on any data point in the graph，and then click on the Palette toolbar button in the Style toolbar．Select the Temperature palette to better reflect the data．Click anywhere on the graph to deselect the plot．
13.

You can add a map to a graph using the Maps Online App．This blog post is a good place to start．

14. Longitude
15. From the menu, choose File: Save Project and save your modified project.

1.4.1.3 Selecting Multiple Non-adjacent Columns for Plotting

1. Open a new workbook window by clicking on the New Workbook button in the Standard toolbar.
2. Click the Import Excel button 舭 on Standard toolbar. In the file dialog that opens, browse to <Origin EXE Path> ISamples \Import and Export folder and select the file United States Energy (1980-2013).xls. Make sure that the Show Options Dialog check box is checked, and press OK.
3. In the import options dialog that opens, expand the Import Options > Header Lines node. Set the Number of Subheader Lines to <auto>, set the Long Names drop-down to 3 and the Units drop-down to 4. Then set the drop-downs for Comments From to 1 and Comments To to 2.
4. Check Apply Header to All Sheets so that these settings are used for every sheet in the Excel file.

Apply Header to All Sheets	\checkmark	
\square Header Lines		
Number of Main Header Lines [exclude subheader lines)	0	\checkmark
Number of Subheader Lines	<auto>	v
Long Names	3	\checkmark
Units	4	\checkmark
Comments From	1	\checkmark
Comments To		\checkmark
System Parameters From	<none>	\checkmark
System Parameters To	0	\checkmark
User Parameters From	<none>	\checkmark
User Parameters To	0	\checkmark

5. Press OK to import the file. Then go to the first sheet named Oil. Hold the Ctrl key to select Crude Oil Production, Oil Consumption and Total Oil Production columns.

可 UnitedStates1 - United States Energy (1980-2013) xis *							- \square^{8}	
	A(X)	B(\%)	C(1)	D(M)	E(M)	F(M)	GM	,
Long Name	Year	Cruco Oil Prod	Estimated Pett	Oil Consumpt	Refinery Capac	Total oil Procu	ProvedResen	
Units		1 K Barrels.Day	1K BarrelsDay	1 K Earrels ${ }^{\text {Day }}$	1 K Barrels/Day	1K EarrelsDay	18 Barrels	
Comments	Source: U.S. Energi Information Administration							
$F(x)=$								
1	2013	7441.4904	-6618.3613	18951.1285		12342.7671	30.529	
2	2012	6496.6967	-7371.5197	18490.2136	17736.37	11118.6939	26.544	
3	2011	5644.7918	-8753.6067	18882.0725	17736.37	10128.4657	23.267	
4	2010	5481.8712	-9484.537	19180.126	17583.79	9895.589	20.682	
5	2009	5349.8329	-9641.315	18771.4	17671.55	9130.0849	19.121	
6	2008	5000.0628	-10934.0379	19497.9641	17593.847	8563.9262	21.317	
7	2007	5076.9808	-12210.9752	20580,378	17443.492	8469.4027	20.972	
8	2006	50878685	-12371.0947	20687.418	17338.814	8316.3233	21.757	
9	2005	5181.5178	-12477.219	208021615	17124.87	8324.9425	21.371	

6. Then go to menu Plot > 2D: Multi-Panel: Stack... and accept default settings in the dialog, to create a stacked plot.

Save your project file.

1.5 Merge and Arrange Graphs

In this lesson we will create some graphs, merge them, and then arrange layers in the merged graph. We will also save the graph as a cloneable template to quickly re-create the graph from similar data.

1.5.1.1 Import data and create graphs

1. Open the project file we saved in lesson three:Data Selection. In Project Explorer, create a new folder under the root folder and rename it as Merging Graphs. Click on the empty folder to open it.
2. Click the New Workbook button on the Standard toolbar.
 the file dialog, navigate to the folder <Origin EXE Path> \Samples\Statistics and select automobile.dat. Click Open to import the file.

You can uncheck the Show Options Dialog check box in the file dialog to prevent the ASCII options dialog from popping up. The default settings will be used next time you import a file into a new book.
4. Click on the header of column C to select the entire column. Click the Scatter button : on the 2D Graphs toolbar to create a scatter graph.
5. Click on the scatter plot to select it, then right-click on the plot and select Change \mathbf{X} :
[automobile]automobile! $\mathbf{G}(\mathbf{Y})$:EnginDisplacement from the context menu to change the X data. A
reminder message pops up asking if you would like to rescale the graph. Select Yes and press OK.

Reminder messages have multiple options. If you select Yes, and do the same in the future, no need to ask again, the dialog will not show again. You can reactivate all reminder messages from the menu Help: Reactivate Reminder Messages.
6.

7. Select the legend and press the Delete key to delete it.
8. We will now make copies of this graph and change the data in the copies. First go back to the worksheet, and press the \mathbf{X} button on the top right of the title bar, and in the dialog that pops up, select Hide. This simply hides the window from the interface.

Hidden windows are displayed with a dimmed icon in the lower panel of Project Explorer. You can double-click on the entry to re-open the window.
9. Right-click on the graph window title bar and select Duplicate to create a copy. Do this two more times, so you end up with four graph windows.
10. Select the menu Window: Tile Vertically to arrange the 4 graphs without overlap.
11. Use the Change $\mathbf{X} /$ Change \mathbf{Y} menu described before, to change X / Y designations for the copy graphs as below, and rescale when promoted:

- Copy 1: Change Y to [automobile]automobile! $D(Y): 0^{\wedge} 60 \mathrm{mph}$
- Copy 2: Change X to [automobile]automobile! $E(Y)$:Weight
- Copy 3: Change X to [automobile]automobile! $F(Y)$:Gas Mileage

12. Activate the graph of Power vs. Weight. Let's do some customization. Double-click on the data plot to open the Plot Details dialog. Change the plot properties as follows:

- Change Symbol Shape to circle and Symbol Color to olive.
- Set Transparency to 55\%.

Press OK to close the dialog.
13. Double-click on the Y axis to open the Axis dialog. Change the axis properties as follows:

- Activate the Tick Labels tab. Press the Ctrl key on the keyboard and click Bottom and Left in the left table to select both axes.
- In the Display sub-tab, select Engineering:1k for Display.
- Check the Set Decimal Places check box and set Decimal Number to 0. Press OK to close the dialog.

	Scale	Tick	Labels	Title	Grids	Line and Ticks	Special T
	\checkmark Show \square Use Same Options for Bottom and Top						
Bottom							
123	Type			Numeric			\checkmark
Top	Display			Engineering: $1 \mathrm{k} \rightarrow$			
$\frac{1}{2}-$	Set Decimal Places			\checkmark			
	Decimal Number			0			
	Divide by Factor						
S_{-3}	Formula						
Right	Fvamnle: ${ }^{\text {\%v }}$						

14. Now we can copy the customized formats from this graph to the other three graphs. Right-click on a blank area of the graph such as outside the axes, and select Copy Format: All Style Formats from the context menu.
15. Select Edit: Paste Format (Advanced)... from the main menu. In the Apply Formats dialog that opens, change Apply Scope drop-down at the bottom to All Graphs in this Folder. Click the Apply button to paste the format to the other graph, and then click Close.

1.5.1.2 Merge and arrange graphs

1. We will now merge these 4 graphs windows. Select Graph: Merge Graph Windows from the main menu.
2. The Merge Graph Windows dialog opens. Accept the default settings and click OK. A new graph window with 4 layers is generated.
3. Now we will re-arrange the 4 layers in the merged graph. Select Graph: Layer Management from the main menu. The Layer Management dialog will open.
4. Activate the Arrange tab, then expand the Spacing (in \% of Page Dimensions) branch. Set as follows:

- Horizontal Gap $=15$
- Vertical Gap $=15$
- Left Margin = 10
- Right Margin $=5$
- Top Margin = 5
- Bottom Margin $=15$

Click the Apply button.
5. Activate the Display tab. Press the Ctrl key on the keyboard and select all 4 layers in the Layer

Selection table on the left. Then select the Scale Elements checkbox under the Option branch. Set Scale Mode to Fixed Factor and set the Fixed Factor to 1.
6.

If you drag and resize a graph layer, or the layer gets resized when merging, text fonts and other graph objects get rescaled. You can control this behavior at the layer level of the Plot Details dialog by clicking on the Display tab and modifying the settings in the Scale Elements group.
7. Click the Apply button. Click OK to close the dialog.

The merged graph should now appear as below:

8. Activate the automobile workbook by double-clicking on the icon in the lower panel of Project Explorer.

Select column B, then right click and select Filter: Add or Remove Filter to add a filter.
9. Click on the filter icon at the top-left corner of the column header. In the context menu that appears, click Select All once to de-select all items, and then select the Honda checkbox and click OK, to only show rows where Make is Honda. All other rows will be hidden, and all graphs will update to reflect the change
in the data.

1.5.1.3 Cloneable Template and Smart Plotting

1. Let us now save the final merged graph as a template. Right click on its window title bar and select Save Template As. This will open the template_saves dialog.
2. Make sure Mark as Cloneable Template is selected and Match Plot Columns by is set to Long Name. Enter MyMergeGraph for Template Name and click OK. A message is dumped to the Message Log telling you the template is saved.

Cloneable Templates save the column positions or column names along with all other graph properties. This allows for duplication of complex graph arrangements from other data with same arrangement of column positions or names.
3. Activate the automobile workbook. Select the filter on column B and select both Honda and Lexus and click OK to show both makes.
4. With the book still active, select Plot > Templates User: MyMergeGraph from the main menu. A new graph is created, with the same data assignments and formats as present in the previous merged graph.
5. Save your project file.

1.6 Publishing Graphs

In this lesson we will learn about some of the options available for publishing graphs.

1.6.1.1 Pasting Graphs in Other Applications

1. Open the project file saved from lesson four: Merge and Arrange Graphs. Click to select the last graph window that you created.
2. Use the menu Edit:Copy Page, or the shortcut CTRL+J, to copy the graph page.
3. Launch Microsoft® WORD, then press CtrI+V. The graph will be pasted as an embedded object in Word.
4. Double-click on the graph in Word. A new instance of Origin will be launched. Note that in this instance, only the graph and data related to the graph are available in the project.
5. Use menu Format: Page to open the Plot Details dialog in the page level. Then in the right panel, change the background color by choosing the Display tab and setting Color as LT Gray. Click OK.
6. From the menu, choose File: Exit \& Return to Document1. This will close the instance of Origin, and the graph image in the document will be updated.
7. Repeat step 1~2 to copy the graph page. then go back to the Word document, de-select the graph and press Enter to move to a new line in the document. Under the Home tab click the Paste icon, then select Paste Special from the drop-down.
8. In the dialog that opens, select Picture (Enhanced Metafile) and click OK. This will paste the Origin graph as a picture object. Double-clicking on the image will open the Format Pictures dialog.

9.

When the Origin graph is placed as an embedded object in applications such as Word or PowerPoint, all the data associated with the graph are also saved with the Word document. This provides the flexibility of double-clicking and editing the graph in a new instance of Origin. However, if many graphs are placed as objects in a document, the document file size will become large if there is a lot of data associated with the graphs.

1.6.1.2 Sending Graphs to PowerPoint

1. With the graph window active in Origin, press the Send Graphs to PowerPoint button .
2. Accept all default settings in the opened dialog and click OK. The graph will be pasted as a new slide in the PowerPoint file.
3. Right-click on the graph title bar (in Origin) and select Add Shortcut to Favorites. This will add a

Favorites folder to the project, visible in Project Explorer.
Project Explorer [3]
Getting Started Tutorials
$-D$ Data Selection
$-\square$ Favorites
$-\square$ Merging Graphs
$-\square$ My First Graph
Theme, Templates, Batch Plotting
4. In Project Explorer, select the My First Graph folder. Then select the graph window, right-click on the title, and Add Shortcut to Favorites folder. Add shortcuts from other graph windows in the project as desired.
5. Go to Project Explorer and activate the Favorites folder. In the bottom panel, without selecting any item, right-click on the white area and choose View:Extra Large Icons from the context menu. This will show the graphs as extra large icons.

Double-click on the icons in Favorites folder to open the graph for viewing or editing. Rightclick on the icon or the graph window title bar for a context menu command to go to the original folder for that graph.
6. Right-click on the Favorites folder in the upper panel of Project Explorer and choose Send Graphs to

PowerPoint. Accept defaults in the dialog that opens. All graphs in the folder will be sent to PowerPoint.
Note that you can do this operation in any folder, and not just the Favorites folder.

The dialog for sending graphs to PowerPoint has options for selecting all graphs in the project, specifying graphs by name, and placing the graphs on duplicate copies of a specific slide PowerPoint file slide that you can prepare prior to the operation.

1.6.1.3 Slide Show in Origin

1. Right-click on the Favorites folder in the upper panel of Project Explorer and choose Slide Show of Graphs from the context menu.
2. Accept defaults in the dialog. The slide show will start. Use arrow keys to view the next or previous graph in the sequence.

In the bottom panel of Project Explorer, switch to Details view (right-click in a empty location and choose View: Details). Right-click on the lower panel title bar and enable Slide. Note that you can drag to reorder the columns. Use the added Slide column to arrange the order of the graphs. Click on the slide column header once, and then you can drag and rearrange the graph entries to set the order. This order will be followed for operations such as slide show, pushing graphs to PowerPoint, and exporting.

1.6.1.4 Exporting Graphs

1. Go back to Project Explorer and select the Merging Graph folder in the upper panel.
2. Activate the graph and choose File: Export Graphs and change the following dialog box settings.

- Select Portable Document Format (*.pdf) from the Image Type drop-down list.
- Change the Select Graph(s) drop-down to All in Active Folder.
- Expand the Image Size branch and enter $\mathbf{5}$ in the Fit Width text box.

3. Click the $\mathbf{O K}$ button to close the dialog.
4. Click on the Messages Log tab on the left side of the interface. The export path will be displayed there. By default, this will be your User Files Folder (UFF) path. Copy the path, then go to Windows Explorer and paste the path to open the folder. You can then view the PDF files that were exported from Origin.
5. Save your project file.

1.7 3D and Contour

In this lesson we will learn how to plot 3D, contour, and profile plots. Data for such plots can be organized as XYZ columns or an array of cells in a worksheet, or in a matrix window.

1.7.1.1 3D Surface

1. Start with the project saved from the previous lesson and add a new folder named 3D and Contour. Click to open the empty folder.

2. Import the file <Origin EXE Path>\Samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat.
3. Right-click on the header of column C and select Set as: \mathbf{Z} from the context menu.
4. Keep column C highlighted. Then select the menu Plot > 3D: Surface: 3D Color Map Surface to create a surface plot.
5. Double-click on the layer icon on the upper left corner of the graph page, indicated by $\mathbf{1}$, to open the Layer Contents dialog box.
6. In the left-hand panel, select $\mathbf{C}(\mathbf{Z})$. In the middle section, click the drop-down arrow next to the \mathbf{A} button. From the drop-down, select 3D Scatter/Trajectory/Vector. Click the Add Plot button $\left.\rightarrow\right|_{\text {to add the }}$ plot to the right-hand panel.

Book Msne	Sheet	Short Hsae
YYZ Randon XYZ Randon Gaussi $B(\%)$		
ITZ Randet	ITY Randoe Gamp	C(Z)

8. Click OK to close the dialog. The graph will now display the individual data points on the surface.
9. Hold the \mathbf{R} key and use the mouse to freely rotate the surface plot.

1.7.1.2 Image Profile

1. Click on the New Matrix button 皿 $_{\text {in the }}$ Standard toolbar to open a new matrix window.
2. Select the menu Data: Import from File: Image to Matrix, then browse to <Origin EXE Path > \Samples \Image Processing and Analysis folder and select cell.jpg file and import it into the matrix.
3. With the matrix active, select the menu Plot > 2D: Profile: Image Profiles. An image profile graph will be created, and the Image/Contour Profile dialog will open.
4. In the dialog, select the HLine tab then make the horizontal line thicker by expanding the Width branch and changing Pixels to 50.
5.

ϑ
You can add multiple horizontal, vertical, or arbitrary lines using the buttons in the dialog. The graph layers will display overlaid curves for the profiles in the appropriate layers. Profile plots can also be made from data in a matrix or worksheet.

1.7.1.3 Contour and Surface Plots from Virtual Matrix

1. Click on the New Workbook button 四 to create a new workbook.
 box, browse to <Origin EXE Path>\Samples\Graphing folder, choose waterfall.dat file. Click Finish to import the file.
```
Data Source
e.File C:Vrogam Fies\OriginLab\Origin2016\Somples\Giraphing\Wsterfalldst
Clipboard
Import Fiter
| List fiters applicable to both Dsta Type and fie name
Impot Filers for curerk Data Type Data Folder: Wateifal
```

3.

The Import Wizard can be used to parse an ASCII file to extract variables from header lines. The file you chose already has a predefined filter which is applied when you click the Finish button.
4. Move the cursor to the upper left corner of the workbook until the shape of the pointer changes as in the following image, and click to select all columns of the worksheet.

\# Book5*			$\square \square$	
\}	$A(X)$	$\mathrm{B}(\mathrm{Y})$	C1(V)	C *
Long Name	Emission			
Units	nm			
Comments				
$\mathrm{F}(\mathrm{x}) \mathrm{m}$				
Excitation Wavele	X	600	602	6
1	835	-15.49	13.47	
2	836.04	-12.05	0.56	
4 p Waterfall/			+ \square	+11

5. Select menu Plot > 2D: Contour: Contour - Color Fill. This will open the plotvm dialog box, where you need to specify the data organization for your Virtual Matrix, as the data is contained in a worksheet instead of a matrix window.
6. Change \mathbf{Y} Values in to Column Label, and then set Column Label to Excitation Wavelength(nm).
7. Click the $\mathbf{O K}$ button to apply the settings and create the contour graph.
8. Click the Enable/Disable Speed Mode buttonone time from the right-hand toolbar, to turn off the speed mode setting for the graph.
9. Go back to the workbook with waterfall data. Keep the whole worksheet highlighted and this time select the menu Plot > 3D: Surface: 3D Color Map Surface with Projection.
10. The plotvm dialog opens. Note that the Theme box on the top of dialog is set as <sheet>. This is because the settings used last time were saved in the worksheet. Click OK to accept the same settings. A surface graph with contour projection will be created.
11. Double-click on the contour projection to open the Plot Details dialog. Note that on the Surface tab, the Flat check box is checked, and an offset of 100% has been applied. This setting makes the data plot appear as a flat contour on top of the cube. Click OK to close Plot Details.

12.

θ
Data from different matrices or virtual matrices can be plotted in the same 3D graph layer by specifying an appropriate offset value for each, and further specifying which datasets to flatten. This allows to examine related data together in the same graph.
13. Double click on the \mathbf{Z} axis to open the Axis dialog. Switch to the Scale tab and set the To value to 4000 and click OK. This allows better viewing of the 3D surface. The contour project will stay on the top plane of the cube.

1.7.1.4 3D Function Plot

1. Select the menu File: New: Function Plot: 3D Function Plot.
2. In the dialog box, click the triangle button next to the Theme box on the top. Then select Mexican Hat(System) in the context menu to load the settings for this example.
3. Press OK to create the plot.
4.

A parametric function can be added to an existing graph, thus allowing you to combine such plots with real data. Visit 3D Function Gallery to view and download more examples.

Save your project file.

1.8 Gadgets

In this lesson, we will use gadgets to perform exploratory analysis of data in a graph.

1.8.1.1 Integrate Gadget

1. Start with the project saved from the previous lesson and add a new folder named Gadgets at the root level in Project Explorer, then go to that folder.
 import the file <Origin EXE Path>\Samples\Curve Fitting\Multiple Gaussians.dat.
2. We will add long names for the datasets. Enter "Peak 1" in the Long Name label row of column B. Click and select the long name cell. Then move the mouse to the lower-right corner of the cell so that the cursor changes to "+". Click the left mouse button and drag from column C to E. Origin will auto-fill the names as Peak 2, Peak 3 and Peak 4.
3. Click and drag on the column headers to highlight columns B to E. From the main menu, select Plot >

2D: Multi-Y: Stacked Lines by Y Offsets to create a stacked lines graph.
5. With the graph active, select Gadgets: Integrate... from the main menu.
6. Accept the default settings and press the OK button. A region-of-interest (ROI) box will be placed on the graph. Move and/or resize the ROI to cover a desired range of the data.
7. Click on the triangle button at the top-right corner of the ROI box and select Preferences to re-open the dialog.
8. In the Output tab, expand the Output Quantities to branch and select the Append to Worksheet check box. Click OK to close the dialog box.
9. When there are multiple plots in a layer, the gadget acts on the active data plot by default. In this case, the active plot is Peak 1. To change the data to Peak 3 for example, click on the triangle button at the topright corner of the ROI box and select Change Data: Plot(3): Peak 3 from the context menu.

10. Click on the triangle button again and select New Output for All Curves. A workbook with integration results for all curves will be generated. Click the triangle button and select Go to Report Worksheet to switch to the output workbook.
11. Click the \mathbf{X} button at the top-right corner of the ROI box in the graph to remove the gadget.

1.8.1.2 FFT Gadget

1. Start with a new workbook, and import the file <Origin EXE Path>\Samples\Signal Processing \Chirp Signal.dat.
2. Highlight column B, then select Plot > 2D: Line: Line from the main menu to create a line graph.
3. With the graph active, select Gadgets: FFT from the main menu. Accept defaults in the dialog that opens, and click OK. An ROI box will be placed on the graph, and another graph named FFTPREVIEW will be created, displaying the FFT result.
4. In the top right corner of the FFTPREVIEW graph, uncheck Log Scale. Then reposition the source line graph and FFTPREVIEW window side by side. Move and resize the ROI to cover a small range of the beginning of the data curve.
5. Now you can use the arrow keys to move the ROI to the right, while watching the FFT result update in the other graph.

6. Save the project file.

1.9 Curve Fitting

In this lesson we will learn how to perform linear and nonlinear regression.

1.9.1.1 Linear Fit with Outliers

1. Start with the project saved from the previous lesson, and add a new folder at the root level in Project Explorer named Curve Fitting.
2. Import the file <Origin EXE Path>|Samples\Curve Fitting\Outlier.dat.
3. Select the 2nd column and create a scatter plot.
4. Select the menu item Analysis: Fitting: Linear Fit. In the dialog that opens, accept default settings and click OK to perform the linear fit.
5. In the graph, right-click on the fitting results table and select Quantities in Table. Remove all entries except Intercept, Slope and Pearson's r (use CTRL + select for multiple selections). Click OK and resize the results table as needed.
6. Now click the Mask Points on Active Plot button on the left side toolbar and mask the point at the right bottom, which is distinctly separated from the rest of data points.
7. The lock on the top left of the graph page turns yellow indicating that the data has changed, but the fit results are in need of an update.
8. Hit the ESC key to switch the cursor back to pointer mode. Then click on the yellow lock, and from the flyout menu select Recalculate Mode: Auto. The fit results will be updated.
9.

You can update all pending operations in a project by clicking on the Recalculate button雨 located in the Standard toolbar.
10. Go back to the graph and use the masking tool to mask the outlier point towards the top. You will notice that the results automatically update. Your graph should now look similar to this image:

1.9.1.2 Nonlinear Curve Fit

1. Start with a new workbook, and import the file <Origin EXE Path> Samples\Curve Fitting \backslash Gaussian.dat.
2. Highlight the column named Amplitude and make a scatter plot.
3. Go back to workbook, highlight column named Error, then right click and select Set As: Y Error from the context menu.
4. Place the mouse cursor close to the right edge of the highlighted column. The cursor will change to At this point, drag and drop the column onto the graph. The data will be added as error bars on the scatter plot.
5. Now let's fit this data. Select the menu Analysis: Fitting: Nonlinear Curve Fit to open then NLFit dialog.
6. In Function Selection page, set Category drop down to Peak Functions, and set the Function drop down to Gauss.
7. Click Fit button to perform fitting and choose No in the prompt dialog, to keep the graph window active.
8. Now we want to fix $y 0$ as 0 and update the results. Click on the green lock on the top left of the graph page, and select Change Parameters.
9. The dialog re-opens with the settings that were used last time the operation was performed. Go to the Parameters tab, check the Fixed box for $y 0$ and enter Value as 0 .

Seltings	Code	Parameter	Bounds	
\checkmark Auto Parameter Initialization				
Double click cells to change operator. Right click cells				
NO.	Param	Meaning	Fixed	Value
1	$y 0$	offset	V	0
1	xC	center	\square	26

10. Click the Fit button to update the file and close the dialog. From the updated table on the graph, we can see that $y 0=0 \pm 0$.

1.9.1.3 Global Fit with Parameter Sharing

1. Start a new workbook and import the file <Origin EXE Path> \Samples\Curve Fitting\Exponential Decay.dat.
2. Drag and select the three Y columns and create a line plot.
3. We want to fit all three data plots simultaneously over the x range of 0.4 s to 1.0 s . In the Tools toolbar docked to the left side of the interface, click the down arrow button on the right of Selection on Active Plot button ${ }^{\frac{1}{2}}$. From the fly-out, choose Selection on All Plots. Go to the graph and drag and draw a rectangle to roughly cover the x range of 0.4 to 1.0 , including all the three curves in the process.

4. Press CTRL+Y to quickly launch the NLFit dialog. Then set Category as Exponential and Function as ExpDec1.
5. Click on Data Selection under the Settings tab, expand the Input Data node and you will find all three curves are added. You can expand the Range\# node to further adjust data ranges either by row index or by x value.
6.

If no range selection has been made on the multiple plots, Origin will only pick up the active data plot from the graph layer containing multiple plots. In that case you can click the
button on the right side of Input Data and select Add all plots in active page.
7. Change Multi-Data Fit Mode to Global Fit, switch to the Parameters tab and click the Fit until

8. You can share parameters during a global fit. Check the Share box for the time constant t1. You will notice that the time parameter for the other curves has been removed from the parameters list.
9. Click the Fit button and select Yes in the prompt that appears, to switch to report sheet. If the prompt does not come up, you can click on the green lock in the graph and select Go to Results.
10. Scroll down to the Summary table in the report. You will find that all time constants $\boldsymbol{t 1}$ share the same values.

	y0		A1		t1		k	tau
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Value	
Decay 1	97.76426	1.04512	75.32799	11.78854	0.28532	0.03567	3.5049	0.19777
Decay 2	50.44112	1.39417	107.39208	16.22812	0.28532	0.03567	3.5049	0.19777
Decay 3	14.46759	0.73292	43.06541	7.60772	0.28532	0.03567	3.5049	0.19777

11. Now click on the down arrow button beside the Summary node and choose Create Copy as New Sheet. A new worksheet with the fit results will be added to the book.
12. Select column D, E and create a column plot to display how the amplitude parameter (A1) changed across the three datasets.

1.10 Peak Analysis

In this lesson we will perform fitting, including deconvolution of overlapping peaks and baseline correction.

1.10.1.1 Multiple Peak Fit with Deconvolution

1. Let's continue with the project file we saved in the previous lesson. Create a new folder in Project Explorer, rename it as Peak Analysis, then go to the empty folder.
2. In a new workbook, import the file <Origin EXE Path>|Samples\Spectroscopy\HiddenPeaks.dat.
3. Highlight column B and create a line plot.
4. With the graph window active, click Analysis: Peaks and Baseline: Multiple Peak Fit. This will open the Multiple Peak Fit dialog. Set the Peak Function drop-down as Gauss and click OK.
5. A Get Points dialog will open within the graph window. Note that you can re-position this dialog within the window. Double-click on a peak center to select it. Select a total of 7 peaks as in the following image,
including two hidden peaks:

6.

If you click the Open NLFit button in the Get Points dialog, the NLFit dialog will open with the peak centers initialized with your selection. You can further control the fitting process as desired.
7. After selecting all seven peaks, click the Fit button. A fit report will be added to the workbook.

1.10.1.2 Fit Peaks with Baseline

1. This part of the lesson assumes you have OriginPro. Start with a new workbook and import the file <Origin EXE Path> \Samples\Spectroscopy\Peaks_on_Exponential_Baseline.dat.
2. Highlight column B and then click Analysis: Peaks and Baseline: Peak Analyzer. This will open the Peak Analyzer dialog, and a preview window displaying the selected data.
3. In the bottom panel, select the Fit Peaks (Pro) choice under Goal. The top panel will update, displaying a map of the steps involved in the peak fitting process.
4. Click Next. On the Baseline Mode page, select User Defined for Baseline Mode. Click Next to go to the Create Baseline page. You can then see in the preview window that 8 anchor points connected by a red line, are added to the spectrum. This is the baseline created using the current settings.

5.

Now click the Prev button to go back to the Baseline Mode page to adjust the baseline mode settings.
6. Click the Find button below Number of Points to Find, to find the baseline anchor points in the spectrum. Eight (8) anchor points are added.
7. Clear the Enable Auto Find checkbox and then click the Add button to add one or more anchor points on the spectrum. Double-click on the tail of the spectrum like the following image to add 1 anchor point.

8. Note that you can also select and delete anchor points. Click Done to return to the Peak Analyzer.
9. Select the Snap to Spectrum checkbox to force anchor points to snap to the closest data point in the spectrum. Click Next.
10. On the Create Baseline page, select Fitting for Connect by. Select ExpDec2 for Function under the Fitting branch. Click Next twice to go to the Find Peaks page.
11. Click the Find button. Two (2) peaks are found in the preview.
12.

There are several options available for peak finding including a 2nd derivative method to find overlapping peaks. You can also view the 2nd derivative curve, and turn on smoothing to help find peaks in noisy data.
13. Click Next to go to the Fit Peaks page. Accept defaults and click Finish to perform peak fitting. A graph containing fitting results is generated.
14.

You can click the Fit Control button to control the fitting process including fixing and sharing parameters, and specifying bounds and constraints.
15. Now, let's customize the Fitting Results table to hide some peak properties we don't want to display. Right-click on the table and select Peak Report Field... from the context menu. The Peak Report Field dialog will open, listing all properties that can be included in the table. You can remove or change the order properties in this dialog. Select Peak Gravity Center and click the Remove button to hide it. Do
the same for Peak Area by Integrating Data(\%). Press OK to update the table in the graph.

Save your project file.

1.11Statistics

Origin provides many tools for statistical analysis. Advanced statistical tools are available in OriginPro. In this lesson, we will work with tools available in standard Origin.

1.11.1.1 Descriptive Statistics

1. Start with the project saved from the previous lesson, create a new folder in Project Explorer and rename it as Statistics. Open the empty folder.
2. Create a new workbook and import the file <Origin EXE Path $>\mid$ Samples \backslash Statistics \backslash body.dat.
3. Drag and select the first $\mathbf{5}$ rows of column D(Height). Basic statistics (average, sum, count) for your selected data will be displayed in the status bar at the bottom right side of the interface.

You can right-click on the statistics listed in the status bar to customize what quantities to display there.

5. From the menu, select Statistics: Descriptive Statistics: Statistics on Columns. In the dialog, select
the Input tab, then expand Range 1. Click on the interactive button ${ }_{\text {to }}$ the right of Data Range.

Return to the worksheet, then drag and select columns D and E. Click the interactive button again to restore the dialog.
6. In the Group control, click the triangle button and select $\mathbf{B}(\mathbf{Y})$: age. Click the button again and select $\mathbf{C}(\mathbf{Y})$: gender. In the list, select ..."gender" in the Group box, then use the Move Up button \boldsymbol{A} to move it to the top.
7. Click OK to generate the report.

		Nitral	Whas	Sarcaiteviton	Sun	Unitum	Weaz	Sxinat
	12	3	8488	13.0003	723	128	148	183 150
	13	3	Te5 31393	${ }^{64291}$	43	138	148	150
	+ 14	5	\$592	370150	771	180 180	153	14
	15	2	1065	358053	324	153	1855	159
	15	2	454	C.10589	300	140	${ }_{158}^{158}$	188
nugn	17	1	${ }_{53} 5$	18360-	73	153	153	153
	12	3	14238313	1331600	${ }^{524}$	120	146	150
	13	4	151	787001	694	148	1505	13
		,	151	50002	107	${ }^{188}$	${ }^{158}$	178
4	15	1	1001	4.71189	504	153	180	145
	18	- 1	138	309033	108	188	108	758
	4	2	170.5	3.8053	345	168	178.5	133.

8. Click the downward-pointing triangle button ${ }^{\boldsymbol{-}}$ on the right of the Descriptive Statistics node in the report sheet and select Digits... from the context menu.
9. In the opened dialog, change Digits to Set Decimal Places= and set Decimal Number as 1. Click OK to update the display format in all tables of the report.
10.

The numeric display in all report sheets can be globally set using the Digits in Report control on the Numeric Format tab of the Options dialog accessible from the Preference: Options main menu.

1.11.1.2 Normality Test

1. Create a new workbook by clicking the New Workbook button
2. Double-click in the $\mathbf{F}(\mathbf{x})$ label row of column A. This will put you into edit mode for that cell. Type the formula:

The column will be filled with random integer numbers centered around 100.
3. Highlight column A and click Statistics: Descriptive Statistics: Normality Test to open the dialog. The selected column is set as Input Data automatically. Accept default settings and click OK. This will generate the report sheet for Normality Test. The footnote under the Shapiro-Wilk table indicates that
this data is normally distributed, as expected.

1.11.1.3 Frequency Counts

1. Activate Sheet1 of the workbook from the previous section. Keep column A highlighted, then click

Statistics: Descriptive Statistics: Frequency Counts.
2. Accept all default settings in the dialog and press OK.
3. In the result sheet, highlight the column $\mathbf{C}(\mathbf{Y})$. On the 2D Graphs toolbar, click the triangle button next
 will create a histogram plot with counts as labels.

4.

The Plot: Statistics menu provides multiple histogram plot options when a worksheet is active. This Frequency Counts tool provides an alternate way to first perform counting, and then plot a histogram from the results. This allows for more flexibility and customization such as adding labels to the columns.

1.11.1.4 One Way ANOVA

 Path> \backslash Samples \backslash Statistics folder. Change the drop-down list next to the File Name to Text File (*.txt).

Text File (*.tat)
".dat
Text File (", bt)
All Files (${ }^{*}$.")

2. Select the file nitrogen.txt
3. Select the menu Statistics: ANOVA: One Way ANOVA to open the One Way ANOVA dialog. In the

Input tab, set Input Data to Indexed. Press the triangle button to the right of Factor and select $\mathbf{A}(\mathbf{X})$:
plant. Press the triangle button to the right of Data and select $\mathbf{B}(\mathbf{Y})$: nitrogen.
4.

The ANOVA dialog box provides two options for input mode: Indexed or Raw. You can refer to the FAQ-333: What is indexed versus raw data and how to I transform from one to another? to learn more about how data can be arranged for either mode.
5. In the Means Comparison tab of the dialog, select the Tukey check box. Then switch to the Plots tab and select Means Comparison Plot. Click OK to close the dialog and generate the report.
6. Go to the report sheet ANOVA1Way1. From the result, we can draw following conclusions:

- The ANOVA table (Overall ANOVA) reports a p-value that is smaller than 0.05 , hence at least two of the four groups have significantly different means.

Overall ANOVA *					
	DF	Sum of Squares	Mean Square	F Value	Probor
Model	3	1996.35652	665.45551	1286214	$6.99338 \mathrm{E}-7$
Error	76	3932.05317	51.73754		
Total	79	5928.41969			

Nut Hyponesis: The mears of all levele ave equat.
Aserrative Hypotiesis: The maars of one or more iwvils ars sffierent
At the 0.05 level, the population means are sipnificantly different.

- Double-click on the Means Comparison Plot to open it. The red plots indicate significantly different mean values. PLANT4 has the smallest mean and is significantly different from the other three groups.

- Save your project file.

1.12 Analysis Template

In this lesson we will learn how create an Analysis Template and re-use it for new data.

1. Continue with the project file saved from the previous lesson. Create a new folder in Project Explorer and rename it as Analysis Template. Open the empty folder.
2. Create a new workbook and import the file <Origin EXE Path>|Samples \Curve Fitting \backslash Sensor01.dat.
3. Highlight column B and select Plot > Templates: User Templates: My Line to create a line graph from the graph template My_Line.otp that we saved in lesson 1.
4. With the graph window active, select Analysis: Fitting: Linear Fit from menu. This will bring up the Linear Fit dialog.
5. In the Fit Control tab, select the Fix Intercept check box to force the fitted curve go through (0,0). Select Auto for Recalculate. Click OK to perform the linear fit. The fitted curve and a result table will be added to the graph.
6. Right-click on the result table and select Quantities in Table from the context menu. In the dialog, remove all entries other than Slope and Adj. R-Square, then click OK to update the table.
7. Double-click on the X axis to open the Axis dialog. With the Scale tab active, hold down the Ctrl key and select both Horizontal and Vertical in the list box on the left. Change Rescale to Auto and click OK. This is to make sure the axis range will update when data changes.

8. Select the legend on the graph and delete it.
9. Go back to the source workbook. Right-click on any one of the sheet tabs and select Add Graph as Sheet from the context menu.

10.
11. In the Graph Browser dialog that opens, select Active Folder from the location drop-down list. Only the line graph in the current folder will be displayed. Select the graph and click OK to insert it as an embedded graph inside a new worksheet.

12. Now we have source data and all analysis results in one book. Let's save it as an Analysis Template. Select File: Save Workbook as Analysis Template... from menu. Save the workbook as My Sensor Analysis.ogw.
14.Any work book which has an operation linking input and output, indicated by a lock on output sheets or columns, can be saved as an analysis template. The simplest example would be a sheet where column value calculations have been performed.
13. Now use the File: Recent Books menu command to open My Sensor Analysis.ogw. The analysis template will open. Note that the date sheet, results and graphs are empty.
14. With the first data worksheet active, import another data file <Origin EXE Path $>\mid$ Samples \backslash Curve Fitting\Sensor02.dat.
15. The linear regression results and the embedded graph will update automatically, because we had set the Recalculate mode in the linear fit tool to Auto.

Analysis templates can be used manually to process one file at a time, or can be used to perform batch analysis of multiple data files or datasets. Please view the Batch Processing tutorial to learn more.

Save your project file.

1.13 Apps in Origin

In this lesson we will install and use an App from the File Exchange area of OriginLab's website.

1. Start with the project saved from last lesson, and add a new folder named 3D Ellipsoid at the root level of Project Explorer.
2. Select the F10 key to open the App Center dialog. Select the Search tab and input 3D Confidential Ellipsoid into the search engine and select the Search icon in order to search for the app.
Note: You can as well open the App Center dialog by selecting Add Apps in the Apps Gallery Window.
3. Click the download and install icon. Once the App is installed, the download and install icon will change to a green check-mark (Up-to-date Version icon). As well, an icon named 3D Confidential Ellipsoid will appear in the Apps Gallery window docked to the right end of the workspace.

4. Now import the file <Origin EXE Path>\Samples\Statistics\Fisher's Iris Data.dat into a new workbook.
5. Select Plot > Templates: System Template Library from the main menu. In the System Templates dialog, expand the Graph Template -> 3D Symbols \& Bars \& Vectors node, then select gl3d. Click the Plot Setup... button at the bottom left corner of the dialog.
6. In the Plot Setup dialog that opens, set column C, D, and A as the X, Y, and Z columns, respectively. Click the Show Plot List button \approx to expand the dialog (if it is not already expanded), click the Add
button, then click OK to create a 3D scatter plot.

7. Double-click on the scatter to open the Plot Details dialog. On the Symbol tab, click on the Color dropdown list, and then select the By Points tab. Then click on Indexing, and from the drop-down, select CoI(E) "Species". Click OK to close the dialog.
8. Click the 3D Confidential Ellipsoid button in the Apps Gallery. This will open the Plot 3D Confidence Ellipsoid dialog. Accept the default settings and click OK. Three ellipsoid are added to the graph, each envelops the group of data with the same color. You can hold the \mathbf{R} key and then use the mouse to rotate the plot.

Save your project file.

We hope this set of Getting Started tutorials has been helpful in providing you with a broad overview and introduction to key features in Origin. We recommend that you continue with more advanced tutorials in the categories that are most relevant to your work.

2 Video Tutorials

To get started quickly with Origin, you could watch the videos in the following table:

Title	Description
Introduction to Origin	Learn how to quickly start using Origin from importing data, customizing column label rows, creating a multi-panel graph, selecting part of the data, performing integration, finding and fitting peaks, and using Recalculate to perform fitting with altered parameters.
Importing Data	Learn how to import ASCII file, customize your Import ASCII dialog settings and save them for future reuse, and use the Import Wizard to import data file and customize the import settings.
Creating a Graph	Learn how to create a graph using the graph toolbars or the Plot Details dialog, add data to an existing graph, and plot groups of plots by label.
Customizing a Graph	Learn how to add a layer title, resize a layer, change the axes properties, save a graph as a template and reuse it, customize a graph by using theme, change the plotting order, customize a single data point or a grouped data plot.
Interpolation	Learn how to change line connection to interpolate data and use Interpolate Gadget to perform data interpolation. Also, interpolate new Y data from given X data based on specified $X Y$ range.
Linear Fitting*	Learn how to perform a linear fit with outlier removal.
Nonlinear Curve Fit Tool	Learn how to fit with a built-in fitting function and change the NLFit settings using Change Parameters. Also, learn how to define and fit with a user-defined function.
Creating an Analysis Template	Learn how to set up a workbook for repetitive analysis using a linear regression example.
Batch Processing	Learn how to create an analysis template, and use this template to batch process multiple data files.
Introduction to OriginPro	Learn about all of the extended analysis tools in the areas of peak fitting, surface fitting, statistics, signal processing and image processing offered in OriginPro.

Note: Please visit the video tutorial page on our website for a complete and most up-to-date list of video tutorials.

3 User Interface

3.1 User Interface

- Tutorial:Origin GUI

3.2 Origin GUI

3.2.1 Summary

This tutorial will introduce you to the Origin workspace. You will learn about the different kinds of Origin windows that make up a Project, how to manipulate these windows with Project Explorer, how to manipulate layers and plots with Object Manager and how to manage Apps with Apps Gallery.

Minimum Origin Version Required: Origin 2016 SR0

3.2.2 What you will learn

This tutorial will show you how to:

- Manipulate Workbooks
- Create Graph Windows
- Manage workspace with Project Explorer
- Manipulate Layers and Plots with Object Manager
- Manage Apps with Apps Gallery

3.2.3 Origin Application: Title Bar and Status Bar

The Origin Title Bar displays the Origin(Pro) version, any open project name and the current folder within that project (if any) along with the standard Window controls for moving, sizing and closing the window.

The Status Bar appears at the bottom of Origin's Window and displays messages, the state of Auto Update, overview of the statistics on selected worksheet cells, Child Window Theme (if any), Last active Workbook, Current Window and Angular Units indicator.

You can select what shows in the Status Bar by right-clicking on the Bar and selecting (or clearing) items from the context menu. You can copy the displayed basic statistics by selecting Copy Statistics from the context menu. The copied data are TAB separated between quantity and values, with each key value pair separated by a CRLF delimiter.

3.2.4 Windows

3.2.4.1 Dynamic menus according to the active child window

The Origin menu dynamically changes according to the active Child Window. Some menus (Help, File, Edit, etc.) appear on all Child Window menus, although their content may change.

1. Click on the New Project button \square on the Standard Toolbar.
2. The workbook window is the active window. Note that there are 13 menu items.
3. Click on the New Graph button on the Standard Toolbar. A new window called Graph1 is created. Note that there are 11 menu items displayed.

Thus, we say that the menus are "context sensitive." They will change depending on which type of Child Window is active.

Note: New Child Windows may be added by selecting the File: New menu option or clicking the appropriate button on the Standard Toolbar. All Child Windows have standard controls for moving and sizing and windows can be placed anywhere within the Origin workspace. The Window menu has options (cascade, tile) for arranging child windows within the workspace. In the central Origin Workspace is where you will find all Origin Child Windows which can include:

Workbooks - The Origin workbook is the primary structure for organizing your data. Each workbook is composed of one or more, up to 255 worksheets.

Graphs - With Origin, you can create over 60 graph types, each from a built-in graph template. Graph windows can be embedded in a worksheet cell.

Matrices - The Origin matrix holds data and images and is required for many 3D graph types.

Notes - Notes windows are a text-only Origin child window useful for recording analysis procedures, making notes to students and colleagues, etc. You can embed notes windows in a worksheet cell.

Layouts and Excel (If you have Excel installed)

3.2.4.2 Workbook

The Origin workbook is the primary structure for organizing your data. Each workbook is composed of one or more Origin worksheets. Each worksheet, in turn, is composed (usually) of one or more worksheet columns or datasets. Columns in Origin have different column types, such as $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{y}$ Error, etc, These plotting designations determine how the data are treated when creating a graph.
 workbook by default, that means the new simplified worksheet cell notation(similar to that used in MS Excel) is turned on. You can learn more details about how this mode works in the tutorial Setting Column Values.

To get familiar with manipulating Origin workbooks, try the following:

1. Select File: New from the menu and choose Worksheet to create a new worksheet.
2. Select Data: Import from File: Single ASCII to bring up the Open dialog. Browse to the \Samples \Curve Fitting subfolder of the Origin program folder. Highlight the file Gaussian.dat and click the Open button to import the data into the Origin worksheet.
3. On import, sparklines were automatically turned on, allowing you to quickly view the shape of the data; the sheet name became the name of the file; and as needed an additional column was added to the worksheet. You can see from the Long Name that the 3rd column represents data error. To set this column as an Error Column, click the column title to highlight the column, right-click to bring up a fly-out menu, and then select Set As: Y Error.
4. Plotting data in Origin is now easy; highlight column B and $C(Y$ and Y error), then select Plot: Symbol:

Scatter from the menu to create a scatter plot with error bar.

3.2.4.3 Graph

The Graph window is a container for graphical depictions of your experimental data and your analysis results. Graph windows may contain a single plot in a single graph layer or they may contain multiple plots in multiple graph layers.

The graph layer is the fundamental unit of the Origin graph. The layer is comprised of a set of axis scale values, one or more data plots, and any included text labels, drawing objects, graph legends/color scales, button objects, etc. Graph layers can be created, sized, and moved independently of one another, allowing you a great deal of latitude in charting your data.

To learn how to organize layers in a graph window, try the following:

1. Create a new workbook, and import the file Linear Fit.dat from the \Sample\Curve Fitting folder. You can see that there are three Y columns and one X column after import; each Y column will use the left-most X column as its X coordinates.
2. Highlight columns B and C, and select Plot: 2D: Multi-Panel: Vertical 2 Panel to plot the curves. This is a two layer graph. While a graph can have multiple layers, only one layer is active at any given time. You can perform operations on the active layer, such as resizing, changing the plot color, etc. When working on a layer, the active layer is denoted by a depressed layer n icon in upper left corner of the graph window.

3. To rearrange these two layers, with the graph window active, select the menu item Graph: Layer Management to bring up the dialog. Activate the Arrange tab, on the middle panel. Enter 2 in the Column edit box. Enter 1 in the Row edit box and click the Apply button. After you click the OK button,
the graph layers are arranged horizontally.

Most often you will use the worksheet for tabulating and manipulating your data, while you will use the graph window for plotting your data.

3.2.4.4 Matrix

The Origin matrix window is a container for one or more Origin matrices. Each matrix window contains one or more matrix sheets, and each matrix sheet can contain one or more matrix objects. The matrix object itself, is a vector of Z values. These Z values are related to one another in the X and Y dimensions by their relative row and column positions in the matrix. Matrices are a precursor to constructing Origin's 3D graph types such as contour graphs and color-mapped surfaces, and since they are used in depiction and manipulation of 3D data, they are used by Origin in image processing and analysis. We will show you how to use the Origin Matrix to create a 3D plot in a later tutorial.

3.2.5 Toolbars

The Customize Toolbar dialog box handles displaying or hiding toolbars and toolbar buttons.

1. Select View: Toolbars from the Origin menu. The Customize Toolbar dialog opens.
2. Check the box next to Column. This toolbar now appears in the workspace.
3. Make the Button Groups tab active.
4. Scroll to select AutoUpdate in the Groups list.
5. Click and drag the one button which appears in this group and drop the button next to the green version of this button without the red line, on the Standard Toolbar. You can drag buttons back and forth.
6. Click Close.

All these toolbars may be dragged away from their docked positions to become floating windows. Floating windows have additional controls besides the X to hide a window. A push-pin control can allow or prevent docking and a minimize button can roll-up a window to save space and restore the window when it is needed.

3.2.5.1 Toolbar Reference

Below are the most commonly used toolbars.

Standard Toolbar

Worksheet Data Toolbar

Graph Toolbar

Format Toolbar

Style Toolbar

Tools Toolbar (vertical on the left side of the Origin workspace)

2D Graphs Toolbar

3D and Contour Graphs Toolbar

Mask Toolbar

3.2.6 Project Explorer

Project Explorer is a tool to help you organize your Origin data. It is particularly useful if you are working with a project that contains numerous child windows. Use Project Explorer to develop a folder structure to organize the child windows in your project.

3.2.6.1 Open/Close Project Explorer

When you first start Origin, Project Explorer displays docked to the edge of the workspace. You can dock it to any other edge or float it in the workspace. Because Project Explorer uses some of your workspace, you may want to close Project Explorer, even if you have already created a folder structure. To close/open Project Explorer, click the Auto Hide button to pin the Project Explorer, then press Alt +1 or select menu item View: Project Explorer.

3.2.6.2 Change the Display Properties of Project Explorer

The project explorer can be auto-hidden, hidden, floating or docking. In another aspect, it has vertical and horizontal alignment.

1. Select Customizing Graphs.opj in <Origin EXE Folder>\Samples \Graphing folder.
2. By default the Project Explorer is auto hidden, move mouse over to the Project Explorer bar in the left of work space to expand it.
3. Click the Auto Hide button to pin the Project Explorer, so it will be always displayed.
Project Explorer (4)
\square Customizing Graphs
\square Edit Single Data Point
\square Reouped Data
\square Resize Graph and Customize Symbol
4. Select the Window Position drop-down and select Floating to make the Project Explorer float over the work space, and you can freely move its position:

Project Explorer (4)	$\checkmark \square \times$	
Customizing Graphs Edit Single Data Point Grouped Data Plotting Order Resize Graph and Customize Symbol	\square D A H To	ing Hide bar Style Docking cal Alignment zontal Alignment

5. Right click on the title bar of the floating Project Explorer and select Horizontal Alignment:

Note: Other dockable windows (Object Manager, Apps, Message Log, Smart Hint Log, etc.) have the similar controls to change the display properties.

3.2.6.3 Browse Origin windows in Project Explorer

There are two panels in Project Explorer: the folders panel and the contents panel, which displays all objects in the active folder. When you start a new Origin session, you can click the new workbook 吕 , new graph 2 or new matrix button to create some blank windows, and then you can see these window's icons in the contents panel. Double-click the icon to hide/view the window.

3.2.6.4 Add a Sub Folder in Project Explorer

To create a new folder, right-click on the project folder (or a subfolder) in the folder panel, and select New Folder from the shortcut menu.

Once you have created one or more subfolders, you can move child windows between folders by dragging \& dropping them within the Project Explorer workspace.

3.2.7 Object Manager

Object Manager provides a hierarchy structure to help you view and manipulate layers and plots in the active graph window. It is particularly useful if the graph contains multi-layers and each layer contains multi-plots.

3.2.7.1 Open/Close Object Manager

When you first start Origin, Object Manager is docked to the right edge of the workspace. Like Project Explorer, you can dock it to any other edge or float it in the workspace. To close/open Object Manager, select menu item View: Object Manager.

3.2.7.2 Manipulate layers and plots in Object Manager

Object Manager works interactively with active graph window. Selecting layer or plot in graph window will highlight the corresponding item in Object Manager and vice versa. This makes it very easy to select an item and then show or hide it.

For example, try the following:

1. Select Help: Learning Center menu or press F11 key to open Learning Center. Select Graph Sample in the left side of dialog, choose Multiple Panel for Samples in drop-down list. Double-click on Multiple Panel by Column Label thumbnail to open the sample graphing project.
2. Select any plot object(such as a layer, a plot group or a curve) in graph window, the corresponding items will be highlighted in Object Manager. Select items in Object Manager, the corresponding object will be highlighted in the graph window.
3. In Object Manager, Uncheck the checkbox before the plot Trail Run 1 of Layer1 to hide this plot.
4. Right click on the plot Trail Run 2 of Layer1 and select Hide Plots with Same Name to hide all plots named Trail Run 2.
5. Right click on the plot Trail Run 2 of Layer1 again and select Show All Plots. All Trail Run 2 plots are back.

The plot names in Object Manager is the Auto Legend Translation mode set in the graph. Therefore same name or not depends on what the legend translation mode is used.

Besides using Object Manager to turning on or off layers or plots, it can also be used to:

- Change plot orders by right clicking on a plot and selecting Move Up/Move Down
- Change plot type by right clicking on a plot and selecting Change Plot To
- Go to source workbook/matrix book by right clicking on a plot and selecting Go to $\mathbf{x x x}$
- Double click on an item to open corresponding node in Plot Details dialog for futher customization or use context menu to open Useful dialogs.

3.2.8 Apps

Apps are custom applications for Origin that perform specific graphing and/or analysis tasks. Apps are not pre-installed with Origin. If you want to get an App, you can

- Browse to our File Exchange page of the OriginLab website, search and download the app you desired to install.
- Open App Center(by selecting Help:App Center, or pressing F10 key, or clicking the Add Apps button that appears on all tabs of the Apps Gallery), browse available Apps, search for Apps using keywords and phrases, and install or update Apps with a single click.

Browse for Apps, search using keywords or phrases, and install or update Apps with a single click.

When Apps get installed, they will be visible in the Apps Gallery window of the Origin interface.

In the Apps panel, you can add new tabs from the context menu and then classify these installed APPs by putting them to different tabs, see "Graphing", "Analysis" tab in the above APP Gallery. All Apps will be presented in the All tab in the order of their installation times.

Each installed App will be displayed as an icon in the gallery window. You can simply click on the icon to launch the App and right-click on the icons for other options such as hiding, uninstalling the App or movement between the tabs.

3.2.9 Learning Center

Learning Center dialog helps you get started with Origin easily. You can select Help: Learning Center from Origin menu or press F11 key to open it.

With this dialog, you can

- Open Graph and Analysis Samples
- With the Learning Sources, get started with Origin
- Transfer User Files

3.2.10Messages Log

The Messages Log window shows messages about operations including Output Information, Results and Errors. It displays messages that are not sent to the Script Window or the Command Window. To close/open Messages Log, press Alt + $\mathbf{6}$ or select menu item View: Messages Log.

1. Open a new workbook, highlight the $A(X)$ and $B(Y)$ columns, right-click and and choose Fill Columns With: Row Numbers from the shortcut menu.
2. Highlight the columns and from the Main Menu, choose Plot: 2D: Line: Line. A simple line plot is drawn.
3. Select File: Export Graphs... from the main menu to open the ExpGraph dialog. In this dialog, keep the default settings and click OK to export the graph.
4. The Output Information is reported to the Messages Log window.

4 Data Analysis

4.1 Data Analysis

4.1.1 Gadgets

- Global Vertical Cursor
- Integrate Gadget
- Curve Intersection Gadget
- Rise Time Gadget
- Interpolate Gadget
- Cluster Gadget
- Quick Fit Gadget
- Quick Peaks Gadget
- Quick Sigmoidal Fit Gadget
- Using Multiple Gadgets

4.1.2 Curve Fitting

4.1.2.1 Linear and Polynomial Fitting

- Linear Fitting and Outlier Removal
- Linear Fit for Kinetic Models

4.1.2.2 Nonlinear Fitting

- Nonlinear Curve Fit Tool
- Nonlinear Fitting with System Function
- Global Fitting with Parameter Sharing
- Global Fit for Different Functions with Shared Parameters
- Parameters Initialization using LabTalk in NLFit
- User Defined Fitting Function
- Fit Surface with User Defined Function
- Fitting One Dataset as a Function of Other Datasets
- Fitting With Multiple Independent Variables
- User Defined Fitting Function using GNU Scientific Library
- Fitting with NAG Special Function
- Fitting Integral Function with parametric limit using NAG Library
- Fitting with Integral using NAG Library
- Fitting with Integral using LabTalk Function
- Fitting with Two Integrals using LabTalk Function
- Fitting with Summation
- Fitting Complex Function
- Fitting with Convolution
- Quoting Built-in Functions in Your New Function
- Fit Function with Non-constant Background
- Fitting with Piecewise Functions
- Fit Curve Through Certain Points
- Distribution Fit with the Probability Density Function and Cumulative Distribution Function
- Fitting Integral Function with a Sharp Peak
- Fitting with a Piecewise Linear Function
- Fitting with an Ordinary Differential Equation
- Fitting with Convolution of Two Functions
- Parameter Initialization for Rational Functions
- Surface Fitting with Multiple Peaks
- Nonlinear Multiple Variables Fitting
- Modifying Derived Parameters in Build-in Functions
- Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets
- Implicit Fitting with Three Variables
- Nonlinear fitting using Orthogonal Distance Regression

4.1.3 Signal Processing

- FFT and IFFT
- FFT Filter
- Smoothing
- STFT (Short-Time Fourier Transform)
- IIR Filter
- 2D FFT and Filter
- Convolution
- Wavelet
- Coherence and Correlation
- Decimation and Signal Envelope
- Rise Time
- Sound Processing

4.1.4 Peak Analysis

4.1.4.1 Create and Subtract Baseline with Peak Analyzer
4.1.4.2 Batch Peak Analysis Using Theme with Script Before Each Process
4.1.4.3 Combine Quick Peaks Gadget with Peak Analyzer
4.1.4.4 Peak Finding

- Picking and Marking Peaks
4.1.4.5 Peak Integration
- Integrating Peaks

4.1.4.6 Peak Fitting

- Peak Fitting with Baseline
- Peak Fitting with Preset Peak Parameters
- Setting the Fix, Share Status or Bounds for Multiple Peak Parameters Simultaneously

4.1.5 Data Manipulation

4.1.5.1 Setting Column Values

- Set Column/Cell Values
4.1.5.2 Worksheet Data Operations
- Worksheet Query
- Data Reduction
- Data Filter
- Lock Filter with Analysis
4.1.5.3 Pivot Table
4.1.5.4 Categorical Values Ordering and Sharing

4.1.6 Analysis Templates

- Creating and Using Analysis Templates
- Creating Analysis Templates using Set Column Value
- Creating a Custom Report Sheet

4.1.7 Analysis Themes

4.1.8 Batch Processing

- Batch Processing Multiple Datasets
- Batch Processing Multiple Files using Analysis Template
- Batch Processing with Summary Report in External Excel File
- Batch Processing with Word Template for Reporting
- Batch Processing Grouped Datasets Using Analysis Template with Multi-Data Sheets

4.2 Gadgets

4.2.1 Gadgets

- Global Vertical Cursor
- Integrate Gadget
- Curve Intersection Gadget
- Rise Time Gadget
- Interpolate Gadget
- Cluster Gadget
- Quick Fit Gadget
- Quick Peaks Gadget
- Quick Sigmoidal Fit Gadget
- Using Multiple Gadgets

4.2.2 Global Vertical Cursor

4.2.2.1 Summary

The Vertical Cursor gadget can be used to read X and Y coordinate values for data points in stacked panel plots or contained in multiple graphs simultaneously.

4.2.2.2 What You Will Learn

This tutorial will show you how to:

- Use the vertical cursor gadget to read XY coordinates for multiple graphs and output the results.
- Link/Unlink graphs when using the vertical cursor gadget.
- Move or relocate the cursor line among the linked graph windows.

4.2.2.3 Steps

1. Open Origin and choose Data: Import from File: Import Wizard. For the Data Source, browse to <Origin Folder>/Samples/Curve Fitting and add the Step01.dat and Step02.dat files. The import filter Data Folder:Step is automatically selected. Set Import Mode to Start New Books.
2. Click the Next button, navigate to the File Name Options page, clear the check box before Rename Long Name for Book Only, then click the Finish button to import both files into two workbooks, and the columns will be designated XY XY by the import filter.
3. Click the New Folder button on the Standard toolbar to create a new file folder in this project, this folder should be open and named as Folder 2.
4. While Folder 2 is open, click the Import Wizard button $\begin{gathered}\text { 雷 }\end{gathered}$ on the Standard toolbar to import Step03.dat file also under the path <Origin Folder>/Samples/Curve Fitting similar to steps 1 and 2.
5. Go to Folder 1 in Project Explorer, activate the workbook with long name Step01.dat and highlight the whole worksheet. Select Plot:Multi-Panel:Stack from the menu item to open the Plotstack dialog.
6. Under the Plot Assignment branch, enter $\mathbf{3}$ for Number of Plots in Each Layer, accept other settings as default and click OK to create a stacked graph.
7. Similarly create two other stacked graphs for the other two workbooks. So now we have Graph1, Graph2, and Graph3 for workbooks Step01.dat, Step02.dat and Step03.dat respectively.
8. Activate Graph1 and choose Gadgets:Vertical Cursor to open the Vertical Cursor dialog.

9. Click the Link/Unlink Graphs button in this dialog and open the Graph Browser, you can choose whether to link or unlink a graph to the current active graph.
10. Select Graph2 and Graph3 in the left panel and click the $\left.\gg\right|_{\text {button to add the two graphs as linked }}$ graphs to Graph1. Click OK.

Note:You can also unlink graphs in this dialog by using the $\left.\ll\right|_{\text {button to remove a graph from the right }}$ panel.
On the upper right-hand corner of each linked graph, a L icon appears to indicate that it belongs to a group of linked graphs.
11. Make sure Graph1 is active and the Vertical Cursor dialog is open, the asterisk before the graph name marks the current active plot on which the cursor is on. Enter $\mathbf{2 5}$ as the X value, uncheck the
box before Snap Cursor to Nearest \mathbf{X} and click the Move Cursor to \mathbf{X} button $\boldsymbol{\sim}_{\text {要 }}$ to read the data points in each plot when $X=25$ ．

\square Vertical Cursor－X Based on Layer3－2 linked graphs $\square \square \times$							
2）逼	，	$A^{*} \quad x=2$			必戜	㖆圂包	$\hat{\lambda}$
Cursor \square Snap Cursor to Nearest X							
X	X	Y	Name	Graph		Status	
25	5	0.05595	Sensor A y	Graph1		\square	
25	5	0.10394	Sensor By	Graph1		V	
25	5	0.21568	Sensor Cy	Graph1		V	
25	5	0.39314	Sensor D y	Graph1		\square	
25	5	0.67007	Sensor Ey	Graph1		回	
25	5	0.81397	Sensor Fy	Graph1		\square	
25	5	0.99419	Sensor Gy	＊Graph1		V	
25	5	1.04738	Sensor Hy	Graph1		V	
25	5	0.06279	Sensor A y	Graph2		V	
25	5	0.13419	Sensor By	Graph2		■	
25	5	0.24344	Sensor Cy	Graph2		V	
25	5	0.37798	Sensor D y	Graph2		－	
25	5	0.63732	Sensor Ey	Graph2		V	
25	5	0.8559	Sensor Fy	Graph2		\square	
25	5	0.97876	Sensor Gy	Graph2		จ	
25	5	1.02927	Sensor Hy	Graph2		－	
25	5	0.04517	Sensor A y	Graph3		回	
25	5	0.08923	Sensor B y	Graph3		V	
25	5	0.20779	Sensor Cy	Graph3		回	
25	5	0.38576	Sensor D y	Graph3		จ	
25	5	0.63895	Sensor Ey	Graph3		回	
25	5	0.83746	Sensor Fy	Graph3		－	
25	5	0.96896	Sensor Gy	Graph3		จ	
25	5	1.03511	Sensor Hy	Graph3		จ	

12．Click the Add Tag and Label button $\left.\alpha\right|_{\text {to add tags at } X=25 \text { for all linked graphs．}}$
13．Click the Output Report button ；or press＂O＂on your keyboard．Then click the Go to Report Worksheet button \Rightarrow 曲 ${ }_{\text {to generate and open the results worksheet．The XY coordinates of all plots in }}$ linked graphs are listed in the report sheet．Each time you click the button or hotkey，a new row of data will be output to the result sheet．
14．Activate Graph2，click on the L icon and select Move Cursor Line here，the cursor line will be moved to Graph2．
15．In the Vertical Cursor dialog，double click any row of Graph3 to activate its graph window．Select the previously added tag，press the Delete key to delete the tag，click on the L icon and select Go to

Cursor Line Window to go back to Graph2 where the cursor is currently on. You can see that the tags in linked graphs are deleted.

4.2.3 Integrate Gadget

4.2.3.1 Summary

The Integrate Gadget performs numerical integration on a data plot to calculate the area under the curve. You can select an arbitrary range of the data plot using the region of interest (ROI) object overlaid on the plot.

4.2.3.2 What you will learn

- How to easily integrate a segment of data plot under the rectangular region.
- How to specify the integration limits and baseline.
- How to display the integral curve inside the ROI and calculate quantities including: peak area, peak height, peak center, and FWHM.

4.2.3.3 Integrate and output the quantities

1. Start with a new workbook and import the Origin sample data Multiple Peaks.DAT which is located in <Origin Program Folder> \Samples\Curve fitting.
2. Highlight the $\operatorname{Col}(\mathrm{C})$ and select Plot>2D: Line: Line from the Origin menu to draw a graph.

3. Select Gadgets: Integrate from the Origin menu when a graph is active, to bring up the Integrate: addtool_curve_integ dialog box.

In Integration tab, choose Restrict to Rectangle in the Integral Curve drop-down list to plot the
integral curve within the rectangle.

4. Click OK button. You will see that a yellow rectangle and a blue integral curve are added to the plot. The integral area is filled with gray, and the value is shown at the top of the rectangle.

5. Move the yellow region of interest rectangle to set the region for the single peak you want to integrate.

6. Click the triangle button at the top right corner of the ROI tool to open the fly-out menu and choose New Output. Then the Gadget Integration Results will display in the Script Window.

4.2.3.4 Integrate with a data plot baseline

1. Start with a new workbook and import the file <Origin Program Folder> \backslash Samples \backslash Spectroscopy \backslash Peaks with Base.DAT
2. Highlight $\operatorname{Col}(B)$ and $\operatorname{Col}(C)$ and select Plot>2D: Line: Line from the Origin menu to draw a graph.

3. Select Gadgets: Integrate from the Origin menu when a graph is active, to bring up the Integrate: addtool_curve_integ dialog box.
4. In Baseline tab, choose Use Existing Dataset for the Mode. Then select Plot(2): Base as Dataset and click OK button.

5. Click the triangle button and select Expand to Full Plot(s) Range in the fly-out menu to integrate the whole range of the curve starting from the baseline.

6. Select New Output from the fly-out menu to output the results to the script window.

Some gadgets operate on a single curve at a time, but you can repeat your analysis for other curves by clicking on the fly-out menu and choosing New Output for All Curves or New Output for All Layers.

4.2.4 Curve Intersection Gadget

4.2.4.1 Summary

When there is more than one curve in a graph layer, you might want to calculate the intersection data points of these curves. Since Origin 8.6, a new gadget Intersect is available to calculate the intersection points of the input curves on the graph.

Minimum Origin Version Required: Origin 8.6 SRO

4.2.4.2 What you will learn

This tutorial will show you how to:

- Use the Intersect gadget on a graph.
- Tag the intersection points.
- Output the intersection points to worksheet.

4.2.4.3 Steps

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Curve Intersection Gadget folder in Project Explorer (PE).
2. Highlight the $\operatorname{Col}(A) \sim \operatorname{col}(D)$ in workbook Book6, and then click Plot:Line:Line to plot a line graph.

3. Select Gadgets: Intersect... from the main menu to open the dialog. Go to the Options tab.

4. Check the Intersection Label check box in the Options tab, set Size as 15, set Type as Y and set Rotate(deg.) as 0 .

5. Click OK button to go back to the graph window. The yellow ROI box will be added onto the graph.

6. Click the Arrow button at the top right of the ROI box, select Expand to Full Plot(s) Range from the context menu. The ROI box will be expanded to cover full plot range as shown below.

7. Click the Arrow button at the top right of the ROI box. Select Preferences... from the context menu to open the Intersect Preferences dialog. Go to the Output To tab and input [Book6]Intersections in the Result Worksheet Name box.

8. Click OK button to go back to the graph window. Click the arrow button at the top right of the ROI box, select New Output from the context menu.
9. The results will be output to the Script Window. Click the arrow button again, select Go To

Report Worksheet from the menu. The X and Y coordinates of the intersection points will be listed in the results worksheet.

\# Book6				$\square \square$		X
	$A(x)$	B(C)	C	D		^
Long Name	Intersection X	Intersection Y	Curves	Intersectio	hod	
1	14.73898	-0.26305	Book6_B vs. Book6_C	Linear		
2	26.4802	0.32401				
3	35.95356	0.79768				
4	25.56476	0.02267	Book6_日 vs. Book6_D			
5	39.1559	-0.6852				
6	23.06123	0.15306	Book6_C Vs. Book6_D			
7						
8						\checkmark
				IIII	\geqslant	\cdots

4.2.5 Rise Time Gadget

4.2.5.1 Summary

The Rise Time Gadget can be used to analyze the rising and falling stages of a step-like signal in a graph. With this gadget, you can intuitively select an area on the graph with a rectangle, and then calculate the rise time or fall time within that area.

Minimum Origin Version Required: OriginPro 2015 SRO

4.2.5.2 What you will learn

- How to select a specific region of the signal by moving and resizing a region of interest (ROI).
- How to mark Rise Time (Fall Time) and Rise Range (Fall Range) in the graph.
- How to switch the tool between Rise Time and Fall Time.
- How to output analysis results of Rise Time (Fall Time).

4.2.5.3 Analyze Rise Time

 file under the <Origin EXE Folder> \Samples\Signal Processing path.
2. Highlight Column B and select Plot: Line: Line in the menu to create a graph.

3. Double-click the X axis to open the Axis dialog box. Go to the Scale tab and set the axis range and major ticks as shown in the image below.

4. Click the $\mathbf{O K}$ button and the graph will be updated as shown below:

5. Select Gadgets: Rise Time from the Origin menu to open the Rise Time: addtool_rise_time dialog box. Go to the Display on Graph tab, and click the Rise Time and Rise Range check boxes.

6. Click OK button, and you will see that a yellow rectangle is added to the plot. Move the rectangle horizontally on the rise signal step.

In the graph, you can see the Rise Time and Rise Range values are shown at the top of the rectangle. The two blue vertical lines go through the two indicators marking the Rise Time.
The two blue horizontal lines that display the Low Reference Level and High Reference Level go through the two indicators marking the Rise Range.
The two red horizontal lines display Low State Level and High State Level.
7. Click the triangle button at the top right corner of the rectangle. Then select New Output. The results will be output to the Script Window.

4.2.5.4 Analyze Fall Time

1. This gadget also allows you to get the fall time and fall range in a graph. Move the rectangle horizontally on the fall signal step.

2. Click the triangle button and select Preferences in the fly-out menu to open the Rise Time Preferences dialog. Go to the ROI Box tab and select Fall Time in the Tool drop-down list.

3. Click the OK button, the Fall Time and Fall Range values are shown at the top of the rectangle.

4. Click the triangle button and select New Output. The results will be output to the Script Window.

4.2.6 Interpolate Gadget

4.2.6.1 Summary

Origin supports the interpolate gadget to perform quick interpolation on a ROI (Region of Interest) range when a graph is active. And you can easily to change the interpolate region by moving the ROI.

4.2.6.2 What you will learn

- How to easily interpolate data points on a rectangular region.
- How to quickly find out an interpolated Y value from any given X value.
- How to output the interpolated values to Script Window, Result Log, or a specified worksheet.

4.2.6.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Interpolate Gadget folder in Project Explorer (PE).
2. Highlight the $\operatorname{Col}(A)$ and $\operatorname{col}(B)$ in workbook Book1R and plot a Line +Symbol graph.

3. Select Gadgets: Interpolate from the Origin menu when a graph is active, to bring up the Interpolate: addtool_curve_intep dialog box.
4. Go to the Interpolate/Exterpolate Options tab. Choose Cubic Spline for the Method, and then select Interpolate/Extrapolate to Rectangle Edge for Fit Limits To.

5. Click OK button. It will add an interpolation line onto the plot. And the Y values of interpolation line at right and left are shown at the top of the rectangle region.

6. You can change the data range by moving or resizing the yellow region of interest rectangle, the interpolated curve displayed will update as the ROI is being moved.
Click the triangle button and select Expand to Full Plot(s) Range in the fly-out menu to interpolate the total area for the curve.

7. This gadget also allows you to find Y values from a given X value. Select Interpolate \mathbf{X} / \mathbf{Y} in fly-out menu to open the Interpolate \mathbf{Y} from \mathbf{X} dialog. You can enter multiple X values and click the interpolate button. This tool will output the interpolated Y values for each of the X values.

8. The interpolated Y values can be output to Script Window, Result Log, or a specified worksheet.

4.2.7 Cluster Gadget

4.2.7.1 Summary

Origin supports the Cluster Gadget to perform simple statistics on a region of interest (ROI) in a graph. The gadget can also be used to edit, clear, mask, or categorize data points. The statistics results are dynamically updated as the ROI object is moved or resized.

Minimum Origin Version Required: Origin 2016 SR0 (Pro only)

4.2.7.2 What you will learn

- How to perform simple statistics on a region of interest (ROI) in a graph.
- How to edit the data points such as clear, or mask points in graph using menu options or buttons.
- How to view or output the statistic for points inside and outside of the ROI.
- How to categorize data points and color map points with the categorical data

4.2.7.3 Perform basic statistics

1. Start with a new workbook and import the Origin sample data Categorical Data.dat which is located in <Origin Program Folder> \Samples\Graphing.

Right-click on Col(D) and select Sort Worksheet: Ascending. Then you will see the worksheet is sorted by the category of Drug.
2. Pressing Ctrl key, highlight three parts of the $\operatorname{Col}(B)$ separately.

3. Select Plot: Symbol: Scatter from the main menu to create a graph. The graph with three plots display the recovery for each drug.

4. Right-click on the graph legend and select Properties to open Object Properties dialog. Then edit the legend as shown below. Click OK button.

5. Select Gadgets: Cluster from the Origin menu to bring up the Cluster: addtool_cluster dialog box. Choose Circle in the Shape drop-down list of the ROI Box tab.

6. Click OK button. It will add a yellow circle for ROI on the plot and bring up the Cluster Gadget dialog.

7. Move the yellow circle to the region for which you want to get statistics and see the results shown on the Inner Points tab of the dialog.

8．Click the Output Statistics Report button 国国．The results are output to the Result Log，Script Window， and the Cluster workbook．

9．Click the Go to Report Worksheet button $\xlongequal{=\text { 曲，then the Cluster workbook will be shown．}}$

4．2．7．4 Exclude the data points in a cluster

In this section，we will show you how to exclude a specific plot from the cluster．Based on the example above， we will do simple statistics on Recovery of Drug A and Recovery of Drug B，excluding Recovery of Placebo．

1. Click the Data menu in the Cluster Gadget dialog and uncheck $\operatorname{Plot}(\mathbf{1})$ and $\operatorname{Plot}(\mathbf{2})$. The first and second rows become gray in the lower panel, and they can no longer be manipulated by the buttons in the dialog.
2. Click Mask Data Points button The Recovery of Placebo data points in the ROI are masked and the color becomes red. At the same time the statistics results for Recovery of Placebo become missing values.

3. Click the Output Statistics Report button 眶. The results are output to the Result Log, Script Window, and the Cluster workbook.

4.2.7.5 Get statistics results for points outside of the ROI

1. Click Settings: Preferences from the Cluster Gadget dialog's menu to open the Cluster Manipulation Preferences dialog.
2. Go to the Calculation tab. Click the Calculate Outer Points check box.

3. Click the OK button, the statistics results for points out of the ROI are shown on the Outer Points tab of the dialog.

Edit Data Settings							
						$\square \widehat{\hat{\wedge}}$	
Inner Points Outer Points							
Input Legend	H	Sum	(I)	Mean (Y)	Median		SD (I)
Recovery--Irug \&	6		139	23. 16667		19.5	12. 4163
Recovery-Drug B	6		146	24. 33333		19.5	13. 76465
Recovery--Placebo	6		162	27	22.5		14.9666:
All Plots	18		447	24.83333	20.5		13.0259
1	III			-	,		+

4. Click the Output Statistics Report button 国. The results for inner and outer points are shown in the Result Log, Script Window, and the Cluster workbook.

4.2.7.6 Color data points in different regions

You can categorize data points from graph directly and output the Categorical group column to the source worksheet, and further map symbol characters to the categorical group column.

Create a new workbook and re-import the sample data <Origin Program
Folder> \Samples \Graphing \Categorical Data.dat. Highlight Column(B) and plot a Scatter graph.

Data points cluster into 4 groups. We will use the Create Categories feature of Cluster Gadget to create a categorical column according to the cluster groups and map symbol color to this column.

1. Select Gadgets: Cluster to bring up the Cluster: addtool_cluster dialog. Choose Circle in the Shape drop-down list of the ROI Box tab.
Click OK button to add a yellow circle for ROI on the plot and bring up the Cluster Gadget dialog.
2. Move and adjust the size of the ROI box to circle only the first cluster of data points at the low-left corner.

Click the Create Categories button \square n the Cluster Gadget dialog to open the Create Categorical Value dialog. Enter Group for Category Group Name and 1 for Category. And select the Color Data by Category check box.

```
II. Create Categorical Value 
```

Create a category with the data points in current ROI.		
Category Group Name	Group	
Category	1	
Color Data by Category	\square	
Add Group Column for Each Data Plot	\square	
Clear Category	OK	

Click the OK button. A new categorical column named "Group" is added to the source data sheet and data points inside ROI are tagged as "1" in this column(Group). Also, scatter plot use this categorical column as the color index.

\# CategoricalDa - Categorical Data.dat *					$\square \square$	
奮	A(X)	B (Y)	C(Y)	D(Y)	E(Y)	,
Long Name	Age	Recovery	Group	Gender	Drug	
Units						ミ
Comments			Categories			
$F(x)=$						
Sparklines						
Categories			undefined 1			
1	20	11	1	Male	Drug A	
2	23	12	1	Female	Drug A	
3	22	13	1	Female	Drug B	
4	23	11	1	Male	Drug B	
5	21	12	1	Male	Placebo	
6	23	14	1	Female	Placebo	
7	36	20	undefined	Male	Drug A	
8	32	19	undefined	Female	Drug A	
	34	18	undefined	Female	Drug B	
10	34	21	undefined	Male	Drug B	
11	36	22	undefined	Male	Placebo	-
	cal Data			$1 \mid \cdot \square$	III ${ }^{\text {, }}$	

3. Repeat step 2 for the rest of 3 clusters and tag them as $2,3,4$ in sequence.

The source worksheet should look like the following.

\# CategoricalDa - Categorical Data.dat *					$\square \square$	
畾	A(X)	$\mathrm{B}(\mathrm{Y})$	C(Y)	D(Y)	E(Y)	-
Long Name	Age	Recovery	Group	Gender	Drug	
Units						
Comments			Categories			
$F(x)=$						
Sparklines						
Categories			undefined 1			
5	21	12	1	Male	Placebo	
6	23	14	1	Female	Placebo	
7	36	20	2	Male	Drug A	
8	32	19	2	Female	Drug A	
9	34	18	2	Female	Drug B	
10	34	21		Male	Drug B	
11	36	22	2	Male	Placebo	
12	35	23	2	Female	Placebo	
13	45	29	3	Male	Drug A	
14	44	30	3	Female	Drug A	
15	44	32	3	Female	Drug B	
16	43	31	3	Male	Drug B	
17	44	35	-	Male	Placebo	
18	45	36	3	Female	Placebo	
19	57	38	4	Male	Drug A	
20	60	39	4	Female	Drug A	\checkmark
4\| ${ }^{\text {a }}$ Cate	orical Data			$1 / \cdot \square$	III ${ }^{\text {a }}$	

Close Claster Gadget.

4. Now you will find the graph shows as below:

5. Delete the original legend. Select Graph: Legend: Categorical Values to bring up the legendcat dialog. Uncheck the Show All Categories checkbox. Click OK. The scatter plot with new legend should look like following.

4.2.8 Quick Fit Gadget

4.2.8.1 Summary

The Quick Fit gadget can be used to quickly perform curve fitting within the ROI (Region of Interest) range.
Minimum Origin Version Required: Origin 8.6 SRO

4.2.8.2 What you will learn

This tutorial will show you how to:

- carry out linear fit with the Quick Fit gadget.
- carry out nonlinear curve fit using Quick Fit gadget.
- save and reuse a dialog theme.

4.2.8.3 Steps

4.2.8.3.1 Linear Fit

1. Open Origin and choose Data: Import from File: Import Wizard. For the Data Source, browse to <Origin Folder>/Samples/Curve Fitting and add the Step01.dat. Note that when this file is selected, the import filter Data Folder: step is automatically chosen (this is shown in in the Import Filters for Current Data Type box). Click Finish to import the file.
2. Highlight through column A to F and click the ${ }^{* *}$ button to generate a scatter plot.

3. Select Gadgets: Quick Fit: 1 Linear(System) from the main menu to add a region-of-interest (ROI) box on the graph. Click the arrow button and select Expand to Full Plot(s) Range from the fly-out menu to expand the ROI box to the full plot range.

4. Click the arrow button and select Preferences... from the fly-out menu. This opens the Quick Fit Preferences dialog. In this dialog, go to the Label Box tab, select Equation with Values for the Equation drop-down list.

5. Go to the Report tab, select Worksheet for the Output To drop-down list.

6. Click OK to close this dialog. Click the arrow button to select New Output from the fly-out menu. This outputs the plot fitting results "Sensor 01" to the report worksheet and adds a label box to the graph window. The label box reports your analysis results.

7. Select the label box on the graph and delete it. Click the arrow button and select Preferences... from the fly-out menu. This opens the Quick Fit Preferences dialog. In this dialog, go to Label Box tab, uncheck the Add Label Box to Graph check box and click OK.
8. Click the arrow button again to select New Output for All Curves(\mathbf{N}) from the fly-out menu, so that the customized linear fit process will be performed on all data plots.
9. Click the arrow button one more time to select Go to Report Worksheet. You will see the fitting results of all three plots in the report worksheet. Note, the first result row has been created at step 6 above and the last three rows are our current results.

										$\square \square \square$	
	A	B	C	D	E	F	G(Y)	H(yEr?	I(Y)	J yEr?	*
Long Name	Function	Input	Range	Output	Equation	Weighting	Intercept	Intercept-Error	Slope	Slope-Error	E
$F(\mathrm{x})=$											
1	Linear	Sensor Ay	[1**38*]	\#\#\#\#\#\#\#\#\#\#\#	$y=$ Intercept + Slope ${ }^{*} x$	No Weighting	-0.00289	0.00393	0.00194	$1.14325 \mathrm{E}-4$	
2	Linear	SensorAy	[1* 38^{*}]	\#\#\#\#\#\#\#\#\#\#	$y=$ Intercept + Slope $^{2} x$	No Weighting	-0.00289	0.00393	0.00194	$1.14325 \mathrm{E}-4$	
3	Linear	Sensor By	[1*-38*]	\#\#\#\#\#\#\#\#\#	$y=$ Intercept + Slope $^{*} x$	No Weighting	-0.02068	0.00442	0.00478	1.27723E-4	
4	Linear	Sensor Cy	[1*-38*]	\#\#\#\#\#\#\#\#\#	$y=$ Intercept + Slope $^{*} x$	No Weighting	-0.00389	0.00451	0.00882	$1.29786 \mathrm{E}-4$	
							14	ItI		+	

Note: With the ROI box shown on graph, you can click the arrow button to select Switch to Linear

Fit... from the fly-out menu to transfer your current settings to the Linear Fit dialog. Then, you can do further operations in this more powerful dialog to do linear fitting.

4.2.8.3.2 Nonlinear Curve Fit

1. Start with a new workbook and import the Origin sample data Gaussian.DAT which is located in <Origin Program Folder> \Samples\Curve fitting path.
2. Highlight the $\operatorname{Col}(B)$ and select Plot>2D: Scatter: Scatter from the Origin menu to draw a graph.

3. Select Gadgets: Quick Fit: 4 Peak - Gauss (System) from the Origin menu to add a ROI box to the graph.

4. Click the arrow button to select Expand to Full Plot(s) Range from the fly-out menu to expand the ROI box to the full plot range.
5. Click the arrow button and select Preferences... from the fly-out menu. This opens the Quick Fit Preferences dialog. In this dialog, go to the ROI Box tab, and set the Parameter List as below.

6. Click OK to close this dialog. Click the arrow button and select New Output from the fly-out menu. A label box will be added to the graph as shown below.

7. Click the arrow button \quad and select Preferences... from the fly-out menu. This opens the Quick Fit Preferences dialog again. In this dialog, go to the Label Box tab, choose Use ROI Box Tab Settings for Parameter Table. Click OK to close this dialog.

8. Click the arrow button and select Update Last Output from the fly-out menu. The Label box will be updated and only the parameters "xc" and "FWHM" will be displayed.

9. Click the arrow button and select Save Theme from the fly-out menu. In the Theme Save as... dialog, set the Theme Name as My_Gauss and click OK.

\square Theme Save as...	Q	X

Please specify a theme name

Theme Name My_Gauss

Both function and settings in Preferences dialog will be saved. The theme name will appear in menu.

When selecting theme from menu, hold CTRL key down to perform fit to entire data range (without adding ROI box to graph), or hold Shift key down to open dialog and edit theme.
10. Go back to the worksheet, highlight $\operatorname{col}(\mathrm{C})$ and select Plot>2D: Scatter: Scatter from the top menu. This draws a scatter graph.
11. Click on the new plot to activate it and select Gadgets: Quick Fit: $\mathbf{9} \mathbf{M y}$ _Gauss to load the theme. A ROI box will be added to the graph with parameters $x c$ and $F W H M$ displaying above the ROI.
12. Click the arrow button to select Expand to Full Plot(s) Range from the fly-out menu to expand the ROI box to the full plot range, and then select New Output from the fly-out menu to output the result. You can see that our theme is applied as the label box on the graph only reports the values of parameter "xc" and "FWHM".

Note: With the ROI box shown on graph, you can click the arrow button to select Switch to NLFit... from the fly-out menu to transfer your current settings to the NLFit dialog. Then, you can do further operations in this more powerful dialog to do nonlinear fitting.

4.2.9 Quick Peaks Gadget

4.2.9.1 Summary

The Quick Peaks gadget can be used to pick peaks, subtract baseline, integrate the peaks and/or fit peaks in a ROI (Region of Interest). It is also possible to use this tool in combination with the Peak Analyzer. Please refer to this tutorial for details.

Minimum Origin Version Required: Origin 2015 SR1

4.2.9.2 What you will learn

This tutorial will show you how to:

- Find and subtract baseline for spectrum with the Quick Peaks gadget.
- Find peaks on the graph with the Quick Peaks gadget.
- Customize preference settings.

4.2.9.3 Steps

1. Create a new workbook by clicking the New Workbook button . Click the Import Single ASCII button $\stackrel{\substack{18 z_{2} \\ \hline}}{ }$ and import the Zircon.dat file in the <Origin Folder>|Samples \backslash Spectroscopy \backslash path. Both buttons are located on the Standard toolbar.
2. Highlight $\operatorname{CoI}(B)$ and plot a line graph with the Line \square button on the 2D Graphs Toolbar.
3. Select Gadgets: Quick Peaks from the main menu and open the Data Exploration: addtool_quickpeaks dialog.
4. On the Baseline tab, set Mode to 2D Derivative, and then set Range to Full Plot Range. Click OK to apply.

5. The peaks within the yellow ROI box will be found and marked. Resize the ROI box so that it covers X range $[0,7000]$ as shown in graph below, the baseline and peak finding need a further refinement.

6. Click the triangle button and select Preference from the fly-out menu, so you can further adjust the Smoothing Method in Baseline tab follows the graph:

click Apply to apply, and further adjust the values in Find Peak tab:

7. Click OK to apply the settings and close the dialog, the baseline and peaks finding are better than before which can be attribute to the optimizing Threshold and Maximum Anchor Points for Baseline and

Threshold Height\% for Find peak:

8. Click the triangle button and select New Output from the fly-out menu to output the peak finding results to a report worksheet.
Return to the gadget fly-out menu and select Go to Report Worksheet to view the quantities output :

Peak ID	Peak Row	PeakX	Peak Y	Height	Peak Area	FWHM
					Peak Height from Baseline	
Peak 1	94	355.3057	5883.32381	4019.38518	105810.63852	31.85037
Peak 2	138	440.1582	6622.58143	4579.30486	212770.49866	38.0693
Peak 3	431	1005.199	9687.95699	7641.00995	262292.12444	31.93732
Peak 4	1077	2250.989	8735.86589	6521.97313	477231.3539	49.19588
Peak 5	1230	2546.044	9375.11743	7460.46176	686897.33207	67.08458
Peak 6	1685	3423.496	7014.48113	3883.05102	160646.49519	37.93742
Peak 7	1858	3757.121	7245.12389	3742.14765	359968.10298	153.43826
Peak 8	2470	4937.343	12846.63008	6434.46253	432380.73801	42.80683
Peak 9	3226	6395.264	16607.24058	3959.88794	180348.37354	27.24009
Peak 10	3250	6441.547	36844.54608	24051.37853	1.07438 E 6	37.18174

9. Activate the graph window to which the gadget was applied, click the triangle button and select

Subtract Baseline, click OK for pop-up window, the baseline was subtract from the data:
Click cross button on the top left corner to close the gadget. The finished graph is shown like this:

Note: For advanced fitting options, you can combine Quick Peaks gadget with Peak Analyzer.

4.2.10Quick Sigmoidal Fit Gadget

4.2.10.1 Summary

The Quick Sigmoidal Fit gadget can be used to quickly perform a sigmoidal fit on a portion of your graph that you define interactively as your region of interest (ROI).

Minimum Origin Version Required: Origin 2015 SR0

4.2.10.2 What you will learn

- How to use the Quick Sigmoidal Fit gadget on a graph.
- How to select your fitting options.
- How to switch to the NLFit dialog.
- How to output the fitting result.
- How to find X / Y values on the fit curve.

4.2.10.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

4.2.10.3.1 Quick Fit

1. Open Tutorial Data.opj and browse to the Quick Sigmoidal Fit Gadget folder in Project Explorer (PE).
2. Highlight $\operatorname{Col}(A)$ through $\operatorname{Col}(\mathrm{D})$ in the workbook DoseResponseN and from the menu choose Plot:Symbol:Scatter to plot a scatter graph.

3. Double-click the X axis to open Axis dialog. In the Scale tab, set the Type as Log10 and click OK button to close the dialog.

4. Click the Rescale button $\stackrel{\natural}{\hookrightarrow}$ to show the plot with the proper scale.

5. Select Gadgets: Quick Sigmoidal Fit... from the main menu to open the addtool_sigmoidal_fit dialog box. Select the function Logistic5 from the Function drop-down list on the Settings tab.

6. Click the ROI Box tab and uncheck the parameters $x 0, h$, and s under the Parameter List branch.

7. Click the Fit Curve tab, select Mean, SD from the Plot Type drop-down list and Source Book, New Sheet from the Output Fit Curve To drop-down list.

8. Click OK to add the ROI box to the graph. At the top right corner of the ROI box, click the Arrow button to select Expand to the Full Plots Range from the menu. The ROI box will cover the full data range on the graph.

9. Click the arrow button again to select Preferences... from the menu. This opens the Sigmodial Fit Preferences dialog box. In this dialog, click the Report tab and set Output To as None.

10. Click OK to close the dialog box. Click the arrow button to select Change Function: Logistic and change the fitting function to Logistic. The label text on top of the ROI box will update automatically.

11. Click the arrow button to select New Output and output the fitting result to the worksheet and graph.

4.2.10.3.2 Connect to NLFit

When using the Quick Sigmoidal Fit gadget you can easily switch to the NLFit tool. This makes it easy to get a detailed fit report using the current fitting settings in the gadget.

1. Redo step 1 through step 8 as shown above.
2. Click the arrow button to select Switch to NLFit... to open the NLFit dialog with the inherited settings.

3. Click the Fit button to perform curve fitting. The results are output to the result sheets and the source graph.

4.2.10.3.3 Find X / Y

With his gadget you can also quickly find X / Y values on the fitted curve.

1. Redo step 1 through step 8 as shown in the first section.
2. Click the arrow button to select Find \mathbf{X} / \mathbf{Y}... from the menu to open the Find \mathbf{X} / \mathbf{Y} dialog.

3. Select the Worksheet radio box and enter 40;45;50 for \mathbf{Y}, then click Find \mathbf{X} to show the corresponding X values in the empty \mathbf{X} box. Then, click the Output button and the X and Y values are output to the specified worksheet.

4. Click the Go button beside the Worksheet radio box to open the Find \mathbf{X} / \mathbf{Y} workbook. Click the Close button to close the Find \mathbf{X} / \mathbf{Y} dialog.

4.2.11 Using Multiple Gadgets

4.2.11.1 Summary

Multiple gadgets can be used in combination to achieve certain goals. To avoid overlapping of several gadget windows over same plot, we can arrange them into different layers to layout them onto different panels. The results from all other gadgets can be eventually added to the last gadget window and kept updated at each new output. In this tutorial, we will illustrate an example to show how we can combine the use of Quick Peaks, Quick Fit and Intersect gadgets to find the intersection point between the baseline and slope of a curve.

Minimum Origin Version Required: Origin 2016 SR0

4.2.11.2 What you will learn

This tutorial will show you:

- how to simultaneously use multiple gadgets to analyze same data.
- how to output Gadget analyzed results onto a specific graph and keep them updated.
- how to find the intersection point of baseline with the linear fitting of a curve.

4.2.11.3 Create a layout for multiple gadget windows

1. Start with a new workbook and import the file \Samples\Curve Fitting\Gaussian.dat.
2. To avoid overlapping the gadgets in one graph, we are going to prepare a multi-layer graph as shown below with same data in each layer.
3. Click and select the second column and use the menu item Plot:Multi-Curve:4 Panel to create a 4 panel plot.

Note: To make the explanation of following steps more clear, we marked above figure with blue font to help you distinguish the layers in the graph.
4. Go back to the workbook, select the Amplitude column, and position the cursor at the edge of the column, until you see the cursor turn into
 . Then you can drag-and-drop the column into layer 2 on the graph page and click OK to close the appeared dialog box. Do it again to add the plot to layer 3 in the panel, and then click the bottom right area to select the unwanted layer 4 and use the Delete key on the keyboard to delete it.

4.2.11.4 Using Quick Peaks gadget to find baseline

1. Select Gadgets:Quick Peaks from the Origin menu when layer 1 is active to bring up the Data

Exploration:addtool_quickpeaks dialog box. According to the lineshape of this curve, spline connection would be a better choice for fitting the baseline. To do so, go to the Baseline tab, choose Spline in the Connect Method drop-down list to connect anchor points with spline method.

2. Since we do not want to create new columns in the source sheet to save baseline data at every new output, we can save the result to a new workbook and the newly created baseline data will replace existing data instead. To do so, go to Output to tab, uncheck the Append to Worksheet box and check the Output Baseline to Worksheet to output baseline data into a new book QkPeak with sheet name as Baseline.

3. Click OK to close the dialog box. Place the mouse cursor over the edge of the Region of Interest (ROI), when the cursor turns into a double arrow icon, you can resize the box as needed.

4. Click the triangle button at the top right corner of the ROI to open the fly-out menu and choose New Output(O) to output baseline data.

4.2.11.5 Using Quick Fit to find the linear fit of the curve

1. Activate the second layer by clicking on the layer icon 2 on the top left corner of the graph or directly click on the plotting area of top right panel.
2. Select Gadgets:Quick Fit:Linear(System) from the Origin menu to bring up the Quick Fit ROI, and adjust the position and range of appeared ROI properly to perform linear fitting over the left half of the peak envelope.

3. Click the triangle button at the top right corner of the ROI to open the fly-out menu and choose Preferences to customize Quick Fit Preferences dialog box.
4. Since we do not need other unnecessary output about this linear fitting, we can go to the Label Box tab, uncheck Add Label Box to Graph.

5. For the same purpose, to avoid outputting summary report we can go to the Report tab, choose None in the Output To drop down list and click OK to close the dialog box.

6. Return to the triangle button at the top right corner of the ROI, choose New Output(\mathbf{O}) to output linearly fitted results to worksheet.

4.2.11.6 Using Intersect gadget to find intersection point

1. Before we apply the Intersect gadget, the first step to do is to add the fitted baseline and linearly fitted line from last two gadgets to the third plot. To do so, click on the layer icon 3 on the top left corner to activate layer 3. Right click on the layer icon 3 to choose Layer Contents to bring up Layer ContentsLayer $\mathbf{3}$ window. Select the data with long name QuickFit Y1 and Baseline Y of Amplitude and add them to the right panel through the right arrow icon \rightarrow.

2. Click OK to close the window and the fitted baseline and linear line will display in the third layer.

3. Select Gadgets:Intersect from the Origin menu when layer 3 is active to bring up the Data

Exploration:addtool_curve_intersect dialog box. Click OK to close the dialog box and it will bring up Intersect Gadget ROI.

4. Position and resize the ROI properly to have the intersection point between baseline and slope inside the box. To exclude other intersection points with the original curve, go to the triangle button at the top right corner of the ROI and uncheck Plot(1) Amplitude from the context menu of Change Data.

5. Return to the triangle button at the top right corner of the ROI, choose New Output(O) to output the result of intersection point between baseline and linearly fitted line.

4.2.11.7 Update the output

1. Click on the layer icon to activate layer 1, reposition Quick Peaks ROI to create a new baseline. Then go to the triangle button at the top right corner of the ROI, choose New Output(O) to output the newly created baseline.
2. Click on the layer icon 2^{2} to activate layer 2, reposition Quick Fit ROI to the other side of the curve so it will create a new linear fit line. Then go to the triangle button at the top right corner of the ROI, choose Update Last Output(\mathbf{O}) to output linearly fitted line result.
3. Click on the layer icon $3_{\text {to activate layer 3, reposition Intersect ROI to have the intersection point }}$ between newly created baseline and linearly fitted line inside the box. Then go to the triangle button at the top right corner of the ROI, choose New Output(0) to output the result of new intersection point.

4.3 Curve Fitting

4.3.1 Curve Fitting

4.3.1.1 Linear and Polynomial Fitting

- Linear Fitting and Outlier Removal
- Linear Fit for Kinetic Models

4.3.1.2 Nonlinear Fitting

- Nonlinear Curve Fit Tool
- Nonlinear Fitting with System Function
- Global Fitting with Parameter Sharing
- Global Fit for Different Functions with Shared Parameters
- Parameters Initialization using LabTalk in NLFit
- User Defined Fitting Function
- Fit Surface with User Defined Function
- Fitting One Dataset as a Function of Other Datasets
- Fitting With Multiple Independent Variables
- User Defined Fitting Function using GNU Scientific Library
- Fitting with NAG Special Function
- Fitting Integral Function with parametric limit using NAG Library
- Fitting with Integral using NAG Library
- Fitting with Integral using LabTalk Function
- Fitting with Two Integrals using LabTalk Function
- Fitting with Summation
- Fitting Complex Function
- Fitting with Convolution
- Quoting Built-in Functions in Your New Function
- Fit Function with Non-constant Background
- Fitting with Piecewise Functions
- Fit Curve Through Certain Points
- Distribution Fit with the Probability Density Function and Cumulative Distribution Function
- Fitting Integral Function with a Sharp Peak
- Fitting with a Piecewise Linear Function
- Fitting with an Ordinary Differential Equation
- Fitting with Convolution of Two Functions
- Parameter Initialization for Rational Functions
- Surface Fitting with Multiple Peaks
- Nonlinear Multiple Variables Fitting
- Modifying Derived Parameters in Build-in Functions
- Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets
- Implicit Fitting with Three Variables
- Nonlinear fitting using Orthogonal Distance Regression

4.3.2 Linear and Polynomial Fitting

4.3.2.1 Linear and Polynomial Fitting

- Linear Fitting and Outlier Removal
- Linear Fit for Kinetic Models

4.3.2.2.1 Summary

An outlier is typically described as a data point or observation in a collection of data points that is "very distant" from the other points and thus could be due to, for example, some fault in the measurement procedure. Identification and removal of outliers is often controversial, and is typically "more acceptable" in situations where the model used to describe the data is well known and well accepted.

4.3.2.2.2 What you will learn

This tutorial will show you how to:

- Perform linear regression on a set of data points
- Examine the Residuals Table in the output and "identify" outliers
- Use the Masking Tool to remove the outlier points
- Use the Recalculation mechanism to automatically update the result after outlier removal

The procedure described in this tutorial is also applicable to other fitting tools such as Polynomial and Nonlinear Fitting

4.3.2.2.3Steps

1. Start with a new workbook and import the file \Samples\Curve Fitting\Outlier.dat.
2. Click and select the second column and use the menu item Plot: Symbol: Scatter to create a scatter plot.
3. With the graph active, use the menu item Analysis: Fitting: Linear Fit... to bring up the Linear Fit dialog. Note that if you have used the Linear Fit dialog before, there will be a fly-out menu and you need to select the Open Dialog... sub menu.
4. In the Fit Control tab, clear the Apparent Fit check box.

5. In the Residual Analysis tab in the dialog, and check the Standardized check box.

| Input | Fit Control | Quantities | Residual Analysis | Output | Fitted Curves Plot | Find X / N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Residual Plots 9

6. Change the Recalculate drop-down at the top of the dialog to Auto and press the OK button at the bottom of the dialog. The dialog will close and linear regression will be performed on the data.

7. Select the FitLinearCurve1 result sheet in the data workbook and scroll to the right side to view the Standardized Residual column. You will note that the value in row 6 of this column is -2.54889 :

\＃Outlier－O	utlier．dat＊				$\square \square$	
	A（X1）囫	B （Y1）畳	C（X2）田	D（Y2）盢｜	E （Y2）畕	
	Independent Var	Linear Fit of Outlier	Independent Var	Regular Residual	Standardized Res	
Units						
Comments						
Parameters	Fitted Curves Plot					
1	0.79	1.43673	0.79	0.23327	0.13281	
2	0.79813	1.44455	2.16	0.08563	0.04875	
3	0.80626	1.45236	2.56	1.08092	0.61539	
4	0.81438	1.46018	3.57	0.28951	0.16483	
5	0.82251	1.468	4.43	－0．14762	－0．08404	
6	0.83064	1.47582	5.23	－4．47705	－2．54889	
7	0.83877	1.48363	5.55	－0．31482	－0．17923	
8	0.8469	1.49145	6.06	0.44467	0.25316	
9	0.85503	1.49927	6.67	2.41798	1.37662	
10	0.86315	1.50709	7.61	0.48391	0.2755	
1 O Out	r／FitLinear1	入FitLinearCur	ve1／	$\\| \times \square$	＋11	

8．Make the graph active and then click and hold down the mouse left button on the＂Regional Mask Tool＂ button in the Tools toolbar．Select the＂Masked Points on Active Plot＂submenu which will be the first item in the fly－out menu：

9．With the above submenu selected，go to the graph and click on the 6 th data point to mask the point（note that you can drag out a rectangle around the point）．

Masking this point changes the input data to the linear fit operation and the auto update mechanism will trigger. The linear fit will be repeated with this particular masked point left out. The fit curve in the graph and the parameters table will automatically update. The resulting graph should look like this:

4.3.2.3 Linear Fit for Kinetic Models

4.3.2.3.1 Summary

Non-linear kinetic models are widely used across many disciplines of natural science, such as, physics, chemistry, biology. Experimentally, all the crucial parameters in kinetic models are obtained through fitting the raw data. The intuitive way to fit the raw data is to do a non-linear fit with the expression directly from the kinetic equation. Alternatively, linear fit can be applied if we can transform the equation in the way that the dependent variable related to independent variable linearly.

Minimum Origin Version Required: Origin 2015

4.3.2.3.2 What you will learn

This tutorial will show you how to:

- Perform linear fit on same non-linear kinetic model using different linear transformations.
- Perform apparent linear fit on non-linear kinetic models.

4.3.2.3.3 Linear fit for Langmuir model

Identify transformed independent and dependent variables

Langmuir model is described by the non-linear equation below:
$y=\frac{y m * K * x}{1+K * x}$
where ym, K are the parameters we want to obtain through fitting.
To perform linear fit on Langmuir model, we can transform it into linear equation in two different ways:

1. Transform it into traditional linear Langmuir equation:

$$
y=-\frac{1}{K} \frac{y}{x}+y m
$$

where the independent variable is y / x, dependent variable is y, slope is $-1 / K$ and intercept is $y m$.
2. Transform it into double reciprocal linear Langmuir equation:

$$
\frac{1}{y}=\frac{1}{y m * K} \frac{1}{x}+\frac{1}{y m}
$$

where the independent variable is $1 / x$, dependent variable is $1 / y$, slope is $1 /(y m * K)$ and intercept is $1 / y m$.

Create new independent and dependent variable data

1. Open a new workbook.
2. Click the Import Single ASCII button $\stackrel{127}{17}$ folder and select the file LangmuirModel.dat. Make sure the Show Options Dialog: check box is selected and click OK to open the impASC dialog. Select No from Add Sparklines drop-down list under Import Options node and click OK to finish importing.
3. Use Ctrl+D to bring up Add New Columns dialog, enter 4 and click OK to add 4 columns to store transformed XY dataset later.
4. For traditional linear Langmuir model transformation, the independent variable is now y / x and dependent variable is still y. Type y / x and y as the long name for column C and D respectively so that it will show as X axis title, Y axis title respectively in later plot.
5. Type B / A in $\mathbf{F}(\mathbf{x})=$ formula cell in column C to set the value for independent variable y / x, and press ENTER. Highlight column C, right click and select Set As:X to make it as the default X dataset for plotting column D.
6. Type B in $\mathbf{F}(\mathbf{x})=$ formula cell in column D to set the value for dependent variable y, and press ENTER.
7. For double reciprocal linear Langmuir model transformation, the independent variable is $1 / x$ and dependent variable is $1 / \mathrm{y}$. Similarly, make the long name of column E, F as $1 / x, 1 / \mathrm{y}$, respectively, and set their column values as $1 / A$ and $1 / B$ accordingly. Set column E designation as X.

8．The worksheet is then as following：

島 LangmuirModel－LangmuirModel．dat＊						$\square \square x^{\square}$	
腮畀	A（X1）	B（Y1）	$\mathrm{C}(\mathrm{X} 2) \mathrm{m}_{4}$	$\mathrm{D}(\mathrm{Y} 2) \mathbf{m}^{\text {a }}$	$\mathrm{E}(\mathrm{Y} 2) \mathrm{m}$	F（Y2）酉	A
Long Na	X	y	y／x	y	1／x	1／y	
Units							
Comment							
$\mathrm{F}(\mathrm{x})=$			B／A	B	1／A	1／B	
1	0.1	0.939	9.392	0.939	10	1.065	
2	0.12	1.124	9.364	1.124	8.333	0.89	
3	0.14	1.149	8.206	1.149	7.143	0.87	
4	0.16	1.406	8.785	1.406	6.25	0.711	
5	0.18	1.354	7.524	1.354	5.556	0.738	\checkmark
	irMode				1	\cdots	1

Linear fit on transformed linear data

1．First，we will perform linear fitting on traditional linear Langmuir transformation．Highlight column D and select Plot：Symbol：Scatter to make a scatter plot．
2．To perform linear fitting，select Analysis：Fitting：Linear Fit：Open Dialog to bring up the Linear Fit dialog box and click OK to close dialog．In the appeared prompt，choose No and click OK．

3. Similarly, to perform linear fit on double reciprocal linear Langmuir transformation, highlight column F follow the steps above to create a scatter plot and then do a linear fit.

The coefficients in Langmuir model are then can be calculated using corresponding slope and intercept expressions.

Apparent linear fit on original non-linear data

Alternatively, we can use apparent linear fit to directly perform linear fit on raw non-linear kinetic data by customizing only the axis scales. Take Langmuir kinetic model for example, based on double reciprocal Langmuir linear transformation we found that the inverse of original dependent variable $1 / y$ is in linear relationship with the inverse of original independent variable $1 / x$. Therefore, if set the X scale as $1 / x$ and set the Y scale as $1 / y$, raw Langmuir kinetic data would appear with linearity.

1. To perform apparent linear fit on Langmuir kinetic raw data, highlight column B and select

Plot:Symbol:Scatter to make a non-linear scatter plot.

2. Double click on the X axis to bring up Axis dialog, set From as 0.08 and To as 3. Then select Custom Formula from the Type drop-down list and input $1 / x$ as the Direct Formula and $1 / x$ as the Inverse Formula. Choose Fixed From in the Rescale drop-down list. Click OK to close the dialog.

3. As can be see from the plot, the default X axis ticks are not well separated. To make the ticks of X axis display reasonably, we will create a dataset to set the positions of ticks. To do so, activate LangmuirModel worksheet and use Ctrl+D to add one more column. Enter dataset $0.1,0.15,0.2,0.3,0.4,0.7,1,3$ in newly added column G.
4. To use column G as major tick positions for X axis, double click on the X axis to bring up Axis dialog. Then go to Major Ticks node choose By Custom Positions from Type drop-down list and choose [LangmuirModel]LangmuirModel!G from the Dataset drop-down list.

5. Click Vertical icon on left panel, similarly, choose Custom Formula from Type drop-down list and input $1 / x$ in both Direct Formula and Inverse Formula boxes. Click OK to close the dialog box.

Select multiple axes to customize together.

6. To perform apparent linear fit, select Analysis:Fitting:Linear Fit:Open Dialog to bring up the Linear Fit dialog box. In the Fit Control tab, we can see that by default the Apparent Fit box is checked.

7. Click OK to close dialog and choose No radio box in the prompt, then click OK to close it.

4.3.2.3.4 Solutions for other non-linear kinetic models

Freudlich equation

The non-linear kinetic equation for Freudlich model is as below:
$\ln (y)=\ln (K)+\frac{\ln (x)}{n}$
where the independent variable is $\ln (x)$, dependent variable is $\ln (y)$, slope is $1 / n$ and intercept is $\ln (K), K$ and n are the coefficients to be determined.

Apparent linear fit is recommended since Ln scale is a build-in scale setting. To fit this non-linear kinetic model, use apparent fit with X and Y axis scales both set to be Ln scales.

Alternatively, you can perform linear fit after you calculate the Ln value of both X and Y dataset. See the example of Langmuir model above for details.

Lagergren's pseudo-first order

The non-linear kinetic equation for Lagergren's pseudo-first oder model is as below:
$\log \left(q_{e, \exp }-y\right)=\frac{\log \left(q_{e, f i t}\right)-k_{1} * x}{2.303}$
where the independent variable is x , dependent variable is $\log \left(q_{e, \exp }-y\right)$, slope is $-k_{1} / 2.303$ and intercept is $\log \left(q_{e, f i t}\right) / 2.303, q_{e, \text { exp }}$ is known constant, $-k_{1}$ and $q_{e, f i t}$ are the coefficients to be determined.

Apparent linear fit is recommended since Log scale is a build-in scale setting. To fit this non-linear kinetic model, first calculate $q_{e, e x p}-y$ and then use apparent fit with only Y axis scale set to be Log scale.
Alternatively, you can firstly calculate $\log \left(q_{e, e x p}-y\right)$ and use this newly created data to do linear fit directly. Refer to the example of Langmuir model above for details.

Ho's pseudo-second order

The non-linear kinetic equation for Freudlich model is as below:
$\frac{x}{y}=\frac{1}{k_{2} q_{e}^{2}}+\frac{x}{q_{e}}$
where the independent variable is x , dependent variable is x / y, slope is $1 / q_{\text {eand intercept is }} 1 /\left(k_{2} q_{e}^{2}\right), k_{2}$ and q_{e} are the coefficients to be determined.

To linearly fit this model, you have to firstly calculate x / y and use this newly created data to perform linear fit.
Alternatively, we can transform this equation into the form below:
$\frac{1}{y}=\frac{1}{k_{2} q_{e}^{2}} \frac{1}{x}+\frac{1}{q_{e}}$
where the independent variable is $1 / \mathrm{x}$, dependent variable is $1 / \mathrm{y}$, slope is $1 /\left(k_{2} q_{e}^{2}\right)$ and intercept is $1 / q_{e}$.
For this transformation, we can either perform linear fit once we created new independent variable data as $1 / x$ and new dependent variable data as $1 / y$. Or we can perform apparent linear fit by set both X and Y axis scales as $1 / x$ scale. Please refer to Langmuir model for more details.

4.3.3 Nonlinear Fitting

4.3.3.1 Nonlinear Fitting

- Nonlinear Curve Fit Tool
- Nonlinear Fitting with System Function
- Global Fitting with Parameter Sharing
- Global Fit for Different Functions with Shared Parameters
- Parameters Initialization using LabTalk in NLFit
- User Defined Fitting Function
- Fit Surface with User Defined Function
- Fitting One Dataset as a Function of Other Datasets
- Fitting With Multiple Independent Variables
- User Defined Fitting Function using GNU Scientific Library
- Fitting with NAG Special Function
- Fitting Integral Function with parametric limit using NAG Library
- Fitting with Integral using NAG Library
- Fitting with Integral using LabTalk Function
- Fitting with Two Integrals using LabTalk Function
- Fitting with Summation
- Fitting Complex Function
- Fitting with Convolution
- Quoting Built-in Functions in Your New Function
- Fit Function with Non-constant Background
- Fitting with Piecewise Functions
- Fit Curve Through Certain Points
- Distribution Fit with the Probability Density Function and Cumulative Distribution Function
- Fitting Integral Function with a Sharp Peak
- Fitting with a Piecewise Linear Function
- Fitting with an Ordinary Differential Equation
- Fitting with Convolution of Two Functions
- Parameter Initialization for Rational Functions
- Surface Fitting with Multiple Peaks
- Nonlinear Multiple Variables Fitting
- Modifying Derived Parameters in Build-in Functions
- Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets
- Implicit Fitting with Three Variables
- Nonlinear fitting using Orthogonal Distance Regression

4.3.3.2 Nonlinear Curve Fit Tool

4.3.3.2.1 Summary

Nonlinear fitting in Origin is performed using the NonLinear Fitting (NLFit) dialog box. The NLFit tool contains more than 200 built-in fitting functions used in many different disciplines.

To do a quick and simple fit without opening the NLFit dialog, try the Quick Fit Gadget.

Minimum Origin Version Required: 8.5

4.3.3.2.2 What you will learn

- How to fit with a built-in fitting function.
- How to change NLFit setting using Recalculate.
- How to define and fit with a user-defined function.

4.3.3.2.3 Use a built-in function to fit the data

1. Click File:Open... to open the Intro_to_Nonlinear Curve Fit Tool.opj from the \Samples \Curve Fitting folder and select the Built-In Function folder from the Project Explorer window.
2. With the Graph1 active, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog, and then select Gauss from the Function drop-down list:

3. In the Parameter tab, initial parameter values are automatically assigned, because the built-in functions have parameter initialization code.

If you go to the Residual tab, you can see the current residuals and decide whether the current fit results are acceptable.

4. Note that a fitted curve drawn using the initial parameter values, is shown in the graph.

 Messages tab and note the number of iterations, reduced chi-sqr value, $R^{\wedge} 2$ value, etc.

Residual	Formula	Sample Curve	Messages	Function File	Hints
[1] Parame (2) \qquad Reduced $\operatorname{COD}\left(\mathrm{R}^{\wedge} 2\right)$ Iterations P Total Iteratio (3) Fit conv		Sion was called. arquardt-........ 1572174469 12534176 5 ion $=5$ qr tolerance val	of $1 \mathrm{E}-9$ w	reached.	

6. Click the OK button. The FitNL1 report sheet is created with fit results including parameter values and fit statistics.

7. Reopen the Nonlinear Curve Fitting dialog by clicking on the green lock icon on the upper left corner of the graph and selecting Change Parameters.

8. Go to the Parameters tab, change the value of $x c$ to 25 (note that by double-clicking in the cell, you can edit the value) and select the Fixed check box.

Settings	Code	Parameters	Bounds								
\checkmark Auto Parameter Initialization											
Double click cells to change operator. Right click cells for more options. Drag column header to change column orders.											
NO.	Param	Meaning	Fixed	Value	Error	Dependency	Lower Conf Limits	Upper Conf Limits	Significant		\square Initia
1	y0	offset	\square	5. 34198	--	--	--	--	Systen	\square	
1	$x \mathrm{c}$	center	\checkmark	25	--	--	-	--	Systen	-	
1	*	width	\square	10. 16969	--	--	--	--	Systen	-	
1	A	ares	\square	984. 90204	--	-	--	--	Systen	$-$	

9. Once again, click the Fit until converged button 㳯 $^{\text {and }}$ and then $\mathbf{O K}$.
10. In the report sheet, you can see that fixing the value of $x c$ to 25 results in a Standard Error of 0 .

Parameters		\pm				
		Value	Standard Error	t-Value	Prob $>\|t\|$	Dependency
Amplitude	y0	5.34629	0.58432	9.14955	$5.20235 \mathrm{E}-12$	0.54068
	xc	25	0	-	-	0
	W	10.16855	0.20486	49.6359	$2.92631 \mathrm{E}-42$	0.52119
	A	984.68626	21.48327	45.83503	1.14874E-40	0.69379
	sigma	5.08427	0.10243			
	FWHM	11.97255	0.24121			
	Height	77.26433	1.21488			

Reduced Chi-sqr $=7.84134711285$
$\operatorname{COD}\left(R^{\wedge} 2\right)=0.98940173226649$
Iterations Performed $=2$
Total Iterations in Session $=2$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
Some parameter values were fixed.
Standard Error was scaled with square root of reduced Chi-Sqr.
sigma, FWHM, Height are derived parameter(s).

4.3.3.2.4 Define and fit with a user-defined function

In this section, we will show you how to define your own fitting function and use it in the Nonlinear Curve Fit tool
Our function is $\mathbf{y = y 0 + a * e x p (- b * x)}$

1. With the project file used in the first section opened. Select Tools: Fitting Function Builder... menu to bring up the Fitting Function Builder dialog box.
2. On the Goal page, click Create a New Function, then click the Next button to go to the Name and Type page.

3. On the Name and Type page, then name the function and select a Function Type. This function will be put to the User Defined category by default.

- Set MyFunction as the Function Name.
- Select Expression from the Function Type list. Note that the left panel displays Hints regarding the Function Type you selected.
- Click the Next button to turn to the Variables and Parameters page.

4. On the Variables and Parameters page, make sure Independent Variables reads x and Dependent Variables reads y. Then input the comma-separated values $y 0, a, b$ into the Parameters text box. Click the Next button.

5. On the Function Body page, perform the following operations:

- Set the Initial Values for parameters as shown below.
- In the Function body edit box, enter $y 0+a^{*} \exp \left(-b^{*} x\right)$.
- Use Quick Check to check the validity of current function. After entering a value for the independent variables x, click the Evaluate button , you will get a return value of the dependent variable y which can be used to check the validity of this function.

6. Click the Finish button to finish defining the function.
7. Open Project Explorer (View: Project Explorer), and select the User-Defined Function folder.
8. Highlight column A and B in [Book1]Sheet1, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog. Select the User Defined category and your function MyFunction on the

Function Selection page, under the Settings tab:

9. By successively clicking the $\mathbf{1}$ iteration button, you can see the change in parameter values as well as the increasing conformance of the fitted curve.

- Click the "1 Iteration" button $\begin{aligned} & \text { Zit. } \\ & \text { 。 }\end{aligned}$

- Click the Fit until converged button

10. Click the OK button and the FitNL1 report sheet of fitting results is created. Here, you will find best-fit parameter values and other fit statistics.

4.3.3.3 Nonlinear Fitting with System Function

4.3.3.3.1 Summary

The NLFit dialog is an interactive tool which allows you to monitor the fitting procedure during the non-linear fitting process. This tutorial fits the Michaelis-Menten function, which is a basic model in Enzyme Kinetics, and shows you some basic features of the NLFit dialog. During the fitting, we will illustrate how to perform a Global Fit, which allows you to fit two datasets simultaneously and share some parameter values.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.3.2 What you will learn

This tutorial will show you how to:

- Import a single ASCII file.
- Perform a global fit with shared parameters.
- Select a fitting range and fit part of the data.
- Use the Command Window to perform a simple calculation.

4.3.3.3.3Steps

Import the file

- Open a new workbook.
 to bring up the Open dialog. Browse to \Samples\Curve Fitting folder and select the file Enzyme.dat. Make sure to check the Show Options Dialog checkbox at the bottom of the dialog, and then click Open.
- In the impASC dialog, expand Import Options: Header Lines nodes, and select $\mathbf{3}$ from Comments From drop down.
- Click OK to import the file.

\#\#\# Enzyme - Enzyme.dat			$\square \square$	X
	$A(x)$	B(\%)	$\mathrm{C}(1)$	\wedge
Long Name	[3]	V	V	
Units	UM	WMimin	uMímin	
Comments	Substrate	No Inhibitor	Competitiv e Inhibition	
Sparklines				
1	0.5	580	350	
2	2	1180	690	
3	4	1485	970	
4	6	1630	1175	
5	8	1740	1345	
6	10	1810	1500	v
4 V Enzyme			\|< IIII $>$	\therefore

Plotting the Data

- Select columns B and C and plot as a scatter plot by clicking the $\xlongequal{\text { - " }}$ button.

Fitting with the Michaelis-Menten Function
The single-substrate Michaelis-Menten function is a basic model used in enzyme kinetics studies.

$$
v=\frac{V_{\max }[S]}{K_{m}+[S]}
$$

The parameter v is the reaction velocity, $[S]$ is the substrate concentration, $V_{\max }$ is the maximal velocity, and K_{m} represents the Michaelis constant. Parameters $V_{\max }$ and K_{m} are important enzyme properties and their values can be determined by fitting the $\mathrm{M}-\mathrm{M}$ function to a v vs. $[S]$ curve. While there is no M-M fitting function in Origin, we can use a more general model, the built-in Hill function to perform the fit:

$$
v=V_{\max } \frac{x^{n}}{k^{n}+x^{n}}
$$

where n is the cooperative sites. For a single-substrate model, we fix $n=1$, thus simplifying the model so that it behaves like the $\mathrm{M}-\mathrm{M}$ function.

There are two curves, one is the reaction without an Inhibitor and the other is the reaction with a Competitive Inhibitor. We will use the NLFit tool to fit these two curves simultaneously. Since for competitive inhibition reactions, the maximum velocity is the same as with no inhibition, we can share the $V_{\max }$ value during the fitting procedure and perform a Global Fit.

- With the graph active, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog. Select Hill function from Growth/Sigmoidal category on the Settings: Function Selection page.

- On the Settings: Data Selection page, click the triangular button next to the Input Data and choose Add all plots in active page to set the data range.

- Select Global Fit from Multi-Data Fit Mode drop-down list on the Settings: Data Selection page.

- Switch to the Parameters tab, check the Share box on the Vmax row. These Share check boxes are only available when using Global Fit mode. Check the Fixed box for n and $n _2$, and make sure their values are 1.

Click the Fit button to generate the analysis reports. A table of fit parameters is pasted to the original graph (only the fit parameter values table is shown in the following figure.)

From the fit result, we can conclude that the maximum velocity is $2162.8 \mu \mathrm{M} / \mathrm{min}$. The value of K_{m} for the no inhibitor model is $1.78{ }^{\mu} M$. The value K_{m} for the competitive inhibitor model is $4.18 \mu M$.

Fitting Lineweaver-Burk Plot

As we know, the model parameters can also be estimated by the Lineweaver-Burk or double-reciprocal plot. The Lineweaver-Burk plot takes the reciprocal of both sides of the $\mathrm{M}-\mathrm{M}$ function and plots by $1 / \mathrm{v}$ vs. $1 /[\mathrm{S}]$:

$$
\frac{1}{v}=\frac{1}{V_{\max }}+\frac{K_{m}}{V_{\max }[S]}
$$

This is actually a linear function:

We will use the No Inhibitor data to illustrate how to calculate K_{m} and $V_{\max }$ by L-B plot.

- Go back to the raw data worksheet and add two more columns by clicking the ${ }^{+}$目 button. Right-click on column D and select Set As: \mathbf{X} from the context fly-out menu to set it as an X column. Right-click on column D again and select Set Column Values to bring up the Set Values dialog. In the dialog edit box, enter: $1 / \mathrm{Col}(\mathrm{A})$ and set the Recalculate mode as None, since we don't need to auto update the reciprocal values in this example.

Similarly, set column E's values as $1 / \mathrm{Col}$ (B). Enter the long name for column D \& E as $1 /[S]_{\text {\& }}$ $1 / V$, respectively. And then we have:

Enzyme - Enzyme.dat					$\square \square$	X
	$\mathrm{A}(\mathrm{X} 1)$	B(\%1)	c(11)	$D(\times 2)$	E(V2)	\wedge
Long Name	[5]	V	V	1/[5]	1 N	
Units	WM	uMimin	MMimin			
Comments	Substrate	No Inhibitor	Competitiv e Inhibition			
Sparklines						
1	0.5	580	350	2	0.00172	
2	2	1180	690	0.5	$8.47458 \mathrm{E}-4$	
3	4	1485	970	0.25	$6.73401 \mathrm{E}-4$	
4	6	1630	1175	0.16667	6.13497E-4	
5	8	1740	1345	0.125	5.74713E-4	
6	10	1810	1500	0.1	$5.52486 \mathrm{E}-4$	v
	FitNL1 A	FitNLCurve1	7	\leqslant	\rangle	\because

- Highlight columns D \& E and click *"|button to create a scatter plot.

From the above equation, we know there is a linear relationship between $1 / \mathrm{v}$ and $1 /[\mathrm{S}$], so we can use the NLFit tool to fit a straight line on this plot. (You can also use the Fit Linear tool from Analysis:

Fitting: Fit Linear)

- Bring up the NLFit dialog again, select Line function from Polynomial category, and then click the Fit button $\mathrm{Fit}_{\text {directly to generate results. }}$

From the plot, one may doubt that this is the best fit curve since there is a point located far away.
Actually, the right side of L-B plot is low substrate concentrations area, the measurement error may be large, so we'd better exclude these points during fitting.

- Click the lock icon on the graph upper-left corner, and select Change Parameters to bring back NLFit dialog.

In Settings: Data Selection page, click the \square button on Input Data node, and then choose Reselect All Data from Graph from fly-out menu.

Then the NLFit dialog rolls up and your cursors become
 when you move to the graph page. Click and draw a rectangle to select data points you want to fit. The input range is labeled by vertical lines. You can also click-and-move these lines to change the input range.

Click the button on Select Data in Graph window to go back to NLFit dialog.
\square
Select data in graph

[Graph2]1!1"1/N"[2:11]

- Click the Fit button on the NLFit dialog to recalculate the result. You can see from the graph that the report table was updated.

- Since the intercept of the fitted curve is $1 / V_{\max }$, it is equal to $4.76191 \mathrm{E}-4$ in this example. To get the $V_{\max }$ value, select Window: Command Window to open the command window, type
$1 / 4.76191 \mathrm{E}-4=$
and press ENTER:

- -7 Command Window			- \times
//--2009-8-19 12:56	\wedge	$\begin{aligned} & \gg 1 / 4.76191 \mathrm{E}-4= \\ & 1 / 4.76191 \mathrm{E}-4=2099.9976900025 \end{aligned}$	ヘ
$1 / 4.76191 \mathrm{E}-4=$;		>>	
	\checkmark		v

Origin returns the value 2099, which is close to what we got above, 2160. (When fitting the hill function above, we shared $V_{\max }$ when fitting two datasets. If you fit the No Inhibitor data only, this value will be closer.)

4.3.3.4 Global Fitting with Parameter Sharing

4.3.3.4.1 Summary

The term "global fitting" generally refers to simultaneous curve fitting operations performed on multiple datasets. Because datasets remain distinct, they may or may not "share" parameter values during the fit process. When a parameter is shared, a single parameter value is calculated for all datasets; When a parameter is not shared, a separate parameter value is calculated for each dataset.

By contrast, "concatenated fitting" is performed by combining all datasets into a single dataset. Because curve fitting operations are performed on a single dataset, only a single set of parameter values is returned.

Since 2016 SR2, an new app Sequential Fit has been released to do sequential fitting on multiple datasets. With this app, the fit parameter values obtained from the current dataset will be used to initialize the parameters of the next dataset. This is very applicable for those datasets, the common parameters of which keep changing in turn.

4.3.3.4.2 What you will learn

This tutorial will show you how to:

- Select multiple datasets for fitting.
- Select different fitting modes.
- Perform global fit with parameter sharing.

4.3.3.4.3Steps

1. Create a new workbook by clicking the button.
2. Click the ${ }^{\text {啬 }}$ to import the file Enzyme.dat in the <Origin EXE Folder> ${ }^{\text {Samples } \backslash \text { Curve Fitting } \backslash \text { folder. }}$
3. Highlight column B and C and click the **|button to generate a scatter plot.
4. Keep the graph window activated and select the Analysis: Fitting: Nonlinear Curve Fit menu item to open the NLFit dialog.
5. Set the Recalculate mode to Auto.
6. In the Function Selection page, choose the Hill function from the Growth/Sigmoidal category.
7. Go to the Data Selection page, click the triangle button next to the Input Data selection box and choose

Add All Plots in Active Layer, to add both plots as input data.
8. Select Global Fit mode from the Multi-Data Fit Mode drop-down list:

Settings	Code	Parameters Bounds					
Functio	Selec		Multi-Data Fit Mode Weights Input Data				
Data Selection Fitted Curves Find X / Y Advanced Output					Global Fit V		
			Use Each Range's Setting v				
			[Graph1]1![1'No Inhibitor', 2'Competitive Inhibition'])				
			Enzyme Enzyme				
			1 x	A: [S]			
				B:V			
			2 x	A: [S]			
				C: V			

9. Go to the Parameters tab. Check the Fixed check box for n and $n _2$ to fix their values to 1 .

| Settings | Code Parameters Bounds |
| :--- | :--- | :--- |

Automatic Parameter Initialization is enabled.

Param	Meaning	Share	Fixed	Value	Error
Vmax	Max velocity	\square	\square	1960	.-
k	Michaelis constant	\square	\square	2.59016	.-
n	Cooperative sites	\square	\square	1	.-
Vmax_2	Max velocity	\square	\square	1910	.-
k_2	Michaelis constant	\square	\square	5.56098	..
n_2	Cooperative sites	\square	\square	1	..

10. Click the Fit button to fit curves. You will get these results from the Parameters table of the report worksheet:

\cdots							
		Value	Standard Error	t-Value	Prob>\|t		Dependency
V	Vmax	2091.96109	33.62032	62.22311	-	0.66992	
	k	1.52432	0.13786	11.05711	-	0.66992	
	n	1	0	-	-	0	
	V max	2428.49265	81.97136	29.62611	$1.00046 \mathrm{E}-16$	0.89747	
	k	5.86377	0.56737	10.33497	$5.36612 \mathrm{E}-9$	0.89747	
	n	1	0	-	-	0	

Reduced Chi-sqr $=2667.34803491$
$\operatorname{COD}\left(R^{*} 2\right)=0.99006849136444$
Iterations Performed $=7$
Total Iterations in Session $=7$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
Some parameter values were fixed.
Standard Error was scaled with square root of reduced Chi-Sqr.
11. The fitted curves will be added to the original data plot.

12. In this case, the maximum velocity Vmax may be the same, so we could share this parameter value when fitting.
13. Click the green lock icon in the report worksheet and select Change Parameters to bring back the NLFit dialog.

14. In the Parameters tab, check the Share check box for Vmax.

Settings	Code	Parameter	s Boun	nds		
Automatic Parameter Initialization is enabled.						
Param		eaning	Share	Fixed	Value	Error
V max		velocity	\checkmark	\square	1960	--
k	Micha	is constant	T	\square	2.59016	.-
n	Coop	ative sites	\square	\square	1	.-
k_2	Micha	is constant	\square	\square	5.56098	.-
n_2	Coop	ative sites	\square	\checkmark	1	.-

15. Click the Fit button again to update results. You can see the Vmax values for both curves are the same. The asterisk in the parameter name indicates that this parameter is shared:

Reduced Chi-sqr $=4812.1410794$
$\operatorname{COD}\left(R^{\wedge} 2\right)=0.9810872387706$
Iterations Performed $=7$
Total Iterations in Session $=7$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
Some parameter values were fixed.
Standard Error was scaled with square root of reduced Chi-Sqr.
*: Shared Parameter
16. The fitted curve will automatically update.

17.

4.3.3.5 Global Fit for Different Functions with Shared Parameters

4.3.3.5.1 Summary

This tutorial is aimed at solving the following problem: do global curve fitting on two or more curves using different function for each curve, but sharing some parameters, the shared parameter was common to all the datasets. This problem arises in a wide variety of scientific fields such as fiting for anisotropy spectrum.
Minimum Origin Version Required: Origin 2015 SR1

4.3.3.5.2 What you will learn

This tutorial will show you how to:

- Select multiple datasets for global fitting.
- Set a switch parameter which connect all functions.
- Perform global fit with parameter sharing for multiple fitting functions.

4.3.3.5.3Steps

1. Create a new workbook by clicking the $\xlongequal{\text { 且 }}$ button.
 folder.
2. Highlight column A, B and C and select the Analysis: Fitting: Nonlinear Curve Fit menu item to open the NLFit dialog.
The user defined fitting function will be build in next 3 steps, the functions are built based on the quantitative model below :
$\operatorname{Col}(B): L_{1}=\frac{A_{1} e^{-t / t_{0}}+B_{1}}{A_{2} e^{-t / t_{0}}+B_{2}}$
$\operatorname{Col}(C): L_{2}=A_{2} e^{-t / t_{0}}+B_{2}$
3. In the Function Selection page, choose the <new...> function from the User Defined category.
4. Enter "GlobalFit" as the function name, and set the Function Model and Function Type follows the graph below:

Then, click Next to go to the variables and parameters page.
6. Set the variables and parameters follows the graph below:

Then, click Next to go to the Expression Function page.
7. Type the expression which contained forluma of L_{1} and L_{2} in the function body box: s* (A1* $\exp (-t / t 0)+B 1) /(A 2 * \exp (-t / t 0)+B 2)-(s-1) *(A 2 * \exp (-t / t 0)+B 2)$
The parameter s is a switch for global fitting, if $s=1$, the L_{1} is used for fitting, if $s=0, L_{2}$ is used for fitting. The value of s will be controled in the following fitting procedure. Set the Initial Value of A1 and B1
to 0 . Then, click Finish.

Function Body

Quick Check

8. Back to NLFit dialog, select GlobalFit function in User Defined Category. Go to the Data Selection Page, Select Global Fit mode from the Multi-Data Fit Mode drop-down list:

9. Go to the Parameters tab. Check on the Share check box for A2, B2 and t0, then Check on the Fixed box for s and $s _2$ to fix their values to 1 and 0 , respectively. The setting of s will control fitting Col(B)
using L_{1} while fitting Col(C) using L_{2}.

| Settings | Code | Parameters Bounds |
| :--- | :--- | :--- | :--- |

Auto Parameter Initialization

Double click cells to change operator. Right click cells for more c

NO.	Param	Meaning	Share Fixed		Value	Error
1	B1	?	\square	\square	0	.-
1	A2	?	V	E	1	.-
1	B2	?	V	-	1	.-
1	10	?	V	\square	1	..
1	s	?	\square	V	1	-
2	A1_2	?	\square	E	0	..
2	B1_2	?	\square	[0	-
2	s_2	?	\square	V		.-

10. Click the Fit button to fit curves. You will get these results from the Parameters table of the report worksheet:

		Value	Standard Error
L1	A1	2.5887072951	0.1678709978
	B1	0.4959001021	0.0052845018
	A2*	-12.6787277087	0.1035113131
	B2*	8.9810129162	$6.5535940841 \mathrm{E}-4$
	t0*	3.3462910396	0.0113070784
	S		0
L2	A1	0	are 0
	B1	- 0	0
	A2.	-12.6787277087	0.1035113131
	B2*	8.9810129162	$6.5535940841 \mathrm{E}-4$
	t0,	3.3462910396	0.0113070784
	s	0	0

11. The fitted curves will be added to the graph window. You can check the fitted curve for $\operatorname{Col(B)/} L_{1}$ and $\operatorname{Col}(\mathrm{C}) / L_{2}$ in Sheet FitNL1 by double clicking the Graphs.

4.3.3.6 Parameters Initialization using LabTalk in NLFit

4.3.3.6.1 Summary

In previous Origin versions, one can only initialize fitting parameters with Origin C code. Since Origin 9.0 SR1, it is also supported to use LabTalk script to initialize parameters. This implement is especially useful when one wants to use worksheet values for the initial parameters.

In this tutorial, three adsorption uptake curves at three different temperatures were measured, and the results are exported in three .txt files. The experimental conditions are stored in the same .txt file as header info. We are going to fit the data to the isothermal-spherical model, according to the following equation:
$y=1-\frac{6}{p i^{2}} * \exp \left(-\frac{p i^{2}}{T} * x\right)$
, where y is the normalized mass uptake (mg / g), x is the time span (s), T is the time constant ($1 / \mathrm{s}$), and the fitting parameter.

There is an empirical equation describing the relationship between the temperature and time constant, which is:
$T=25000-58 * T e m p$
For the uptake curve at each temperature, we will calculate T from this equation and use it as the initial value for the curve fitting.

Minimum Origin Version Required: Origin 9.0 SR1

4.3.3.6.2 What you will learn

This tutorial will show you how to:

- Create a user-defined fitting function and use Labtalk script to do parameter initialization.
- Use values in worksheet for initialized parameters.

4.3.3.6.3Steps

Write Parameter Initialization Script for a User-Defined Fitting Function

1. Select Tools:Fitting Function Builder(or press F8) to open the Fitting Function Builder, in the Goal page, select Create a New Function and click Next.
2. In the Name and Type page, make sure the function is created under the User Defined category, name the function UptakeCurveFit, keep the Function Model as Explicit, and select Origin C for Function Type. Click the Next button.
3. In the Variables and Parameters page, keep the Independent Variables and Dependent Variables as the default \mathbf{x} and \mathbf{y}, respectively. Set the Parameters to \mathbf{T} and click Next.
4. In the Origin C Fitting Function page, type in the following equation in the Function Body edit box, and then click Next.
$y=1-6 /\left(p i^{\wedge} 2\right) * \exp \left(-\left(p i^{\wedge} 2 / T\right) * x\right)$

Fitting Function Builder - Origin C Fitting Function - UptakeCurveFit

5. In the Parameter Initialization Code page, select Use Custom Code radio butto, and then select the Use Labtalk radio button to enable the use of Labtalk script. In the Initialization Code edit box, type in the following script:
\square

```
//Get the data worksheet index
int inext=rlayer.index;
//Make sure the data workbook is active
win -a %(ry.getpage()$);
//Make sure the data worksheet is active
page.active=inext;
//Active column 2 in the data worksheet
wks.col=2;
//Get the temperature as a string from column comment
string str1$ = wks.col.comment$;
//Get the string of the temperature number
string str2$ = str1.Left(3)$;
//Substitute the string variable to a double number
double Temp = %(str2$);
//Use the empirical equation to calculate the initial value of T
T=25000 - 58 * Temp;
//Check whether parameter initialization script runs successfully
type -b "Experimental temperature is $(Temp) K, so the initial value of T
is $(T)."
```

Notes: The ry in the script above is an auto-defined range variable for the input data range of parameter y, the syntax for such range variable is $r+$ parameter name. For example, if the parameter name is Temp, the range variable should be rTemp.
7. Click Finish to create the user defined fitting function UptakeCurveFit, you could find its .fdf file in the User Files Folder.

Fit Data with the User Defined Fitting Function
 Data: Import from File: Import Wizard or press Ctrl+3) to open the Import Wizard.
2. In the Data Source, select the UptakeCurve_343K.txt as the File, which is located under path <Origin Folder>|Samples\Curve Fitting\. Click Next button to navigate to the Header Lines page. Set the Long Names, Units, and Comments as 3, 4, and 1 to 1, respectively.

Import Wizard - Header Lines

Number of main header lines[exclude subheader lines] \squareLine number start from bottom
Number of subheader lines 4Auto determine subheader line

Column Label Assignment from Subheader Lines

Preview Font System Preview Lines
$50 \quad \vee$
Prefix: S=Short Name, L=Long Name, U=Units, P=Parameters, C=Comment, MH=Main Header, SH=Subheader

3. Click Finish to import the data file. Note that the experimental temperature is stored as the comment of column 2, which will be retrieved by the Labtalk script for parameter initialization in the UptakeCurveFit fitting function.

4. Highlight column B and select Analysis:Fitting:Nonlinear Curve Fit (or press CtrI+Y) to open the NLFit dialog, select User Defined for Category and UptakeCurveFit(User) as Function.
5. An attention box pops up and shows the experimental temperature and the calculated initial value of time constant.

6. Go to the Parameters tab, see that the initial parameter for T is 5106 , which is calculated from the experimental temperature. This indicates the parameter initialization script is successfully called.
7. Go to the Code tab and select the Parameter Init section, there you could double check the parameter initialization script by clicking the \square button.
8. Click OK to close the attention box, and click Fit to carry out the fit.

Create an Analysis Template and Do Batch Processing

1. Go to the report sheet FitNL1 which is generated from previous steps, click the triangle button right to the Summary table and choose Create Copy as New Sheet. A new sheet will be created, delete column A in the new sheet and rename it as Result.

\#00k1 - UptakeCurve_343K.txt				$\square \square$	
	B(M)	$\mathrm{C}(\mathrm{yEr}$?	DM	E(9)	\wedge
Long Name	T	T	Statistics	Statistics	
Parameters	Value	Standard Error	Reduced Chi-Sqr	Adj. R-Square	
1	5034.71487	690.3704	0.00391	0.91875	
2					
3					\checkmark
4- ${ }^{\text {a }}$ FitNL1	FitNLCurve1	入Result/	$1 \mid<$	$\square \geq$

2. Keep the workbook active and select File:Save Workbook as Analysis Template to save this workbook as MyUptakeFit.ogw.
3. Create a new Origin project and select File:Batch Processing to open the batchProcess dialog.
4. Load the analysis template MyUptakeFit.ogw, select the files UptakeCurve_343K.txt,

UptakeCurve_373K.txt, and UptakeCurve_403K.txt under the <Origin Folder>|Samples \Curve Fitting \backslash path, choose File Name for Dataset Identifier and make sure the other settings are the same according to the image below:

5. Click OK to carry out the batch processing, for every file being executed, the attention box pops up and indicates the initial value being used, click OK every time to close the attention box and continue the batch processing. Finally, a summary report will be created:

4.3.3.7 User Defined Fitting Function

4.3.3.7.1 Summary

Besides the $200+$ built-in fitting functions, you can also create your own fitting functions in Origin. Origin provides three tools for fitting with user defined function:

- Simple Fit App

Simple Fit App provides a much more convenient way to fit simple functions that can be expressed in the form $y=f(x)$, you only need to type your formula, specify the initial values and then generate fitting reports immediately. You can learn how to use this App in the linked File Exchange page.

- Qucik Fit Gadget

Quick Fit gadget is another easy way to do both linear and nonlinear fitting without open the Linear Fit or NLFit dialog which might look a little bit complicated but with many advanced controls. Start a fitting process with this gadget, you need first add your own function into the Function List.

- \quad NLFit tool.

NLFit tool is a powerful fitting wizard which allows you to define more complex fitting functions and control the fitting process in every possible way. For fitting user defined function in NLFit tool, you will need to create it in Fitting Function Builder first.

In this tutorial, we will mainly illustrate how to create a user-defined fitting function in Fitting Function Builder, carry out nonlinear curve fit with it and also show how to fix a parameter for curve fitting using NLFit tool.

Minimum Origin Version Required: Origin 2016 SR0

4.3.3.7.2 What You Will Learn

This tutorial will show you how to:

- Create a user-defined fitting function using the Fitting Function Builder.
- Carry out nonlinear curve fit with user-defined fitting function.
- Fix a parameter for nonlinear curve fit.

4.3.3.7.3Steps

The data we are going to fit is the file ConcentrationCurve.dat under the <Origin EXE Folder>|Samples \backslash Curve Fitting \backslash path.

The fitting function to be created and used is shown below:
$y=A \exp \left(2.303 k x-k_{m}\right) \sqrt{2.303+\frac{C}{\left(x-C_{0}\right)}}$
in which
y is the dependent variable
x is the independent variable
and A, k_{m}, k, C, C_{0} are all fitting parameters.

Create a Fitting Function

In this section, we will show how to create a user defined fitting function in the Fitting Function Builder. But there is an alternative tool Fitting Function Organizer which also can be used to create user defined fitting functions(open it by selecting Tools:Fitting Function Organizer or pressing F9).

1. Launch Origin and choose Tools:Fitting Function Builder (or press F8) to open the Fitting Function Builder.
2. In the Goal page, select Create a New Function and click Next.
3. In the Name and Type page, change the setting as the following image and then click Next:

4. In the Variables and Parameters page, enter the variable and parameter names as the image below and then click Next:

In the Parameters box, use comma (",") as delimiter.
5. In the Expression Function page, enter the equation below in Function Body:

6. Go to the Constant tab, set the value of $\mathbf{R O}$ to $\mathbf{2 . 3 0 3}$.
7. Give estimated initial values to the parameters according to this particular data and function.

Parameters	Constants				
Param	Unit	Meaning	Fixed	Initial Value	Significant Digits
A		?	\square	325	System
km		?	\square	10	System
k		?	\square	1	System
c		?	\square	2	System
co		?	\square	0.1	System V

Note:You can also give different initial values each time before you actually carry out the fitting.
 will be returned for y).

Note:If you used Origin C as Function Type at the beginning, you can also compile the function at this stage to check if there is any error, this is especially useful for brackets matching.
9. Click the Next button three times until it goes to Derived Parameters page.
10. In this page, we will define the derived parameter AO, enter its equation in the Derived Parameters Equations box:

11. Click Finish to create this user defined fitting function. The .FDF file for it will be stored in the User Files Folder.

You can always modify the user defined fitting function later, either in the Fitting Function Builder(choose Edit a User-defined Function in Goal page), or in the Fitting Function Organizer.

Carry Out Curve Fitting

1. Create a new workbook. Click the $\left.\stackrel{\text { 1a3 }}{\substack{\ln }}\right|_{\text {button to }}$ import the ConcentrationCurve.dat file under <Origin EXE Folder> \Samples\Curve Fitting \path.
2. Highlight column B and click the :"|button to generate a scatter plot.
3. Keep the graph activated, select Analysis:Fitting:Nonlinear Curve Fit to open the NLFit dialog.
4. In the Function Selection page, set Category as User Defined and then set Function as

MyFitFunc(User).
5. Click the \dot{z}_{i+1} button to fit the data.
6. An error message returns in the Message tab of the lower panel, indicates the fit did not converge because of overparameterization.

```
Residual Formula Sample Curve Messages Function File Hints
```

(1) Parameter Initialization was called.
(2) -........-Levenberg-Marquardt
Reduced Chi-sqr $=2.75868725186 \mathrm{E}-6$
$\operatorname{COD}\left(R^{\wedge} 2\right)=0.99983847595542$
Iterations Performed $=19$
Totallterations in Session $=19$
(3) Fit did not converge - mutual dependency exists between parameters.
You may have overparameterized the fitting function. Fixing one of them may eliminate this problem.
7. The parameters \mathbf{A} and $\mathbf{k m}$ have mutual dependence, so fixing either one will solve the problem. We will fix \mathbf{A} this time.
8. Go to the Parameters tab, click the $\underset{\text { p }}{ }$ to restore the initial value setting, check the Fixed box of parameter A:
Settings Code Parameters Bounds
\checkmark Auto Parameter Initialization
Double click cells to change operator. Right click cells for more options. Drag column header to change column orders.

NO.	Param	Meaning	Fixed	Value	Error	三pendenc Jwer Conf Limil Jer Conf Lir			Significant Digits	
1	A	?	(V)	325	--	--	--	--	System	\checkmark
1	km	?	\square	10	--	--	--	--	System	\checkmark
1	k	?	\square	1	--	--	--	--	System	V
1	c	?	\square	2	--	--	--	--	System	\checkmark
1	co	?	\square	0.1	--	--	--	--	System	\checkmark

9. Click the Fit button to carry out the fit.
10. The fitted curve will be added to the original data plot,

11. A report sheet will be generated as well, in which the fitted value of all parameters(including the derived parameter A0) are reported in the parameters table:

\cdots						
		Value	Standard Error	t-Value	Prob $>\|t\|$	Dependency
Response	A	325	0	-	-	0
	km	8.43667	0.03316	254.39421	5.00288E-35	0.99957
	k	0.67231	0.007	96.01794	5.39792E-27	0.99646
	c	1.97517	0.1426	13.85121	$2.21628 \mathrm{E}-11$	0.9992
	c0	0.06017	$2.74698 \mathrm{E}-4$	219.03971	$8.58066 \mathrm{E}-34$	0.84502
	A0	-149.92769	4.97217			

Reduced Chi-sqr $=2.61349318598 \mathrm{E}-6$
$\operatorname{COD}\left(R^{\wedge} 2\right)=0.99983847595542$
Iterations Performed $=27$
Total Iterations in Session $=27$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
Some parameter values were fixed.
Standard Error was scaled with square root of reduced Chi-Sqr.
A0 are derived parameter(\mathbf{s}).
Constants : $\mathrm{RO}=2.303$

In the case of overparameterization, you can fix different parameters to get multiple fit results and then compare the fit models statistically by Analysis:Fitting:Compare Models tool.

4.3.3.8 Fit Surface with User Defined Function

4.3.3.8.1 Summary

Origin provides a NonLinear Surface Fit tool to fit surface. Besides the built-in surface fitting functions, you can also create your own fitting functions in Fitting Function Builder.

In this tutorial, we will illustrate how to create a user-defined surface fitting function in Fitting Function Builder, and carry out nonlinear surface fit with it using NLFit tool.

Minimum Origin Version Required: Origin 2016 SRO

4.3.3.8.2 What You Will Learn

This tutorial will show you how to:

- Create a user-defined surface fitting function using the Fitting Function Builder.
- Carry out nonlinear surface fit with user-defined fitting function.

4.3.3.8.3Steps

The data we are going to fit is the file PolynomialSurface.dat under the <Origin EXE Folder> \mid Samples \backslash Curve Fitting \backslash path.

The fitting function to be created and used is shown below:
$z=z_{0}+A_{1} x+A_{3} x^{3}+B_{1} y+B_{3} y^{3}+C x y+C_{2} x^{2} y+C_{3} x y^{2}$
in which
z is the dependent variable
x and y are the independent variables
and $z_{0}, A_{1}, A_{3}, B_{1}, B_{3}, C, C_{2}, C_{3}$ are all fitting parameters.

Create a Surface Fitting Function

In this section, we will show how to create a user defined surface fitting function in the Fitting Function Builder. But there is an alternative tool Fitting Function Organizer which also can be used to create user defined surface fitting functions(open it by selecting Tools:Fitting Function Organizer or pressing F9).

1. Launch Origin and choose Tools:Fitting Function Builder (or press F8) to open the Fitting Function Builder.
2. In the Goal page, select Create a New Function and click Next.
3. In the Name and Type page, select Surface Fitting from Select or create a Category drop-down list since Nonlinear Surface Fit tool lanches functions in the Surface Fitting category only.
4. Enter a name "MyPolynomialSurface" in Function Name and select Expression for Function Type. Click Next.

5. In the Variables and Parameters page, enter the variable and parameter names as the image below and then click Next:

In the Parameters box, use comma (",") as delimiter.
6. In the Expression Function page, enter the equation below in Function Body:
\square
7. Give estimated initial values to the parameters according to this particular data and function.

1. You can also give different initial values each time before you actually carry out the fitting.
2. You Can click the Evaluate button
 o quick check whether the function is valid(if it is valid, an actual value will be returned for z).
3. Click Finish to create this user defined fitting function. The .FDF file for it will be stored in the User Files Folder.

You can always modify the user defined fitting function later, either in the Fitting Function Builder(choose Edit a User-defined Function in Goal page), or in the Fitting Function Organizer.

Carry Out Surface Fitting

 EXE Folder> \Samples\Curve Fitting \backslash path.
2. Right click column C and select Set As: \mathbf{Z}.
3. Keep the worksheet activated, select Analysis:Fitting:Nonlinear Surface Fit to open the NLFit dialog.
4. In the Function Selection page, you can see that Category is read only and set as Surface. Set

Function as MyPolynomialSurface(User).
5. Click the Fit button to carry out the fit.
6. A report sheet will be generated, in which the fitted value of all parameters are reported in the parameters table. A FitSurfaceCurve worksheet is added to the source workbook as well, in which the data of fitted surface is stored.

7. Activate the source worksheet and highlight col(C). Click the $\%$ button to generate a 3D scatter plot. To add the fitted surface to the source data, double click on the Layer 1 icon. In the Layer Contents dialog that opens, set the drop-down list in the upper-left corner to Worksheets in Folder. Select FitZ of FitSurfaceCurve1 worksheet in the panel below the drop-down, then click the downward-pointing arrow in the middle of the dialog and change the plot type to 3D - Surface. Click on the rightward pointing arrow just below it to add the dataset to the right panel.

Click OK to add the surface to the source data graph.

Note:

A Polynomial Surface Fit App is available for Origin 2016 and higher. If you want to fit a polynomial surface, it is recommended to try this App first.
4.3.3.9 Fitting One Dataset as a Function of Other Datasets
4.3.3.9.1 Summary

Sometimes, one may want to perform "Dataset Fitting", that is, the output may be composed of one or several datasets, like:

$$
\text { Output }=A_{1} * \text { Dataset }_{1}+A_{2} * \text { Dataset }_{2}
$$

For example, you may want to analyze a composite spectrum to find the contributions/ratio from individual component spectra. This can be accomplished either by defining multiple independent variables or by calculating the "combination" inside the fitting function.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.9.2 What you will learn

This tutorial will show you how to:

- Perform "Dataset Fitting"
- Define multiple independent variable fitting function

4.3.3.9.3Steps

Import the Composite Spectrum.dat file from the \Samples\Curve Fitting \folder. In this sample data, we can see that column A is the index, columns B and C are the values for the spectrum of components A and B. Column D contains values obtained after reading a composite spectrum of components A and B. By fitting column D to an equation determined by the component spectra of the pure forms of columns B and C, the coefficients for the contributions of B and C (call them c1 and c2 respectively) can be found. (Note: In this case, we supposed the independent and dependent variables have the same size. If not, interpolation is need.)

Bring up the Fitting Function Organizer and define a new fitting function as follow:

Function Name:	Multilndep
Function Type:	User-Defined
Independent Variables:	a, b
Dependent Variables:	ab
Parameter Names:	$\mathrm{C} 1, \mathrm{C} 2$
Function Form:	Origin C
Function:	ab $=\mathrm{C} 1 * a+\mathrm{C} 2^{*} \mathrm{~b} ;$

Initialize both C1 and C2 to 1 in the Parameter Initialization edit box by entering:
C1=1;
C2 $=1$;
Save the fitting function and close Fitting Function Organizer. Highlight ONLY Column D and bring up the NLFit dialog, specify the input datasets in the Data Selection page as follow:

Then you can click the Fit button to generate results.

4.3.3.9.4 Results

You are supposed to get these results:

	Value	Standard Error
$\mathbf{C 1}$	0.37169	0.00483
C2	0.66469	0.0047

To verify the fitted results, you can add a new column and Copy + Paste the fitted value, which comes from the fitted $Y(\operatorname{col}(\mathrm{C})$) in the worksheet FitNLCurve1, into it. Then Highlight the Composite and the fitted data and plot a line graph to see how good the fit is:

4.3.3.10 Fitting With Multiple Independent Variables

4.3.3.10.1 Summary

The Function Organizer tool can be used to create user-defined functions with more than one independent or dependent variable. The NLFit dialog can then be used to fit with such functions. The preview window in the NLFit dialog is capable of plotting only one quantity versus another. However, even if the preview does not "make sense", the fitting process will correctly proceed, once proper data and parameter assignments have been made.

Note that if you wish to fit multiple independent variables with an equation of the type $y=A 0+A 1 * x 1+A 2 * x 2+\ldots$
you can make use of the Multiple Regression tool instead of the nonlinear fitter dialog.
Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.10.2 What you will learn

This tutorial will show you how to:

- Create a user-defined fitting function with two independent variables and one dependent variable
- Fit with that function in NLFit

4.3.3.10.3 Steps

1. Start with a new workbook and import the file \Samples \Curve Fitting \backslash Activity.dat.
2. Select Tools: Fitting Function Organizer from menu (or press F9) to bring up the Fitting Function Organizer and define a new fitting function named MultiIndep in NewCategory (create the category if it does not exist) as follow:

Function Name:	MultiIndep
Function Type:	User-Defined
Independent Variables:	substr,inhib
Dependent Variables:	act
Parameter Names:	ki,km,vm
Function Form:	Origin C
Function:	```double mix = inhib / ki; act = vm * substr / (km + (1 + mix) * substr);```

3. NOTE: Since we are using OriginC, case must match between defined names and their use in the function definition. e.g. Substr does NOT equal substr.
4. Click Save and then OK to save the function and close the Organizer.
5. For more details about User Defined Fitting Function please refer to User Defined Fitting Function using Origin C.
6. Highlight ONLY column C and select Analysis: Fitting: Non-linear Curve Fit from menu to bring up the NLFit dialog. Select the function MultiIndep from NewCategory on the Settings: Function Selection
page. Set the input datasets in the Data Selection page as follow:

7. Select the Fitted Curves page and expand the Fitted Curves Plot branch. Then select Same as Input Data from the drop-down list next to the \mathbf{X} Data Type branch.

8. Select Parameters Tab and set the initial values as follow:

| Settings | Code | Parameters | Bounds | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Automatic Parameter Initialization is enabled. | | | | |
| Param Meaning Fixed Value Error
 ki $?$ \square 0.01 -
 km $?$ \square 1 .-
 vm $?$ \square 100 .- | | | | |

9. Click Fit button to generate the fitting reports. You can see these results from the report worksheet as below:
Parameters

		Value	Standard Error
Activity	ki	0.0373	0.00233
	km	7.30567	0.71748
	vm	653.1116	22.39698

Statistics

	Activity
Number of Points	18
Degrees of Freedom	15
Reduced Chi-Sqr	155.36102
Residual Sum of Squares	2330.41531
Adj. R-Square	0.98357
Fit Status	Succeeded(100)

From the Statistics table we can know that the fitting is fairly successful.

4.3.3.11 User Defined Fitting Function using GNU Scientific Library

This article demonstrates how to use GSL function as fit function.
Minimum Origin Version Required: Origin 8.0 SR6

1. We will fit the sample Data below by the following model:

$$
y=y_{0}+a \int_{0}^{x} e^{\beta-t} d t
$$

$0.1 \quad 0.10517$
$0.2 \quad 0.2214$
$0.3 \quad 0.34986$
$0.4 \quad 0.49182$
$0.5 \quad 0.64872$
$0.6 \quad 0.82212$
0.71 .01375
$0.8 \quad 1.22554$

0.9	1.4596
1	1.71828
1.1	2.00417
1.2	2.32012
1.3	2.6693
1.4	3.0552
1.5	3.48169
1.6	3.95303
1.7	4.47395
1.8	5.04965
1.9	5.68589
2	6.38906
2.1	7.16617
2.2	8.02501
2.3	8.97418
2.4	10.02318
2.5	11.18249
2.6	12.46374
2.7	13.87973
2.8	15.44465
2.9	17.17415
3	19.08554
3.1	21.19795
3.2	23.53253

2. Add the file ocgsl.h in (User Files folder), before next step, make sure the gsl dlls are copied to this same location, see Calling GNU Scientific Library.
ocgsl.h
\#pragma dll(libgsl, header)
// this is OC special pragma,
// header keyword is to indicate libgsl.dll is in same location as this file
```
#define GSL_EXPORT // for OC, this is not needed, so make it empty
// you can directly search and copy gsl function prototypes here
typedef double (* FUNC)(double x, void * params);
struct gsl_function_struct
{
    FUNC function;
    void * params;
};
typedef struct gsl_function_struct gsl_function ;
typedef struct
{
    size_t limit;
    size_t size;
    size_t nrmax;
    size_t i;
    size_t maximum_level;
    double *alist;
```

```
    double *blist;
    double *rlist;
    double *elist;
    size_t *order;
    size_t *level;
}
gsl_integration_workspace;
GSL_EXPORT gsl_integration_workspace *gsl_integration_workspace_alloc (const size_t
n);
GSL_EXPORT void gsl_integration_workspace_free (gsl_integration_workspace * w);
GSL_EXPORT int gsl_integration_qag (const gsl_function * f,
    double a, double b,
    double epsabs, double epsrel, size_t limit,
    int key,
    gsl_integration_workspace * workspace,
    double *result, double *abserr);
```

3. Press F9 to open the Fitting Function Organizer and then add a new function as follows:

4. Press the button on the right hand side of the Function Field to open the code builder and add the following codes and compile: _nlfgsl_integration_qag.fit
```
#include "..\ocgsl.h"
static double f_callback(double x, void * params)
    double alpha = *(double *)params;
    return exp(alpha*x);
}
```

```
void _nlsfgsl_integration_qag(
// Fit Parameter(s):
double y0, double a, double beta,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    double result, err, expected = -4.0;
    // Allocates a workspace suffcient to hold 1000 double precision intervals
    // their integration results and error estimates
    gsl_integration_workspace *ww = gsl_integration_workspace_alloc(1000);
    gsl_function F;
    F.function = f_callback;
    F.params = &beta ;
    // integral interval (0, x), within the desired absolute
    // error 0 and relative error 1e-7
```

```
    gsl_integration_qag(&F, 0, x, 0, 1e-7, 1000, 0, ww, &result, &err);
    // frees the memory associated with the workspace w
    gsl_integration_workspace_free (ww);
    y = y0 + a*result;
    // End of editable part
}
```

Furthermore, a more elaborate but efficient version of the fitting function is given as follows

```
/ /-----------------------------------------------------------------
//
#include <ONLSF.h>
#include "..\ocgsl.h"
static double f_callback(double x, void * params)
{
    double alpha = *(double *)params;
    return exp(alpha*x);
```

\}

```
void _nlsfgsl_integration_qag(
// Fit Parameter(s):
double y0, double a, double beta,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
// Beginning of editable part
NLFitContext *pCtxt = Project.GetNLFitContext();
    if ( pCtxt )
    {
    static vector vInteg;
    NLSFCURRINFO stCurrInfo;
    pCtxt->GetFitCurrInfo(&stCurrInfo);
    int nCurrentIndex = stCurrInfo.nCurrDataIndex;
    BOOL bIsNewParamValues = pCtxt->IsNewParamValues();
    if ( bIsNewParamValues )
    {
                vector vx;
```

Tutorials for Origin

```
    pCtxt->GetIndepData(&vx);
    int nSize = vx.GetSize();
    vInteg.SetSize(nSize);
    // Allocates a workspace suffcient to hold 1000 double
precision intervals,
    // their integration results and error estimates
    gsl_integration_workspace *ww =
gsl_integration_workspace_alloc(1000);
    gsl_function F;
    F.function = f_callback;
    F.params = &beta ;
    double result, err, expected = -4.0;
    for(int ii=O; ii<nSize; ++ii)
    {
    // integral interval (0, vx[ii]), within the
desired absolute
    // error 0 and relative error 1e-7
    gsl_integration_qag(&F, 0, vx[ii], 0, 1e-7, 1000,
    0, ww, &result, &err);
    vInteg[ii] = result;
```

```
    }
        // frees the memory associated with the workspace w
        gsl_integration_workspace_free (ww);
        }
        y = y0 + a*vInteg[nCurrentIndex];
            x;
        }
        // End of editable part
}
```

5. Add the following initilization codes:

Parameter Init

//Code to be executed to initialize parameters
sort(x_Y_curve);
double coeff[2];
fitpoly(x_y_curve, 1, coeff);
$a=\operatorname{coeff}[0] ;$
y0 = coeff[1];
beta=1.0
6. Fit using the user-defined function gsl_integration_qag, here are the results:
$y 0=-1.06363 \mathrm{E}-6$
$a=1$
beta $=1$

4.3.3.12 Fitting with NAG Special Function

4.3.3.12.1 Summary

Origin allows user to define an Origin C fitting function using NAG special functions. You can call NAG routine to evaluate the special function.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.12.2 What you will learn

This tutorial will show you how to:

- Create fitting function using Fitting Function Organizer
- Create fitting function using NAG special function

4.3.3.12.3 Example and Steps

We will fit the following model:

$$
\text { inorm }=A * \exp (-t d / 2.0 /(t-t 0)) *(I 0(t d / 2.0 /(t-t 0))+I 1(t d / 2.0 /(t-t 0)))
$$

Here $A, t d$ and $t 0$ are the model parameters we want to obtain from the data fitting. $I 0$ and $I 1$ are the first kind of Modified Bessel function of order 0 and order 1, respectively. For current example, we use the sample data in the end of this tutorial. The fitting procedure can be outlined into the following steps:

Press F9 to open the Fitting Function Organizer and then create a new Category named
FittingWithNAGSpecialFunc. Define a new fitting function FittingWithBessel in the new category as follow:

Function Name:	FittingWithBessel
Function Type:	User-Defined
Independent Variables:	t
Dependent Variables:	inorm
Parameter Names:	$\mathrm{A}, \mathrm{t} 0, \mathrm{td}$

Function Form:	Origin C
Function:	

Click the button (icon) beside the Function box to open the code builder and define and compile and save the fitting function as follows:

```
#include <origin.h>
```

// Add your special include files here.
// For example, if you want to fit with functions from the NAG library,
// add the header file for the NAG functions here.
\#include <OC_nag8.h>
// Add code here for other Origin C functions that you want to define in this file,
// and access in your fitting function.
// You can access C functions defined in other files, if those files are loaded and
compiled
// in your workspace, and the functions have been prototyped in a header file that
you have
// included above.
// You can access NLSF object methods and properties directly in your function
code.

Tutorials for Origin

```
// You should follow C-language syntax in defining your function.
// For instance, if your parameter name is P1, you cannot use p1 in your function
code.
// When using fractions, remember that integer division such as 1/2 is equal to 0,
and not 0.5
// Use 0.5 or 1/2.0 to get the correct value.
// For more information and examples, please refer to the "User-Defined Fitting
Function"
// section of the Origin Help file.
```

/ /--
/ /
void _nlsfFittingWithBessel(
// Fit Parameter(s):
double A, double t0, double td,
// Independent Variable(s):
double t,
// Dependent Variable(s):
double\& inorm)
\{
// Beginning of editable part

```
    //inorm= A* exp(-td/2.0/(t-t0)) * ( s18aec(td/2.0/(t-
t0),NAGERR_DEFAULT) +s18afc(td/2.0/(t-t0),NAGERR_DEFAULT) );
    static NagError fail1;
    static NagError fail2;
    double dtemp = td/2.0/(t-t0);
    inorm= A* exp(-dtemp) * ( s18aec(dtemp,&fail1)+s18afc(dtemp,&fail2) );
    if(fail1.code !=NE_NOERROR)
        printf("%s\n",fail1.message);
    if(fail2.code !=NE_NOERROR)
        printf("%s\n",fail2.message);
    // End of editable part
}
```


Simulate the Function

After the function body is defined, you can click the Compile button in Code Builder to check syntax errors. And then click Return to Dialog button to go back Fitting Function Organizer dialog box. Now click the Save button to generate the .FDF file (Function definition file).

Once you have a .FDF file, you can click the Simulate button to simulate a curve, this will be very helpful to evaluate the initial values. In the simcurve dialog, enter some proper parameter values and X range, and see what the curve looks like in the Preview panel.

Set the Initial Values for the Parameters

As it is a user-defined fitting function, you have to supply the initial guess values for the parameters before performing your fitting task for the data. You may do it by set them manually in the Parameter tab in Nonlinear Curve Fit dialog. For the sample data shown below, you can just set the initial values for the parameters $A=1, \mathrm{td}=1, \mathrm{t} 0=1$. After the parameters are initialized, you can then do the fitting to obtain the fitting result, as shown to the right of the sample data.

4.3.3.12.4 Sample Data

Copy the below sample data and use Import Wizard to import the data from Clipboard, then do the fitting using the given initial values for the parameters: $\mathrm{A}=1, \mathrm{td}=1, \mathrm{t} 0=1$.

4.3.3.13 Fitting Integral Function with parametric limit using NAG Library

4.3.3.13.1 Summary

Before you start delving into this tutorial, you are recommended to read the relevant tutorial in Fitting with Integral using NAG Library. And as far as programming is concerned, the two tutorials are basically the same, except that here you will learn to define Origin C fitting function with fitting parameters in the integral limit, while in the previous tutorial we in fact define a fitting independent variable in the integral limit. Also note that a different NAG integrator is used here.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.13.2 What you will learn

This tutorial will show you how to:

- Create a fitting function with Definite Integral using the NAG integration routine
- Create a fitting function with a parametric integral limit
- Use a log function to scale a large return value from the fitting function

4.3.3.13.3 Example and Steps

For example, we will fit the sample data at the bottom of this page with the following model:

$$
y=\int_{c}^{d} \frac{\cosh \left(\left(x_{i}+b^{2} \cdot x^{2}\right) /(b+x)\right)}{a+\left(x_{i}^{2}+x^{2}\right)} d x_{i}
$$

Note that we use x_{i} to indicate the integral independent variable while x indicates the fitting independent variable. The model parameters a, b, c, and d are fitted parameters we want to obtain from the sample data. To prepare the data, you just need to copy the sample data to an Origin Work sheet. The fitting procedure is similar to the previous tutorial:

Define Fitting Function in Fitting Function Organizer

Press F9 to open the Fitting Function Organizer and add the User-Defined integral fitting function nag_integration_fitting_cosh to the Category FittingWithIntegral, similar to the first tutorial.

Function Name:	nag_integration_fitting_cosh
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y
Parameter Names:	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
Function Form:	Origin C
Function:	

fitting function as follows: (Note: Remember to save the Function after compiling it and returning to the Function Organizer Dialog):

```
#include <origin.h>
// Add your special include files here.
```


Tutorials for Origin

```
// For example, if you want to fit with functions from the NAG library,
// add the header file for the NAG functions here.
#include <OC_nag.h>
```

// Add code here for other Origin C functions that you want to define in this file,
// and access in your fitting function.
struct user
\{
double a, b, fitX; // fitX the independent variable of fitting function
\};
static double NAG_CALL f_callback(double x, Nag_User *comm) // x is the
independent variable of the integrand
\{
struct user *sp = (struct user *) (comm->p);
double aa, bb, fitX; // temp variable to accept the parameters in the
Nag_User communication struct
$a \mathrm{a}=\mathrm{sp}->\mathrm{a}$;
bb $=$ sp->b;

```
    fitX = sp->fitX;
    return cosh((x*x+bb*bb*fitX*fitX)/(bb+fitX))/(aa+(x*x+fitX*fitX));
}
// You can access C functions defined in other files, if those files are loaded and
compiled
// in your workspace, and the functions have been prototyped in a header file that
you have
// included above.
// You can access NLSF object methods and properties directly in your function
code.
// You should follow C-language syntax in defining your function.
// For instance, if your parameter name is P1, you cannot use p1 in your function
code.
// When using fractions, remember that integer division such as 1/2 is equal to 0,
and not 0.5
// Use 0.5 or 1/2.0 to get the correct value.
// For more information and examples, please refer to the "User-Defined Fitting
Function"
// section of the Origin Help file.
```

Tutorials for Origin

```
//------------------------------------------------------------------
//
void _nlsfnag_integration_fitting_cosh(
// Fit Parameter(s):
double a, double b, double c, double d,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    double epsabs = 0.00001, epsrel = 0.0000001, result, abserr;
    Integer max_num_subint = 500;
    // you may use epsabs and epsrel and this quantity to enhance your desired
precision
    // when not enough precision encountered
    Nag_QuadProgress qp;
    static NagError fail;
```

```
    // the parameters parameterize the integrand can be input to the call back
function
    // through the Nag_User communication struct
        Nag_User comm;
        struct user s;
        s.a = a;
        s.b = b;
        s.fitX = x;
        comm.p = (Pointer)&s;
    d01sjc(f_callback, c, d, epsabs, epsrel, max_num_subint, &result, &abserr,
&qp, &comm, &fail);
    // you may want to exam the error by printing out error message, just
uncomment the following lines
    // if (fail.code != NE NOERROR)
    // printf("%s\n", fail.message);
    // For the error other than the following three errors which are due to bad
input parameters
    // or allocation failure NE_INT_ARG_LT NE_BAD_PARAM NE_ALLOC_FAIL
```

```
    // You will need to free the memory allocation before calling the
integration routine again to
    // avoid memory leakage
    if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM && fail.code !=
NE_ALLOC_FAIL)
    {
        NAG_FREE(qp.sub_int_beg_pts);
        NAG_FREE(qp.sub_int_end_pts);
        NAG_FREE(qp.sub_int_result);
        NAG_FREE(qp.sub_int_error);
        }
        y = log(result);
        // note use log of the integral result as return as the integral result is
large,
    // you are not necessary to do so
    // End of editable part
}
```

In the above code, we define the integrand as a callback function \boldsymbol{f} _callback just outside the fitting function body _nlsfnag_integration_fitting_cosh. Note that we parametrize the integrand function with the variables a, b and fitX, and pass them into the callback funtion through the Nag_User struct. After that we perform the integration using NAG integrator d01sjc. Besides, you can also use other Quadrature Routines as you want. In the current example, we also use a log scale for the fitting function. (The sample data are already scaled by a log function)

Compile the code, return to the dialog and then Save the fitting function in the function Organizer and open the Nonlinear Curve Fit dialog in the Analysis-Fitting menu. You can then select this user-defined fitting function in the Function Selection page under Setting Tab.

Set the Initial Values for the Parameters

Similarly, as it is a user-defined fitting function, you have to supply the initial guess values for the parameters. You may manually set them in the Parameter tab in Nonlinear Curve Fit dialog. For current example, you can just set the initial values for the parameters $a=1, b=10, c=3, d=4$. After the parameters are initialized, you can perform the fitting to obtain the fitting result, as shown in the following.

4.3.3.13.4 Sample Data

Sample Data		Results		
X	Y			
-5	498.19046			
-4.33333	329.43196			
-3.66667	210.28005			
-3	126.55799		Value	Standard Error
		a	0.99303	0.06577
-2.33333	69.01544	b	10	$5.3108 \mathrm{E}-5$
		c	3.00083	0.0062
		d	4.00022	$9.38713 \mathrm{E}-4$
-1	9.1393			
-0.33333	-0.84496			
0.33333	-0.99914			
1	6.86736			

4.3.3.14 Fitting with Integral using NAG Library

4.3.3.14.1 Summary

Origin allows user to define an Origin C fitting function which involves an integral. You can call NAG functions to perform the integration while defining the fitting function. There are built-in functions in Origin C which perform integration. For the current example, the NAG solution is recommended. It has a better performance compared to the built-in integration algorithm. Note that an infinite NAG integrator is used here.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.14.2 What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Organizer
- Create a fitting function with a Definite Integral using a NAG integration routine
- Set up the Initial Code for the fitting function

4.3.3.14.3 Example and Steps

We will fit the following model:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(t-x_{c}\right)^{2}}{w^{2}}} d t
$$

Here $y_{0} A, x c$ and w are the model parameters we want to obtain from the data fitting. The fitting procedure can be outlined into the following steps:

Define the Function

Press F9 to open the Fitting Function Organizer and then create a new Category named
FittingWithIntegral. Define a new fitting function nag_integration_fitting in the new category as follow:

Function Name:	nag_integration_fitting
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y
Parameter Names:	$\mathrm{y} 0, \mathrm{~A}, \mathrm{xc}, \mathrm{w}$
Function Form:	Origin C
Function:	

[^0]1. Scroll up to go to line

and paste the following code below this line.

2. Go to line

and paste the following code below.
```
struct user // parameters in the integrand
    {
    double amp, center, width;
};
// Function supplied by user, return the value of the integrand at a given
    x.
    static double NAG_CALL f_callback(double x, Nag_User *comm)
    {
```

```
    struct user *sp = (struct user *) (comm->p);
    double amp, center, width; // temp variable to accept the
parameters in the Nag_User communication struct
    amp = sp->amp;
    center = sp->center;
    width = sp->width;
    return amp * exp( -2*(x - center)*(x - center)/width/width ) /
(width*sqrt(PI/2));
}
```


3. Go to line

and paste the following code below.

```
// Through the absolute accuracy epsabs, relative accuracy epsrel and
max_num_subint you can
    // control the precision of the integration you need
    // if epsrel is set negative, the absolute accuracy will be used.
    // Similarly, you can control only relative accuracy by set the
    epsabs negative
```

```
    double epsabs = 0.0, epsrel = 0.0001;
    // The max number of sub-intervals needed to evaluate the function
in the integral
    // The more difficult the integrand the larger max_num_subint
should be
    // For most problems 200 to 500 is adequate and recommended
    Integer max_num_subint = 200;
    // Result keeps the approximate integral value returned by the
algorithm
    // abserr is an estimate of the error which should be an upper
bound for the |I - result|
    // where I is the integral value
    double result, abserr;
    // The structure of type Nag_QuadProgress,
    // it contains pointers allocated memory internally with
max_num subint elements
    Nag_QuadProgress qp;
    // The NAG error parameter (structure)
    static NagError fail;
```

```
    // Parameters passed to integrand by Nag_User communication struct
            Nag_User comm;
    struct user s;
            s.amp = A;
            s.center = xc;
            s.width = w;
            comm.p = (Pointer) &s;
    // Perform integration
    // There are 3 kinds of infinite boundary types you can use in Nag
infinite integrator
    // Nag_LowerSemiInfinite, Nag_UpperSemiInfinite, Nag_Infinite
    d01smc(f_callback, Nag_LowerSemiInfinite, x, epsabs, epsrel,
max_num_subint, &result, &abserr, &qp, &comm, &fail);
    // you may want to exam the error by printing out error
message, just uncomment the following lines
    // if (fail.code != NE_NOERROR)
            // printf("%s\n", fail.message);
    // For the error other than the following three errors which are
due to bad input parameters
    // or allocation failure NE_INT_ARG_LT NE_BAD_PARAM
```

```
NE_ALLOC_FAIL
    // You will need to free the memory allocation before calling the
integration routine again to avoid memory leakage
    if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
fail.code != NE_ALLOC_FAIL)
    {
            NAG_FREE(qp.sub_int_beg_pts);
            NAG FREE(qp.sub int end pts);
            NAG_FREE(qp.sub_int_result);
            NAG_FREE(qp.sub_int_error);
    }
    // Calculate the fitted value
    y = y0 + result;
```

4. Click Compile to compile the file.

In the above code, we firstly define the integrand as a callback function \boldsymbol{f} _callback just outside the fitting function body _nlsfnag_integration_fitting. Note that we parametrize the integrand function with the variables amp, center and width, and pass them into the callback funtion through the Nag_User struct. Inside the fitting function, we perform the integration using NAG integrator d01smc.

Calling NAG functions should be more efficient than writing your own routines. Using an analogous method, you can perform finite, infinite, one-dimension and multi-dimension quadrature in your fitting function. Please read the NAG Quadrature page and select a proper routine.

Set the Initial Values for the Parameters or Setup the Initial Code

As it is a user-defined fitting function, you have to supply the initial guess values for the parameters. You may do it later by setting them manually in the Parameter tab in Nonlinear Curve Fit dialog.

Simulate the Function

After entering the function body codes, you can click the Compile button in Code Builder to check syntax errors. And then click Return to Dialog button to go back Fitting Function Organizer dialog box. Now click the Save button to generate the .FDF file (Function definition file).

Once you have a .FDF file, you can click the Simulate button to simulate a curve, this will be very helpful to evaluate the initial values. In the simcurve dialog, enter some proper parameter values and X range, and see what the curve looks like in the Preview panel.

Fit the Curve

Before you start to fit the curve, it is very helpful to simulate the function first. Performing integration may take some time, if there is any mistake, you may see Origin "freeze" after you click the Fit button. So in the Fitting Function Organizer dialog, select the function we defined and click the Simulate button. This will bring up the simcurve X-Function. Enter some "guess" values and click the Apply button. If the simulated curve looks like your source data, you can go further to fit.

To test the fitting function:

1. Import \Samples \Curve Fitting \Replicate Response Data.dat to Origin.
2. Next we are going to use \log scale of the data in $\operatorname{Col}(A)$. To do this, in the $\mathbf{F}(\mathbf{x})=$ column label row of column A, type in the formula $\operatorname{Col}(A)=\log (\operatorname{Col}(A))$ and hit Enter once to change the data.
3. Highlight column A and B and create a scatter plot, the shape is a sigmoid curve.
4. Bring up the NLFit dialog from Analysis: Fitting: Nonlinear Curve Fit menu item.
5. Select the fitting function we defined in the previous sections and go to the Parameters tab, initialize all parameters by 1 and fit (click Fit button).
6. You are supposed to see these results:

	Value	Standard Error
y0	-0.00806	0.18319
\mathbf{A}	3.16479	0.39624
$\mathbf{x c}$	-0.19393	0.10108
\mathbf{w}	1.77252	0.33878

4.3.3.15 Fitting with Integral using LabTalk Function

4.3.3.15.1 Summary

Since version Origin 8.6, Origin introduces a new LabTalk function, integral(), to do one-dimensional integration. This function returns the integral value of:

$$
\int_{\text {Lower Limit }}^{\text {UpperLimit }} f(t, \arg 1, \arg 2, \ldots), d t
$$

And the interface of the integral() function is defined as below:

```
integral(integrandName, LowerLimit, UpperLimit [, arg1, arg2, ...])
```

Where integrandName here is the function name of the integrand:

$$
f(t, \arg 1, \arg 2, \ldots)
$$

In other word, the integral() function do the following things:

- Accept another function (the first argument) as the integrand.
- Perform integration on specified lower and upper limit and return the integral value.
- If need, pass the subsequent arguments (Arg1, $\operatorname{Arg} 2, \ldots$) into the integrand function.

Using this feature, we can define a fitting function with integral() function, and pass proper fitting parameters to the integrand, to do integration in curve fitting.

In this tutorial, we will modify the other tutorial, calling NAG functions to do integration during fitting, into LabTalk form, and show you how simple and straightforward to fit an integration function.

Minimum Origin Version Required: Origin 8.6

Beginning with Origin 2018b, you can define a an implicit function using integrals

4.3.3.15.2 What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Builder
- Create a fitting function with a Definite Integral using Labtalk function
- Set up the Initial Code for the fitting function

4.3.3.15.3 Example and Steps

The Fitting Model

The fitting model is described as below:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(t-x_{c}\right)^{2}}{w^{2}}}, d t
$$

There are four parameters in the fitting function, and we need to pass three of them into the integrand, and use the independent variable as upper limit, to do integration. So you should define the integrand first, and then use the integral() function to perform integration inside your fitting function body.

Define the Function

1. Press F8 to open Fitting Function Builder dialog. Make sure choosing Create a New Function option, and click Next to navigate to the next page.
2. In the Name and Type page, enter a function name, say MyIntegGauss. Leave the default function type as Expression, and then check the Include Integration During Fitting checkbox. This will lead you to a new page in the next step.

3. In the Integrand page, you can define the expression of the integrand. Currently, Origin supports one-dimensional integral only, so the integrand should have ONE integration variable. In this example, the expression of the integrand is:
$\frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(t-x_{c}\right)^{2}}{w^{2}}}$

The other variables, like $x c, w$, and A, are parameters of the integrand. To distinguish from fitting parameters, we named them Arguments here, and use the arguments name ixc, iw, and iA instead. Later, we can pass fitting parameters into these arguments. So, the integrand definition should looks like:

Fitting Function Builder - Integrand - MylntegGauss

Note that this is a LabTalk function. To get the integration value, you must have a RETURN statement in the function body. And the integrand expression in this example should be:

4. When all set, click Next to go to the Variables and Parameters page to define the variables and parameters for the fitting function as below:

Fitting Function Builder - Variables and Parameters - MyIntegGauss

5. The next Function page is where you define the fitting function body. Once you choose to include integration in your fitting function at the beginning of the fitting function builder wizard, there is an extra tab, Integrand, shown on this page. In this tab, you can map the fitting variables and parameters with elements of the integrand, including lower limit, upper limit, and integrand arguments. And in this example, we will map the variables as below:

Integrand elements	Values pass into integrand
Lower Limit	-inf
Upper Limit	x
ixc	xc
iw	w

6. Once set up all the mappings as above table, click the Insert button, then well prepared integral() function is inserted into the Function Body box as:
\square
7. This expression means perform integration on the function, whose name is MyIntegrand, from negative infinite to x, and pass the three fitting parameters, $x c, w$, and A to the integrand.
8. By adding the constant parameter, $y 0$, into the expression, the whole fitting function body should be:

9. And the page may looks as below:
10.

Fitting Function Builder - Expression Function - MylntegGauss
\ll

Function Body

Quick Check

$$
x=1
$$

Cancel

11.
12. Then active the Parameters tab, and give some proper initial values for each fitting parameters as:
Parameters

Param	Constants	Integand			
$y 0$		Mnit	Meaning	Fixed	Initial Value
Significant Digits					
xc		\square	0	System	-
w		\square	0	System	-
A		\square	2	System	-

Now, you can click Finish button to save this fitting function.

Fit the Curve

Copy and paste the following data into Origin worksheet:

\mathbf{X}	\mathbf{Y}
-1.69897	0.13136
-1.22185	0.34384
-0.92082	0.6554
-0.82391	1.00157
-0.69897	1.70785
0	2.31437
0.30103	2.77326
1	2.79321
0.6987	

Highlight the Y column, and press CtrI $+\boldsymbol{Y}$ to open the $\boldsymbol{N L F i t}$ dialog. Select the function you just defined, and click Fit button to perform fitting. The fitting result should be the same like using NAG function directly:

Parameters $\quad \rightarrow$			
		Value	Standard Error
B	y0	-0.01749	0.20203
	xc	-0.21058	0.11852
	W	1.76925	0.36484
	A	3.15913	0.42476
Reduced Chi-sqr $=0.0114837622841$			
$\operatorname{COD}\left(R^{*} 2\right)=0.99334903530799$			
Iterations Performed $=6$			
Total Iterations in Session $=6$			
Fit converged. Chi-Sar tolerance value of			

4.3.3.16 Fitting with Two Integrals using LabTalk Function

4.3.3.16.1 Summary

In some circumstance, one may want to create fitting function with multiple integrals:

$$
\int_{L L 1}^{U L 1} f(t, \arg 1, \arg 2, \ldots) d t+\int_{L L 2}^{U L 2} g(x, \arg 3, \arg 4, \ldots) d x
$$

We refer to Fitting with Integral using LabTalk Function for detailed description of parameters in the expression.

In version Origin 8.6, however, Fitting Function Builder just supports one integral in fitting function. Bypassing complex Origin C code, we can use Fitting Function Organizer to reach the goal.

In this tutorial, we will show you how to create a fitting function comprised of two integrals using function organizer. Of course, one can include more integrals as desired.

Minimum Origin Version Required: Origin 8.6

Beginning with Origin 2018b, you can define a an implicit function using integrals.

4.3.3.16.2 What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Organizer
- Create a fitting function with two integrals using LabTalk function

4.3.3.16.3 Example and Steps

The Fitting Model
The fitting model is described as below:

$$
y=y_{0}+\int_{-5}^{x} A t d t-\int_{-\infty}^{x} B t \exp \left(-t^{2} / w^{2}\right) d t
$$

There are four parameters in the fitting function, and we need to pass three of them into the integrand, and use the independent variable as upper limit, to do integration.

Define the Function

1. Press F9 to open Fitting Function Organizer dialog. Add a new function by pressing New Function after you select a category in which you want to put your function. One can also add new category by pressing the New Category button.

2. Specify the function name in the Function Name edit box as you like. Define Independent Variables, Dependent Variables and Parameter Names in corresponding edit box.
3. Select the Function Form in the drop box. One can find explanations in the Hints tab at the bottom of the dialog.

4. In the Function edit box, define your fitting function. The integrals are written in the form of LabTalk integral function.

As described in Fitting with Integral using LabTalk Function, x, a, b and $w c$ are parameters passed into the integrand functions.
5. Press the button at the right corner of Parameter Settings box to active Parameter Settings dialog. Set initial values as well as other constraints such as lower bounds, upper bounds for each parameter.

6. Define the two integrals in the LabTalk Functions Definition and Initializations box. In this case, the functions should be:

7. We have successfully set our two integrals fitting function. You can set other information in corresponding box. Do not forget to Save your fitting function after you finish.

Fit the Curve

Copy and paste the following data into Origin worksheet:

\mathbf{X}	\mathbf{Y}
-3	2.47613
-2.6	2.24016
-2.2	2.01543
-1.8	1.83094
-1.5	2.85038
-1.1	2.44967
-0.9	2.61423
-0.7	3.23057
-0.3	

-0.1	3.37822
0.1	3.2827
0.3	3.18775
0.5	2.86194
0.7	2.69104
0.9	2.39315
1.4	1.85287
1.8	1.85325
2.6	2.20569
2	
104046	

Highlight the Y column, and press CTRL $+Y$ to open the NLFit dialog. Select the function you just defined, and click fit button Fit to perform fitting.

Parameters			\checkmark
		Value	Standard Error
B	a	0.26191	0.03201
	b	3.5282	0.21956
	wc	1.07153	0.04832
	y0	4.57942	0.29938

Reduced Chi-sqr $=0.00376913022891$
$\operatorname{COD}\left(\mathrm{R}^{\wedge} 2\right)=0.98854435477482$
Iterations Performed $=7$
Total Iterations in Session $=7$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.

4.3.3.17 Fitting with Summation

4.3.3.17.1 Summary

We have showed you how to perform fitting with an integral using the NAG Library, and now you'll learn how to do that without calling NAG functions. In this tutorial, we will show you how to do integration by the trapezoidal rule and include the summation procedure in the fitting function.

4.3.3.17.2 What you will learn

- How to include summation in your fitting function.
- Trapezoidal rule for integration.

4.3.3.17.3 Example and Steps

We will fit the same model as the integral fit using NAG:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(x-x_{c}\right)^{2}}{w^{2}}}, d x
$$

The difference is that we will perform the integration within the fitting function. Using the trapezoidal rule, we will first divide the curve into pieces and then approximate the integral area by multiple trapezoids. The precision of the result then depends on how many trapezoids will be used. Since this is a semi-infinite integration, we will set an increment (steps) and construct trapezoids from the upper integral limit, x, to the lower integral limit, negative infinity and then accumulate the area of these trapezoids. When the increment of the area is significantly small, we will stop the summation. Before doing the summation, you should guarantee that the function is CONVERGENT, or you should include a convergence check in your code.

(step)

Define the Function

Select Tools:Fitting Function Organizer or alternatively press the F9 key to open the Fitting Function Organizer and then define the function as follows:

Function Name:	summation
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y

Parameter Names:	$\mathrm{y} 0, \mathrm{~A}, \mathrm{xc}, \mathrm{w}$
Function Form:	Origin C
Function:	

Click the button (icon) beside the Function box to open Code Builder. Define, compile and save the fitting function as follows:

```
#pragma warning(error : 15618)
```

\#include <origin.h>
// Subroutine for integrand
double f(double x, double A, double xc, double w)
\{
return A * $\exp \left(-2^{*}(x-x C)^{*}(x-x C) / w / w\right) / w / \operatorname{sqrt}(P I / 2) ;$
\}

```
//-------------------------------------------------------------------
```

/ /
void _nlsfsummation(
// Fit Parameter(s):
double $y 0$, double A, double xc, double w,
// Independent Variable(s):
double x,

```
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    // Set the tolerance for stop integration.
    double dPrecision = 1e-12;
    // Initialization
    double dIntegral = 0.0;
    double dTrapezia = 0.0;
    // Steps, or Precision.
    double dStep = 0.01;
    // Perform integrate by trapezoidal rule.
    // Note that you should guarantee that the function is CONVERGENT.
    do
    {
            // Trapezia area.
            dTrapezia = 0.5 * ( f(x, A, xc, w) + f((x-dStep), A, xc, w) ) *
dStep;
    // Accumulate area.
            dIntegral += dTrapezia;
            x -= dStep;
    }while( (dTrapezia/dIntegral) > dPrecision );
```

```
    // Set y value.
    y = y0 + dIntegral;
    // End of editable part
}
```

Fit the Curve

We can use the same data to test the result.

1. Import \Samples\Curve Fitting\Replicate Response Data.dat.
2. Highlight the first column, right-click on it, and select Set Column Values from the context menu.
3. Set $\operatorname{Col}(A)=\log (\operatorname{Col}(A))$ in the Set Column Values dialog. This will make a sigmoidal curve.
4. Highlight columns A and B and create a scatter plot.
5. Then bring up the NLFit dialog by pressing Ctrl + Y. Select the fitting function we just defined and go to the Parameters tab, initialize all parameters to 1 and fit. You should see these results:

	Value	Standard Error
y0	-0.00806	0.18319
A	3.16479	0.39624
xc	-0.19393	0.10108
w	1.7725	0.33878

4.3.3.18 Fitting Complex Function

4.3.3.18.1 Summary

When fitting with a complex function, we can easily separate the complex function to two functions: one corresponding to its real part and the other corresponding to its imaginary part. With these two functions, we can define the complex fitting function with two dependent variables by Fitting Function Organizer and can access it in NLFit dialog. We will illustrate how to fit with complex function below. More details about fitting with multiple dependent or independent variable please refer to Fitting with Multiple Independent Variables.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.18.2 What you will learn

This tutorial will show you how to:

- Create a user-defined complex fitting function with two dependent variables and one independent variable
- Fit with such function in NLFit

4.3.3.18.3 Steps

1. Select whole form below (including header line) and right click to choose Copy to put the data in clipboard.

Omega	Y1	Y2
0	3	0
0.01	2.88462	-0.28846
0.02	2.58621	-0.51724
0.03	2.20588	-0.66176
0.04	1.82927	-0.73171
0.05	1.5	-0.75
0.06	1.22951	-0.7377
0.07	1.01351	-0.70946
0.08	0.8427	-0.67416
0.09	0.70755	-0.63679
0.1	0.6	-0.6
0.11	0.5137	-0.56507

2. Select Import/ Import Wizard to open Import Wizard dialog. Then choose Clipboard in Data Source group and click Finish to import the data.

Import Wizard - Source

Data Type

© ASCIIBinary
User Defined

Data Source
File
Clipboard
3. Select Tools: Fitting Function Organizer from menu (or press F9) to bring up the Fitting Function Organizer and define a new fitting function named ComplexFitting in NewCategory (create the category if not exist) as follow:

Function Name:	ComplexFitting
Function Type:	User-Defined
Independent Variables:	omega
Dependent Variables:	y1,y2
Parameter Names:	A,tau Origin C
Function Form:	complex cc $=A /\left(1+1 i^{*}\right.$ omega*tau); y1 $=\mathrm{cc.m}$ re; y2 $=\mathrm{cc} . \mathrm{m}$ _im;
Function:	

4. Note: To use the imaginary unit "i" for creating complex numbers, you need to write it as " 1 i " in Origin C, as in the above Function row. And complex is a class that implements a complex number data type. It contains both a Real and an Imaginary component.
5. For more details about creating user-defined fitting function, please refer to User Defined Fitting Function using Origin C.
6. Highlight all the columns and select Analysis: Fitting: Non-linear Curve Fit from menu to bring up the NLFit dialog. Select the function ComplexFitting from NewCategory on the Settings: Function

Selection page. Set the input datasets in the Data Selection page as follow:

7. Select Parameters Tab and set the initial values as follows:

Settings	Code	Parameters

Automatic Parameter Initialization is enabled.

Param	Meaning	Fixed	Value	Error
A	$?$	\square	1	\cdots
tau	$?$	\square	1	\cdots

8. Click Fit to generate the fitting report sheet. You can see the results from the report worksheet as below:

Parameters

		Value	Standard Error
Y1,Y2	A	2.36712	0.15413
	tau	15.84746	1.94844

Statistics

	Y1,Y2
Number of Points	24
Degrees of Freedom	22
Reduced Chi-Sqr	0.12339
Residual Sum of Squares	2.71451
Adj. R-Square	0.92387
Fit Status	Succeeded(100)

From the Statistics table, we can see that the fitting is fairly successful.

4.3.3.19.1 Summary

When performing curve fitting to experimental data, one may encounter the need to account for instrument response in the data. One way to do this is to first perform deconvolution on the data to remove the instrument response, and then perform curve fitting as a second step. However, deconvolution is not always reliable as the results can be very sensitive to any noise present in the data. A more reliable way is to perform convolution of the fitting function with the instrument response while performing the fitting. This tutorial will demonstrate how to perform convolution while fitting.

If your data is a convolution of Gauss and Exponential functions, you can simply use built-in fitting function GaussMod in Peak Functions category to directly fit your data.

Minimum Origin Version Required: Origin 2016 SRO.

4.3.3.19.2 What you will learn

This tutorial will show you how to:

- Access fitting information during iterations.
- Perform convolution while fitting.

4.3.3.19.3 Example and Steps

Background

Let's start this example by importing \Samples\Curve Fitting\FitConv.dat.

$\mathrm{A}(\mathrm{C})$	$\mathrm{B}(\mathrm{O}$	$\mathrm{C}(\mathrm{C})$
Sampling	Signal	Impulse
0	-0.19775	0
0.1	-0.32893	0
0.2	0.10055	0
0.3	0.09394	0
0.4	-0.1292	0
0.5	0.06346	$1.48672 \mathrm{E}-6$
0.6	0.19453	$1.3383 \mathrm{E}-4$

The source data includes sampling points, output signal, and the impulse response. This experiment assumes that the output signal was the convolution of an exponential decay function with a Gaussian response:

Now that we already have the output signal and response data, we can get the exponential decay function by fitting the signal with the below model:

$$
y=y_{0}+\int_{-\infty}^{+\infty} A e^{-t x} \otimes \text { Response }, d x
$$

Define the Function

Obviously, column 1 and column 2 are x and y respectively in the function. How about column 3, the impulse response? We will access this column within the fitting function, and compute the theoretical exponential curve from the sampling points. Then we can use fast Fourier transform to perform the convolution.

Press F9 to open the Fitting Function Organizer and define a function like:

```
Function Name: FitConv
Function Type: User-Defined
Independent Variables: x
Dependent Variables: y
Parameter Names: y0, A, t
Function Form: Origin C
Function:
```

```
#pragma warning(error : 15618)
```

\#pragma warning(error : 15618)
\#include <origin.h>
\#include <origin.h>
// Header files need to be included
// Header files need to be included
\#include <ONLSF.H>
\#include <ONLSF.H>
\#include <fft_utils.h>
\#include <fft_utils.h>
//
//
//
//
void _nlsfFitConv(
void _nlsfFitConv(
// Fit Parameter(s):
// Fit Parameter(s):
double y0, double A, double t,
double y0, double A, double t,
// Independent Variable(s):

```
// Independent Variable(s):
```

Click the button (icon) beside the Function box and write the function body in Code Builder:

Tutorials for Origin

```
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    NLFitContext *pCtxt = Project.GetNLFitContext();
    Worksheet wks;
    DataRange dr;
    int c1,c2;
    dr = pCtxt->GetSourceDataRange(); //Get the source data range
    dr.GetRange(wks, c1, c2); //Get the source data worksheet
    if ( pCtxt )
    {
    // Vector for the output signal in each iteration.
            static vector vSignal;
    // If parameters were updated, we will recalculate the convolution
result.
    BOOL bIsNewParamValues = pCtxt->IsNewParamValues();
    if ( bIsNewParamValues )
    {
    // Read sampling and response data from worksheet.
    Dataset dsSampling(wks, 0);
```

```
Dataset dsResponse(wks, 2);
int iSize = dsSampling.GetSize();
vector vResponse, vSample;
vResponse = dsResponse;
vSample = dsSampling;
vSignal.SetSize(iSize);
vResponse.SetSize(iSize);
vSample.SetSize(iSize);
// Compute the exponential decay curve
vSignal = A * exp( -t*vSample );
// Perform convolution
int iRet = fft_fft_convolution(iSize, vSignal, vResponse);
//Correct the convolution by multiplying the sampling
vSignal = (vSample[1]-vSample[0])*vSignal;
```

interval

```
            NLSFCURRINFO stCurrInfo;
            pCtxt->GetFitCurrInfo(&stCurrInfo);
                // Get the data index for the iteration
                int nCurrentIndex = stCurrInfo.nCurrDataIndex;
                // Get the evaluated y value
                    y = vSignal[nCurrentIndex] + y0;
                            // For compile the function, since we haven't use x here.
            x;
            }
                // End of editable part
}
```

Traditionally, for a particular x, the function will return the corresponding y value. However, when convolution is involved, we need to perform the operation on the entire curve, not only for a particular data point. So, from Origin 8 SR2, we introduced the NLFitContext class to achieve some key information within the fitter. In each iteration, we use NLFitContext to monitor the fitted parameters; once they are updated, we will compute the convolution using the fast Fourier transform by the fft fft convolution method. The results are saved in the vSignal vector. Then for each x, we can get the evaluated y from vSignal with the current data index in NLSFCURRINFO.

Fit the Curve

In the fitting function body, we read the response data directly from the active worksheet. So, you should perform the fit from the worksheet.

1. Highlight column B and press Ctrl $+\mathbf{Y}$ to bring up the Nonlinear Fitting dialog.
2. Choose X Data Type from Fitted Curves page as Same as Input Data.
3. Go back to the Function Selection page to select the FitConv function you just defined.
4. Go to the Parameter tab to initialize the parameters as $y 0=0, A=10, t=1$.
5. Click the Fit button to generate the results.

If you use a fitting function similar to this tutorial, please note when you run NLFit in Origin, in NLFit dialog, choose \mathbf{X} Data Type from Fitted Curves page as Same as Input Data.

4.3.3.20 Quoting Built-in Functions in Your New Function

4.3.3.20.1 Summary

This tutorial will show you how to reference a built-in function when creating a user-defined fitting function.
Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.20.2 What you will learn

This tutorial will show you how to:

- Define a piecewise fitting function
- Access built-in functions in you new function
- Auto initialize the parameters

4.3.3.20.3 Steps

Data

Start by importing the file \Samples\Curve Fitting \Asymmetric Gaussian.dat into a new workbook.
Highlight column B and create a graph. The peak in the data is slightly skewed to the right. How to fit such a curve? One idea is to divide the curve into two parts - We can consider this curve to be composed of two Gaussian function as below. These two Gaussian curves share the same baseline and peak center, but differ in peak width and amplitude.

Define the Function

Press F9 to open the Fitting Function Organizer and define the function as below:

Function Name:	AsymmetricGauss
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y

Parameter Names:	$y 0, x c, w 1, w 2, A 1, A 2$
Function Form:	Origin C
Function:	$y=x<x c ?$ nlf_Gauss($x, y 0, x c, w 1, A 1):$ nlf_Gauss($x, y 0, x c, w 2, A 2) ;$

Note:

For versions before Origin 8.1, the function body should be defined as:

```
y = x<xc? nlfxGauss(x, y0, xc, w1, A1) : nlfxGauss(x, y0, xc, w2, A2);
```

$x ; y 0 ; x C ; ~ w 1 ; ~ w 2 ; ~ A 1 ; ~ A 2 ; ~$

Listing the parameters at the end is used to avoid the "parameter not used inside the function body" error, although you already use these parameters. This is required to compile the function successfully.

When calling nlf_FuncName to reuse built-in functions, the syntax is:
nlf_FuncName(independent variable, parameter list ...)
where FuncName is the fitting function name. Besides, the old notation, nIfxFuncName also supported.
The Parameter List follows the parameter order in function definition file for the built-in function (the FDF file. You can open the FDF file in Notepad. The files are located in the
Origin EXE Folder\FitFunc
). Note that, the function name we use is the DLL interface name. The actual name in the [General Information] section of the FDF file. Look at the Function Source item and the value is fgroup.FuncName, and use the FuncName. In most cases, this function name is consistent with the function name visible in the NLFit dialog. For a few few functions such as Voigt, these names are different.

For parameter initialization of this skewed gaussian function, we can simply copy the initialization code of the built-in gauss function, and make a few minor modifications:

```
xc = peak_pos(x_y_curve, &w1, &y0, &A1);
w2 = w1;
A2 = A1;
```

The final function body should be as below:

Once compiled successfully, save the function and fit the curve. The results should be as below:

		Value	Standard Error
	y 0	1.80002	$4.79492 \mathrm{E}-5$
	xc	4.50001	$3.44845 \mathrm{E}-5$
Amplitude 1	W 1	1.80003	$4.49861 \mathrm{E}-5$
	W 2	2.99998	$4.87666 \mathrm{E}-5$
	A 1	30	0.00103
	A 2	49.99962	0.00111

4.3.3.21 Fit Function with Non-constant Background

4.3.3.21.1 Summary

Many of the Origin built-in functions are defined as:

$$
y=y_{0}+\ldots \ldots
$$

Where y0 can be treated as the "constant background". How about fitting a curve with a non-constant background? One option is to use the Peak Analyzer we provide. The Peak Analyzer includes multiple methods to subtract the baseline, including exponential or polynomial backgrounds. In this tutorial, we will show you how to fit such curves without using the Peak Analyzer.

Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.21.2 What you will learn

- Review Worksheet Query.
- Quote a built-in function by nlfxFuncName method.
- Auto Initialize the parameters.

4.3.3.21.3 Example and Steps

Prepare the Data

Let's start this tutorial by importing \Samples \Spectroscopy \backslash Peaks on Exponential Baseline.dat. From the worksheet sparkline, we can see that there are two peaks in the curve. To simplify the problem, we will fit just one peak in this example.

Now bring up the Worksheet Query dialog from Worksheet : Worksheet Query. And we will extract data from row 1 to row 240:

So the curve we will fit should look like this:

As illustrated below, we can consider the source curve is the combination of an exponential decay component (the background) with a Voigt peak:

So should we write down the whole equation to define the function? Like:

$$
y=y_{0}+A_{1} e^{-x / t 1}+A_{2} \frac{2 w_{L} \ln 2}{\pi^{\frac{3}{2}} w_{G}^{2}} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{\left(\sqrt{\ln 2} \frac{w_{L}}{w_{G}}\right)^{2}+\left(\sqrt{4 \ln 2} \frac{x-x_{c}}{w_{G}}-t\right)^{2}} d t
$$

Well, this is a complicated equation and it includes infinite integration. Writing such an equation directly is painful. Now that we already have these two built-in functions:

ExpDec1:

$$
y=y_{0}+A e^{-x / t}
$$

Voigt:

$$
y=y_{0}+A \frac{2 w_{L} \ln 2}{\pi^{\frac{3}{2}} w_{G}^{2}} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{\left(\sqrt{\ln 2} \frac{w_{L}}{w_{G}}\right)^{2}+\left(\sqrt{4 \ln 2} \frac{x-x_{c}}{w_{G}}-t\right)^{2}} d t
$$

we can simply use the nIfxFuncName method to quote these two built-in functions and create a new one. Press F9 to open the Fitting Function Organizer and define a function as below:

Function Name:	ExpVoigt
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y
Parameter Names:	$\mathrm{y} 0, \mathrm{~A} 1, \mathrm{t} 1, \mathrm{xc}, \mathrm{A} 2, \mathrm{wG}, \mathrm{wL}$

Function Form:	Origin C
Function:	$y=$ nlf_ExpDec1 $(x, y 0, A 1, t 1)+$ nlf_Voigt $(x, y 0, x c, A 2, w G, w L)-y 0 ;$

Note:

1. Some of the built-in function names do not consistent with the actual DLL function name. Just like this Voigt function, it's defined in Voigt5.FDF, and if you open the FDF file by Notepad, you can see a line under [GENERAL INFORMATION] section says:

Function Source=fgroup.Voigt5

The name after "fgroup" is the actual name we should put into nlf_FuncName.
2. Besides, for versions before Origin 8.1 SR2, the function body should use old nlfxFuncName notation and define as:

```
|
```

Listing the parameters at the end is done to avoid the "parameter not used inside the function body" error, although you already use these parameters. If not, you will not compile the function successfully.

Click the button on the right of the Parameter Settings and enter these parameter initial values:

y0:	0
A1:	5
$\mathbf{t 1 :}$	50
$\mathbf{x c}:$	100
A2:	50

wG:	10
wL:	10

So the final function definition part should look like:

Auto Parameter Initialization

In the above section, we set fixed parameter initial values. If you know the possible fitted results, you can set the initial values in this way. But how about when the data is changed? Origin provides an Origin C interface to "guess" the initial values. To use the parameter initialization code, make sure to check the Enable Auto

Initialization and Use OriginC checkboxes, and edit the code in Code Builder by clicking the ${ }^{\frac{1}{3}}$ icon. (P.S: If you know the initial values very well, or you don't like coding, please skip this section.)

Now that the curve is composed by two components, we can guess the parameter values by separating these two parts, the initialization code includes:

1. Use the get exponent function to fit the curve and get the parameter values for exponential component.
2. Remove the background -- exponential component -- from source data.
3. Approaching the peak by Gaussian peak using peak pos function and set the initial values for peak component

So, the initialization code in Code Builder should look like this:

```
void _nlsfParamExpVoigt(
// Fit Parameter(s):
double& y0, double& A1, double& t1, double& xc, double& A2, double& wG, double& wL,
// Independent Dataset(s):
vector& x_data,
// Dependent Dataset(s):
vector& y_data,
// Curve(s):
Curve x_y_curve,
// Auxilary error code:
int& nErr)
```

Tutorials for Origin
\{

```
// Beginning of editable part
int nSign;
// Evaluates the parameters' value, y0, ln(A) and R for y = y0+A*exp(R*x).
t1 = get_exponent(x_data, y_data, &y0, &A1, &nSign);
// Set the exponential component values for the fitting function.
t1 = -1/t1;
A1 = nSign*exp(A1);
// Remove the exponential component from the curve;
x_y_curve = x_y_curve - (y0 + A1 * exp(-x_data/t1));
// Fit to get peak values.
xc = peak_pos(x_y_curve, &wG, &y0, &A2);
wL = wG;
// End of editable part
```

\}

Note:

When you check the Enable Auto Initialization and enter the initialization code, this code will cover the initial values in Parameter Settings.

Fit the Curve

No matter what kind of parameter initialization method you used, highlight column B and press Ctrl $+\mathbf{Y}$ to bring up the NLFit dialog, select the ExpVoigt function and fit. The result should be:

		Value	Standard Error
Amplitude	y 0	0.04862	0.00724
	A 1	5.08842	0.02599
	t 1	50.67096	0.51939
	xc	102.81043	0.07241
	A 2	32.91106	0.92012
	WG	9.65255	0.67731
	WL	5.7529	0.81022

4.3.3.22 Fitting with Piecewise Functions

4.3.3.22.1 Summary

We will show you how to define piecewise fitting function in this tutorial.
Minimum Origin Version Required: Origin 8.0 SR6

4.3.3.22.2 What you will learn

This tutorial will show you how to:

- Define piecewise (conditional) fitting functions.

4.3.3.22.3 Example and Steps

We can start this tutorial by importing the sample \Samples \Curve Fitting \backslash Exponential Decay.dat data file. Highlight column D and plot a Scatter Graph. You can fit this curve using built-in functions under Growth/Sigmoidal category, however, in this tutorial, we will separate the curve into two parts by a piecewise function.

So the equation will be:

$$
y= \begin{cases}a+b x+e^{-\frac{x-x_{c}}{t 1}}, & \text { if } x<x_{c} \\ a+b x, & \text { if } x \geq x_{c}\end{cases}
$$

Define the Function

Press F9 to open the Fitting Function Organizer and define a function like:

Function Name:	piecewise
Function Type:	User-Defined
Independent Variables:	x
Dependent Variables:	y
Parameter Names:	$\mathrm{xc}, \mathrm{a}, \mathrm{b}, \mathrm{t} 1$
Function Form:	Origin C
Function:	

Click the button on the right of the Function edit box and define the fitting function in Code Builder using:

```
void _nlsfpiecewise(
// Fit Parameter(s):
double xc, double a, double b, double t1,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
// Beginning of editable part
// Divide the curve by if condition.
    if(x<xc) {
```

```
        y = a+b*x+exp(- (x-xc)/t1);
        } else {
            y = a+b*x;
    }
    // End of editable part
}
```


Fit the Curve

Press Ctrl + Y to bring up NLFit dialog with the graph window active. Select the piecewise function we defined and initialize the parameter values:

$\mathbf{x c}:$	1
$\mathbf{a :}$	1
$\mathbf{b}:$	-1
$\mathbf{t 1 :}$	0.1

Click Fit button to generate the results:

$\mathbf{x c}:$	0.24
a:	36.76585
b:	-24.62876
t1:	0.04961

Note that this function is sensitive to $x c$ and $t 1$, different initial values could generate different results.

4.3.3.23 Fit Curve Through Certain Points

4.3.3.23.1 Summary

This tutorial shows you three methods to force a fit curve to go thru a particular point. Choice of method depends on function expression and the data point you want the fit curve to go through.

4.3.3.23.2 What you will learn

- Learn different methods to force a curve to go through a point.
- Fix fitting parameters during nonlinear fitting.
- Use general linear constraints in nonlinear fitting.
- Fit with weights.

4.3.3.23.3 Example and Steps

Fixing Function Parameters

This method works only when the point you want to fit through is related to a function parameter. One typical example: force the fitted line to go through the origin point, (0,0), when fitting a straight line, $y=a+b * x$. In this particular case we know that if we let $a=0$, the line will go through (0,0).

1. Import the data "\Samples\Curve Fitting\Linear Fit.dat" into an Origin worksheet.
2. Highlight one of the Y column, column D for example, and select Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog.
3. Choose the Line function after selecting the Polynomial category.
4. Click the Fitted Curves page on Settings tab. Under the X Data Type branch, make sure the Range option is Use Input Data Range + Margin, and then enter 10 in the Range Margin(\%) edit box. This option will lengthen the fitted curve.
5. Click the Fit until converged button $\underset{\text { 学 }}{ }$. You can see from the Fit Curve tab that the curve does not go through the origin point.

6. Now go to the Parameters tab, check the Fixed checkbox for parameter \mathbf{A} and fix the value to $\mathbf{0}$. Click the Fit until converged to fit the curve again. Now you can see the curve go through zero.

Note: You can also use the Fix Intercept option in the Linear Fit dialog to force the linear fitted line to go through the origin point.

Use Linear Constraint

This method works when the fitting function is based on a LINEAR model, such as Line, Parabola, or Cubic, etc.

We will show you how to force the fitted curve to go through a particular point by using linear constraint:

1. Import the data "\Samples\Curve Fitting\Polynomial Fit.dat" into Origin worksheet.
2. Highlight column B and press Ctrl $+\mathbf{Y}$ to bring up the NLFit dialog.
3. Select Parabola ($y=A+B * x+C * x^{2}$) from the Polynomial category. From the Fit Curve tab, we can see the initial value already fits the data very well.
4. Suppose we want to force the curve through $(10,100)$. Substitute $(10,100)$ to the fitting function $\left(y=A+B * x+C * x^{2}\right)$. we then have $100=A+10 * B+100 * C$. We can use this equation as a general linear constraint condition. Select the Constraints page on Code tab. Check the Enable Linear Constraints checkbox, and enter the following expression into the edit box.

5. Click the Fit until converged button $\overbrace{i+1}$. We can see the fitted curve deviates from the data points, but it goes through the specified point.

Use weighting

If the parameters are some eigenvalues such as upper or lower asymptotes, and your raw data includes the points you want to fit through, you can fit the curve by assigning larger weights to these particular points. This is not an analytical solution, but you can assign larger weights to reduce the error:

1. Prepare data by running the following script:

```
newbook;
    string fname$ = system.path.program$;
    fname$ += "Samples\Curve Fitting\Replicate Response Data.dat";
    impasc fname$ options.PartImp.Partial:=1 options.PartImp.LastCol:=2;
    wks.addcol();
    col(a) = log(col(a)) + 5;
    col(c)[1] = 100;
    for(int ii = 2; ii < wks.maxrows; ii++)
    {
        col(c)[ii] = 1;
    }
    col(c)[wks.maxrows] = 100;
```

2. First, let's see how the fitted curve looks when there is no weighting. Highlight column B and bring up NLFit dialog from Analysis: Fitting: Nonlinear Curve Fit. Select the Logistic function from
 we can see the curve does not go through any points near the top.

3. Note that in the raw data worksheet, we have prepared column C and assigned large values for the first and last data points. If we use this column as weights, these two points will contribute more impact on the fitted curve and hence force the curve to go through these two points.

Now, activate the Data Selection page on the Settings tab. Expand the Input Data branch as below to
expose the weighting option. Choose the Direct Weighting method and assign column \mathbf{C} as the

From the preview result, we can see that the fitted curve goes through the first and last data points.

4.3.3.24 Distribution Fit with the Probability Density Function and Cumulative Distribution Function

4.3.3.24.1 Summary

To know the location or scale parameters of a sample distribution, one can perform distribution fit on the data. However, you can also fit a probability density function or cumulative distribution function on the binned data to get these values. This tutorial shows you how to estimate these parameters by curve fitting.

Minimum Origin Version Required: Origin 2016 SR2

4.3.3.24.2 What you will learn

- Generating Normally Distributed Data for Fitting
- Fitting with Probability Density Function (PDF)
- Fitting with Cumulative Distribution Function (CDF)

4.3.3.24.3 Example and Steps

Generating Normally Distributed Data for Fitting

1. Run the following script to create sample dataset

This script generates 1000 normally distributed points where mean ≈ 5 and $\sigma \approx 2$.
2. We can first perform simple descriptive statistics on this column to see the corresponding Moments output.

Highlight the data column and select Statistics: Descriptive Statistics: Statistics on Column to open the dialog. Select Quantities tab, then make sure the Mean and Standard Deviation checkboxes are selected. And the click OK to generate report.

Descriptive Statistics			
	\boldsymbol{y}		
	N total	Mean	Standard Deviation
B	1000	5.03869	2.06311

From the report worksheet, we can see the Mean and Standard Deviation are very close to the value we just set.

Fitting with Probability Density Function (PDF)

1. To fit the data with the PDF, we should calculate the binned data with Frequency Counts tool first. Highlight the source data column and select Statistics: Descriptive Statistics: Frequency Counts from menu. This dialog will count the number of data points on specified bins.

- Expand the Computation Control branch, and make sure Bin Size radio button is selected beside Step by. Set the Bin Size to 0.5 (you'll have to clear the Auto check box).
- Make sure the Bin Center, Count and Cumulative Count check boxes under Quantities to Compute branch are selected. Then click OK to count the data.

2. Highlight the Count column on the Frequency Counts result worksheet, select Plot>2D: Bar: Column to create a column graph. Now we have the histogram of the source data.
3. With the graph active, select menu Analysis: Fitting: Nonlinear Curve menu to open the NLFit dialog. Then select the Gauss function from the Statistics category. Leave other options as defaults and click the Fit button directly to output fitting report.

aram		-1				
		Value	Standard Error	t-Value	Prob $>\|t\|$	Dependency
Count	y0	3.0748	2.43769	1.26136	0.23581	0.72827
	xc	5.06021	0.03539	142.9789	$6.87713 \mathrm{E}-18$	$4.21494 \mathrm{E}-8$
	w	3.85483	0.09718	39.6656	$2.47941 \mathrm{E}-12$	0.64633
	A	957.18458	29.19989	32.78042	$1.64633 \mathrm{E}-11$	0.81885
	sigma	1.92741	0.04859			
	FWHM	4.53871	0.11442			
	Height	198.12122	3.59688			

```
Reduced Chi-sqr = 22.6059496582
    COD(R*2) = 0.99671946929079
    Iterations Performed = 6
    Total Iterations in Session =6
    Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.
    Standard Error was scaled with square root of reduced Chi-Sqr.
    sigma, FWHM, Height are derived parameter(s).
```

From the fitting report, we can see that the fitted $x c$ and sigma are close to 5 and 2 .

Fitting with Cumulative Distribution Function (CDF)

1. To fit the data with the CDF, we should start from the cumulative binned data. Select the FreqCounts1 sheet from the previous section. Highlight the Cumulative Count column. Select menu Plot>2D: Scatter: Scatter to plot the CDF points.
2. With the graph active, select menu Analysis: Fitting: Nonlinear Curve Fit to open the NLFit dialog. Select the NormalCDF function from the Statistics category. Leave other options as defaults and click the Fit button directly to output fitting report.

arameters	-						
		Value	Standard Error	t-Value	Prob>\|t		Dependency
Cumulative Count	y0	-0.16051	2.6327	-0.06097	0.95258	0.81992	
	A	997.35111	3.74698	266.17464	$1.37769 \mathrm{E}-20$	0.80301	
	xc	4.56388	0.01581	288.58432	$6.13952 \mathrm{E}-21$	0.50656	
	w	1.98179	0.02161	91.70031	$5.82139 \mathrm{E}-16$	0.47152	

[^1]From the fitting report, we can see that the fitted $x c$ and w are close to 5 and 2.

After you got binned data from the Frequency Counts tool, you can also fit the binned data with your user-defined probability density function or cumulative distribution function. View this page for defining and fitting with a user-defined function.

4.3.3.25 Fitting Integral Function with a Sharp Peak

4.3.3.25.1 Summary

In this tutorial, we will show you how to define an integral fitting function with a sharp peak in the integral function, and perform a fit of the data using this fitting function.

Because the integral function contains a sharp peak, the integral should be performed in three segments so that the sharp peak can be integrated in a narrow interval.

Minimum Origin Version Required: Origin 9.0 SRO

4.3.3.25.2 What you will learn

This tutorial will show you how to:

- Define an integral fitting function.
- Integrate a function with a sharp peak.
- Divide the integral interval into several segments.

4.3.3.25.3 Example and Steps

Import Data

1. Open a new workbook.
2. Copy data in Sample Data to the workbook.
3. Highlight column B, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function

The fitting integral function is described as follows:

$$
y=\log \left(\int_{0}^{1} \frac{1}{\sqrt{2 \pi} b} e^{-\frac{(t-a)^{2}}{2 b^{2}}-x t} d t\right)
$$

where a and b are parameters in the fitting function.
Initial parameters are: $a=1 e-4, b=1 e-4$. Note that the integral function contains a peak whose center is about a and width is 2 b . And the peak's width ($2 \mathrm{e}-4$) is very narrow compared with the integral interval $[0,1]$. To make sure it is integrated correctly at the neighborhood of the peak center, the integral interval $[0,1]$ is divided into three segments: $[0, a-5 * b],[a-5 * b, a+5 * b],[a+5 * b, 1]$. It is integrated in each segment, and then the three integrals are summed up.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next button.
3. In the Name and Type page, select User Defined from Select or create a Category drop-down list, type fintpeak in the Function Name field, and select Expression in Function Type group, check Include Integration During Fitting check box. And click Next button.
4. In the Integrand page, type myint in Integrand Name edit box, \mathbf{t} in Integration Variable edit box and $\mathbf{a}, \mathbf{b}, \mathbf{x}$ in Arguments edit box. Type the following script in Integrand Function box.
```
return 1/(sqrt(2*pi)*b)*exp(-(t-a)^2/(2*b^2)-x*t);
```

And click Next button.
5. In the Variables and Parameters page, type \mathbf{a}, \mathbf{b} in the Parameters field. Click Next button.
6. In the Expression Function page, click Parameters tab, and set Initial Value for parameters a and b to $1 \mathrm{e}-4$, click Integrand tab, and set Value for Lower Limit and Upper Limit to 0 and 1, Value for a, \mathbf{b}, \mathbf{x} to $\mathrm{a}, \mathrm{b}, \mathrm{x}$ respectively.
7. In the Expression Function page, click Insert button. In the Quick Check group, type 0 in $\mathbf{x}=$ edit box, click Evaluate button, and it shows $y=9.3 \mathrm{e}-21$. This implies that the peak is not integrated correctly because y should approach 1 for $x=0$. Divide the integral into three segments, and type following script in Function Body box.

```
integral(myint, 0, a-5*b, a ,b ,x)+integral(myint, a-5*b, a+5*b, a ,b ,x)+
```

Click Evaluate button again, and it shows $\mathrm{y}=0.84$, hence it is clear that the peak is integrated correctly this time.
8. In the Expression Function page, update the script in Function Body box as follows.

```
log(integral(myint, 0, a-5*b, a ,b ,x)+integral(myint, a-5*b, a+5*b, a ,b
,x)
+integral(myint, a+5*b, 1, a ,b ,x))
```

Click Finish button.

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and fintpeak function from the Function drop-down list. Note that initial parameters have been set during defining the fitting function.
2. Click Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows:

Parameter	Value	Standard Error
\mathbf{a}	$4.98302 \mathrm{E}-4$	$1.07593 \mathrm{E}-5$
b	$1.94275 \mathrm{E}-4$	$8.21815 \mathrm{E}-6$

The Adj. R-Square is 0.9979 . Thus the fitting result is very good.

Sample Data

x	y
0	-0.00267
60	-0.01561
240	-0.05268
500	-0.10462
1000	-0.22092
1500	-0.31004
2000	-0.40695
3000	-0.61328
4000	-0.75884
5000	-0.9127
6000	-0.98605
7000	-1.18957
9000	-1.43831

10000	-1.41393
12000	-1.61458
15000	-1.88098
20000	-2.07792

4.3.3.26 Fitting with a Piecewise Linear Function

4.3.3.26.1 Summary

In this tutorial we will show you how to define a piecewise fitting function consisting of two linear segments, perform a fit of the data using this fitting function, and calculate the intersection location for two linear segments from the fitting result.

Minimum Origin Version Required: Origin 8.6 SRO

4.3.3.26.2 What you will learn

This tutorial will show you how to:

- Define a piecewise (conditional) fitting function.
- Auto initialize parameters.
- Calculate the intersection location of the piecewise fit lines.

4.3.3.26.3 Example and Steps

Import Data

1. Open a new workbook.
2. Click the Import Single ASCII button $\stackrel{127}{\|}$ to bring up the Open dialog. Browse to \Samples \Curve Fitting folder and select the file Step01.dat.
3. Right click on the Sensor E \mathbf{x} column (column J), and select Set As: \mathbf{X} from the context menu. Highlight Sensor Ey column, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function

From the above graph, the curve consists of two segments of lines. It can be fitted with a piecewise linear function. The function can be expressed as:

$$
y= \begin{cases}\frac{y_{1}\left(x_{3}-x\right)+y_{3}\left(x-x_{1}\right)}{x_{3}-x_{1}}, & \text { if } x<x_{3} \\ \frac{y_{3}\left(x_{2}-x\right)+y_{2}\left(x-x_{3}\right)}{x_{2}-x_{3}}, & \text { if } x \geq x_{3}\end{cases}
$$

where $\mathbf{x 1}$ and $\mathbf{x 2}$ are \times values of the curve's endpoints and they are fixed during fitting, $\mathbf{x 3}$ is the \times value at the intersection of two segments, and $\mathbf{y 1}, \mathbf{y} \mathbf{2}, \mathbf{y} \mathbf{3}$ are y values at $x_{i}, i=1,2,3$ respectively.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next button.
3. In the Name and Type page, select User Defined from Select or create a Category drop-down list, type pwl2s in the Function Name field, and select Origin C in Function Type group. And click Next button.
4. In the Variables and Parameters page, type $\mathbf{x 1}, \mathbf{y} 1, \mathbf{x} \mathbf{2}, \mathbf{y} \mathbf{2}, \mathbf{x} \mathbf{3}, \mathbf{y} \mathbf{3}$ in the Parameters field. Click Next button.
5. In the Origin C Fitting Function page, click the button on the right of the Function Body edit box and define the fitting function in Code Builder as follows.
```
if( x < x3 )
    y = (y1* (x3-x) +y3* (x-x1))/(x3-x1);
else
    y = (y3* (x2-x)+y2* (x-x3))/(x2-x3);
```

Click Compile button to compile the function body. Then click Return to Dialog button. Click Next button.
6. In the Parameter Initialization Code page, click the button on the right of the Initialization Code edit box and initialize the fitting parameters in Code Builder as follows.
int n1, n2, n3;
x_data.GetMinMax (x1, x2, \&n1, \&n2);
x3 = x1 + (x2 - x1)/2;
y2 = y_data[n1];
vector vd;
vd = abs (x_data - x3);
double xta, xtb; ;

```
vd.GetMinMax( xta, xtb, &n3 );
y3 = y_data[n3];
```

Click Compile button to compile it. Then click Return to Dialog button. Click Finish button.

Define Derived Parameters for Slopes and Intercepts

During function defined process, you can also define some additional derived Parameters such as slopes and intercepts, which are computed from the function parameter values after the fitting process ends.

1. Click <<Back button twice to go back to Variables and Parameters page, type a1,b1,a2,b2 in the Derived Parameters field.
2. Click Next button four times to go to Derived Parameters page, fill in the Meaning column and type the equations in the Derived Parameters Equations area as follows, then click Finish button.

$$
\begin{aligned}
& a 1=\left(y 1^{*} x 3-y 3^{*} x 1\right) /(x 3-x 1) ; \\
& b 1=(-y 1+y 3) /(x 3-x 1) ; \\
& a 2=\left(y 3^{*} \times 2-y 2^{*} x 3\right) /(x 2-x 3) ; \\
& b 2=(-y 3+y 2) /(x 2-x 3) ;
\end{aligned}
$$

Derived Parameters

Hame	Meaning	Unit
a1	intercept1	
b1	slope1	
a2		
b2	intercept2	

Derived Parameters Equations

$$
\begin{aligned}
& a 1=\left[y 1 \times 33-y 3^{\times} \times 1\right] /(x 3-\times 1) \\
& b 1=(-y 1+y 3) /(x 3-x 1] \\
& a 2=(y 3 \times 2-y 2 \times 3) /(x 2 \times 3) \\
& b 2=(-y 3+y 2) /(x 2 \times 3)
\end{aligned}
$$

| Cancel | $\langle<$ Back Next \gg Finish |
| :--- | :--- | :--- | :--- |

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and pwl2s function from the Function drop-down list.
2. In the NLFit dialog, select Parameters tab, and fix parameters $\mathbf{x 1}, \mathbf{x 2}$ as shown in the dialog.

| Settings Code Parameters | Bounds |
| :--- | :--- | :--- |

\checkmark Auto Parameter Initialization
Double click cells to change operator. Right click cells for more options. Drag colt

NO.	Param	Meaning	Fixed	Value	Error	Dependency
1	x 1	$?$	\square	0.8	--	--
1	y 1	$?$	\square	0	--	--
1	x 2	$?$	$\boxed{ }$	60	--	--
1	y 2	$?$	\square	0.90662	--	--
1	x 3	$?$	\square	30.4	--	--
1	y 3	$?$	\square	0.73608	--	--

3. Click Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows.

Parameter	Value	Standard Error
x 1	0.8	0
y1	-0.0271	0.01063
x2	60	0
y2	0.95585	0.0083
x3	22.26316	0.58445
y3	0.66106	0.01197
a1	-0.05275	0.01123
b1	0.03206	8.7153E-4
a2	0.48715	0.01664
b2	0.00781	3.86455E-4

Thus the intersection point for the two segments is $(22.26316,0.66106)$.
Note that fitting with a piecewise linear function for more than two segments can be done in a similar way.

4.3.3.27 Fitting with an Ordinary Differential Equation

4.3.3.27.1 Summary

In this tutorial we will show you how to define an ordinary differential equation (ODE) in the Fitting function Builder dialog and perform a fit of the data using this fitting function.

Minimum Origin Version Required: Origin 9.1 SRO

4.3.3.27.2 What you will learn

This tutorial will show you how to:

- Define an ODE fitting function.
- Call NAG functions using Origin C code.
- Recalculate the ODE result only when parameters are updated.
- Interpolate on the ODE result.

4.3.3.27.3 Example and Steps

In this tutorial, we will use a first order ordinary differential equation as an example:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a y \\
& \left.y\right|_{x=x 0}=y 0
\end{aligned}
$$

where \mathbf{a} is a parameter in the ordinary differential equation and $\mathbf{y 0}$ is the initial value for the ODE. NAG functions d02pvc and d02pcc are called using the Runge-Kutta method to solve the ODE problem.

Import Data

1. Open a new workbook.
 Fitting folder and select the file Exponential Growth.dat.
2. Highlight B column, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function
The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. On the Fitting Function Builder dialog's Goal page, ensure the Create New Function radio button is selected. Click the Next button.
3. On the Name and Type page, From the Select or create a Category drop-down list select User Defined. For Function Name type FitODE. In the Function Type section select the Origin C radio button. Click Next.
4. On the Variables and Parameters page, in the Parameters field type a, y0. Click Next.
5. On the Origin C Fitting Function page, click the ${ }^{\text {半 }}$ button on the right of the Function Body edit box and define the function in Code Builder as follows. Include header files for NAG and fitting:

Define a static function to solve ODE by calling NAG functions. Call NAG function d02pvc to establish ODE model and d02pcc to solve the model:

```
struct user // parameter in the ODE
    {
    double a;
    };
//Define the differentiate equation: y'=a*y
static void NAG_CALL f(Integer neq, double t, double y[], double yp[],
Nag_User *comm)
    {
    neq; //Number of ordinary differential equations
    t; //Independent variable
```

```
    y; //Dependent variables
    yp; //First derivative
    struct user *sp = (struct user *)(comm->p);
    double a;
    a = sp->a;
    yp[0] = a*y[0];
}
//Use Runge-Kutta ODE23 to solve ODE
static bool nag_ode_fit( const double a, const double y0, const double
tstart,
    const double tend, const int nout, vector &vP )
{
    //nout: Number of points to output
    if( nout < 2 )
        return false;
```

```
vP.SetSize( nout );
vP[0] = y0;
int neq = 1; //Number of ordinary differential equations
Nag_RK_method method;
    double hstart, tgot, tinc;
    double tol, twant;
    int i, j;
    vector thres(neq), ygot(neq), ymax(neq), ypgot(neq), ystart(neq);
    Nag_ErrorAssess errass;
    Nag_ODE_RK opt;
    Nag_User comm;
    struct user s;
    s.a = a;
    comm.p = (Pointer) &s;
```

```
ystart[0] = y0;
    for (i=0; i<neq; i++)
        thres[i] = 1.0e-8;
    errass = Nag_ErrorAssess_off;
    hstart = 0;
    method = Nag_RK_2_3;
    tinc = (tend-tstart)/(nout-1);
    tol = 1.0e-3;
    NagError nagErr1;
    //Setup ODE
    dO2pvc(neq, tstart, ystart, tend, tol, thres, method,
        Nag RK range, errass, hstart, &opt, &nagErr1);
    if( nagErr1.code != NE_NOERROR )
        return false;
```

```
    for (j=1; j<nout; j++)
    {
        twant = tstart + j*tinc;
            NagError nagErr2;
            //Solve ODE
            d02pcc(neq, f, twant, &tgot, ygot, ypgot, ymax, &opt, &comm,
&nagErr2);
```

 if(nagErr2.code != NE_NOERROR)
 return false;
 \(\operatorname{vP}[j]=\operatorname{ygot}[0] ;\)
 \}
 //Free functions for Runge-Kutta suite
 d02ppc (\&opt);
 return true;
 \}
 Define the fitting function body _nlsfFitODE:

```
NLFitContext *pCtxt = Project.GetNLFitContext();
if ( pCtxt )
{
    static vector vX, vY;
    static int nSize;
    BOOL bIsNewParamValues = pCtxt->IsNewParamValues();
    // If parameters were updated, we will recalculate the ODE result.
    if ( bIsNewParamValues )
    {
        //Initial and final values of the independent variable
        double tstart = 0.02, tend = 2, tinc;
        int nout = 100; //Number of points
        tinc = (tend-tstart)/(nout-1);
        vX.Data( tstart, tend, tinc );
        nSize = vX.GetSize();
        if( !nag_ode_fit( a, y0, tstart, tend, nout, vY) )
```

```
            return;
    }
    //Interpolate y from fitting data's x on the ODE result.
    ocmath_interpolate( &x, &y, 1, vX, vY, nSize );
}
```

Click the Compile button to compile the function body. To return, click Return to Dialog button. The Evaluate button on the dialog has a black figure of a running person. Clicking on it will show $y=2.6627270424371$. This implies that the function works. Click Next.
6. In the Parameter Initialization Code page, select Use Custom Code radio butto, and type the code in the Initialization Code box:
\square
//Set the start y value in fitting data as the initial value of y0
y0 = y_data[0];
a = 1;
and click Finish.

Note: In order to monitor the the fitted parameters, NLFitContext class was introduced in defining fitting function to achieve some key information within the fitter

Fit the Curve

1. Highlight B column, then select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category dropdown list and FitODE function from the Function drop-down list.
2. Select Parameters tab, and fix y0 as shown in the dialog.

H0.	Param	Meaning	Fixed	Value	Error	Dependency	Lower Cor
1	a	$?$	\square	1	--	-	-
1	y 0	$?$	∇	0.77038	-	-	-

3. Click Fit button to fit the curve.

Fitting Results

The fitted curve should resemble the following image:

Fitted Parameters will be shown as in the following table:

Parameter	Value	Standard Error
\mathbf{a}	1.30272	0.00858
y0	0.77038	0

Note: Fitting with more complex ODE fitting functions can also be done in a similar way.
4.3.3.28 Fitting with Convolution of Two Functions

4.3.3.28.1 Summary

In this tutorial, we will show you how to define a convolution of two functions, and perform a fit of the data with non-evenly spaced X using this fitting function.

If your data is a convolution of Gauss and Exponential functions, you can simply use built-in fitting function GaussMod in Peak Functions category to directly fit your data.

Minimum Origin Version Required: Origin 9.0 SRO

4.3.3.28.2 What you will learn

This tutorial will show you how to:

- Sample a function.
- Calculate a convolution of two functions.
- Define constants in the fitting function.
- Pad zeroes before the convolution.
- Interpolate the convolution result for non-evenly spaced X.
- Use a parameter to balance the speed and the precision.
- Use Y Error Bar as weight.

4.3.3.28.3 Example and Steps

Import Data

1. Open a new workbook.
 Fitting folder and select the file ConvData.dat. Note that column A is not evenly spaced. We can use LabTalk diff function to verify it.
2. Right click on column C, and select Set As: Y Error from the short-cut menu. Highlight column B and C, and select Plot: Symbol: Scatter from the Origin menu. The graph should look like:

Define Fitting Function
The fitting function is a convolution of two functions. It can be described as follows:

$$
y=y_{0}+b_{1} x+\frac{b_{2} A_{2}}{w_{2} \sqrt{\pi / 2}} e^{-\frac{2\left(x-x_{c 2}\right)^{2}}{w_{2}^{2}}}+(f * g)(x)
$$

where

$$
f(x)=\frac{s}{\pi} \cdot \frac{\tau_{L} x_{0}^{2}\left(x_{L}^{2}-x_{0}^{2}\right)}{\left(x-x_{c 1}\right) \tau_{L}\left(\left(x-x_{c 1}\right)^{2}-x_{L}^{2}\right)^{2}+\left(\left(x-x_{c 1}\right)^{2}-x_{0}^{2}\right)^{2}}
$$

$$
g(x)=\frac{1}{w_{1} \sqrt{\pi / 2}} e^{-\frac{2 x^{2}}{w_{1}^{2}}}
$$

And $x_{0}, x_{L}, \tau_{L, \mathrm{~s},} y_{0}, b_{1}$ and b_{2} are fitting parameters. $w_{1}, x_{c 1}, w_{2}, x_{c 2}$ and A_{2} are constants in the fitting function.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next.
3. In the Name and Type page, select User Defined from Select or create a Category drop-down list, type convfunc in the Function Name field, and select Origin C in Function Type group. And click Next.
4. In the Variables and Parameters page, type $\mathbf{x 0} \mathbf{x L}, \mathbf{t L}, \mathbf{s}, \mathbf{y} \mathbf{0}, \mathbf{b 1}, \mathbf{b 2}$ in the Parameters field, $\mathbf{w 1 , x c 1}, \mathbf{w} 2, x c 2, A 2$ in the Constants field. Click Next.
5. In the Origin C Fitting Function page, set initial parameters as follows:
$\mathrm{x}=\mathrm{l}=3.1$
$\mathrm{xL}=6.3$
$\mathrm{tL}=0.4$
$\mathrm{~s}=0.14$
$\mathrm{y} 0=1.95 \mathrm{e}-3$
$\mathrm{~b} 1=2.28 \mathrm{e}-5$
$\mathrm{~b} 2=0.2$

Click Constants tab, set constants as follows:
$\mathrm{w} 1=1.98005$
$\mathrm{xc1}=-0.30372$
$\mathrm{w} 2=5.76967$
$\mathrm{xc} 2=3.57111$
$\mathrm{~A} 2=9.47765 \mathrm{e}-2$

Click the button on the right of the Function Body edit box and define the fitting function in Code Builder as follows:

Include header files,

\#include <ONLSF.H>
\#include <fft_utils.h>

Define the function body

```
    NLFitContext *pCtxt = Project.GetNLFitContext();
    if ( pCtxt )
    {
    // Vector for the output in each iteration.
    static vector vX, vY;
    static int nSize;
    BOOL bIsNewParamValues = pCtxt->IsNewParamValues();
    // If parameters were updated, we will recalculate the convolution
result.
    if ( bIsNewParamValues )
    {
        //Sampling Interval
        double dx = 0.05;
        vX.Data(-16.0, 16.0, dx);
        nSize = vX.GetSize();
        vector vF, vG, vTerm1, vTerm2, vDenominator, vBase, vAddBase;
```

```
double Numerator = tL * x0^2 * (xL^2 - x0^2);
vTerm1 = ( (vX - xc1) * tL * ( (vX - xc1)^2 - xL^2 ) )^2;
vTerm2 = ( (vX - xc1)^2 - x0^2 )^2;
vDenominator = vTerm1 + vTerm2;
//Function f(x)
vF = (s/pi) * Numerator / vDenominator;
//Function g(x)
vG = 1/(w1*sqrt(pi/2))*exp(-2*vX^2/w1^2);
//Pad zeroes at the end of f and g before convolution
vector vA(2*nSize-1), vB(2*nSize-1);
vA.SetSubVector( vF );
vB.SetSubVector( vG );
//Perform circular convolution
int iRet = fft_fft_convolution(2*nSize-1, vA, vB);
//Truncate the beginning and the end
```

```
        vY.SetSize(nSize);
        vA.GetSubVector( vY, floor(nSize/2), nSize + floor(nSize/2)-1 );
        //Baseline
        vBase = (b1*vX + y0);
        vAddBase = b2 * A2/(w2*sqrt(pi/2))*exp( -2*(vX-xc2)^2/w2^2 );
        //Fitted Y
        vY = dx*vY + vBase + vAddBase;
    }
    //Interpolate y from x for the fitting data on the convolution result.
    ocmath_interpolate( &x, &y, 1, vX, vY, nSize );
    }
```

Click Compile button to compile the function body. And click the Return to Dialog button.
Click Evaluate button, and it shows $\mathrm{y}=0.02165$ at $\mathrm{x}=1$. And this indicates the defined fitting function is correct. Click Next.
6. Click Next. In the Bounds and General Linear Constraints page, set the following bounds:

$0<x 0<7$
$0<x L<10$

```
\(0<\mathrm{tL}<1\)
\(0<=s<=5\)
\(0<b 2<=3\)
```


Click Finish.

Note: In order to monitor the the fitted parameters, NLFitContext class was introduced in defining fitting function to achieve some key information within the fitter

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from the Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and convfunc function from the Function drop-down list. Note that \mathbf{Y} Error Bar is shown in the active graph, so column C is used as Y weight, and Instrumental weighting method is chosen by default.
2. Click the Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows:

Parameter	Value	Standard Error

$\mathbf{x 0}$	3.1424	0.07318
$\mathbf{x L}$	6.1297	0.1193
$\mathbf{t L}$	0.42795	0.02972
\mathbf{s}	0.14796	0.00423
$\mathbf{y 0}$	$4.90363 \mathrm{E}-5$	$1.76145 \mathrm{E}-4$
$\mathbf{b 1}$	0.07913	0.616
b2		0.02855

Note that you can set a smaller value for $\mathbf{d x}$ in the fitting function body, the result may be more accurate, but at the same time it may take a longer time for fitting.

4.3.3.29 Parameter Initialization for Rational Functions

4.3.3.29.1 Summary

In this tutorial, we will show you how to calculate initial parameters for rational fitting functions using the multiple linear regression method, and perform a fit of the data using calculated initial parameters.

Minimum Origin Version Required: Origin 9.0 SRO

4.3.3.29.2 What you will learn

This tutorial will show you how to:

- Calculate initial parameters for rational fitting functions.
- Perform multiple linear regression using Origin C code.

4.3.3.29.3 Example and Steps

Algorithm

In this tutorial, we will use the following rational function as an example:

$$
y=\frac{a+b x+c x^{2}}{1+d x+e x^{2}}
$$

where \mathbf{x} is the independent variable, \mathbf{y} is the dependent variable, and $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ are fitting parameters. Multiplying both sides by the denominator on the right side yields:

$$
y+d x y+e x^{2} y=a+b x+c x^{2}
$$

and the equation can be expressed as:

$$
y=a+b x+c x^{2}-d x y-e x^{2} y
$$

Substituting fitting data $\left(x_{i}, y_{i}\right) \quad i=1 \ldots N$ into the equation gives:

$$
\left\{\begin{array}{l}
a+b x_{1}+c x_{1}^{2}-d x_{1} y_{1}-e x_{1}^{2} y_{1}=y_{1} \\
a+b x_{2}+c x_{2}^{2}-d x_{2} y_{2}-e x_{2}^{2} y_{2}=y_{2} \\
\vdots \\
a+b x_{N}+c x_{N}^{2}-d x_{N} y_{N}-e x_{N}^{2} y_{N}=y_{N}
\end{array}\right.
$$

Hence estimating initial parameters for a rational polynomial fitting function becomes a multiple linear regression problem with linear coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$.

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & -x_{1} y_{1} & -x_{1}^{2} y_{1} \\
1 & x_{2} & x_{2}^{2} & -x_{2} y_{2} & -x_{2}^{2} y_{2} \\
\vdots & & & & \\
1 & x_{N} & x_{N}^{2} & -x_{N} y_{N} & -x_{N}^{2} y_{N}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Origin provides a function ocmath multiple linear regression in Origin C for multiple linear regression, which can be called in initialization code.

Import Data

1. Open a new workbook.
2. Copy data in Sample Data to the workbook.
3. Highlight column B, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function and Initialize Parameters
The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click the Next button.
3. In the Name and Type page, select User Defined from the Select or create a Category drop-down list, type rationalfunc in the Function Name field, and select Expression in the Function Type group. Click the Next button.
4. In the Variables and Parameters page, type $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ in the Parameters field. Click the Next button.
5. In the Expression Function page, type the following script in the Function Body box.

Click the Evaluate button, and it shows $\mathrm{y}=1$ at $\mathrm{x}=1$, hence this implies the expression is correct. Click the Next button.
6. In the Parameter Initialization Code page, select Use Custom Code radio butto, click the Open Code Builder button ${ }^{\boxed{\pi} \text { 国 }}$ to the right of the Initialization Code box, and initialize fitting parameters as follows, in terms of the algorithm.

```
UINT nOSizeN = x_data.GetSize(); //Number of points
UINT nVSizeM = 5; //Number of parameters
matrix mX(nOSizeN, 5);
//Construct matrix for data points of independent variables
vector vCa(nOSizeN), vCb, vCc, vCd, vCe;
vCa = 1;
mX.SetColumn( vCa, 0 );
vCb = x_data;
mX.SetColumn( vCb, 1 );
vCc = x_data^2;
mX.SetColumn( vCc, 2 );
vCd = -x_data*y_data;
mX.SetColumn( vCd, 3 );
vCe = -x_data^2*y_data;
mX.SetColumn( vCe, 4 );
//Options for multiple linear regression
```

```
    LROptions stLROptions;
    stLROptions.UseReducedChiSq = 1;
    stLROptions.FixIntercept = 1; //Fix the intercept at 0.
    FitParameter stFitParameters[ 6 ]; // should be nVSizeM+1
    UINT nFitSize = nVSizeM + 1;
    int nRet = ocmath_multiple_linear_regression(mX, nOSizeN, nVSizeM,
y_data,
        NULL, 0, &stLROptions, stFitParameters, nFitSize );
    if( nRet == STATS_NO_ERROR )
    {
        a = stFitParameters[1].Value;
        b = stFitParameters[2].Value;
        c = stFitParameters[3].Value;
        d = stFitParameters[4].Value;
        e = stFitParameters[5].Value;
    }
```

Click the Compile button to compile the code. And click the Return to Dialog button. Click Finish to close the Fitting Function Builder dialog.

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and rationalfunc function from the Function drop-down list.
2. Click the Parameters tab. Initial parameters calculated from initialization code are listed in the dialog, and the fitting function curve for initial parameters is shown as follows. It seems that initial parameters from initialization code are very good.

3. Click the Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows:

Parameter	Value	Standard Error
a	3.17139	0.30284
b	-1.65602	1.76748
c	0.26407	1.81764
d	3.6884	0.26362
e	5.31812	0.55265

Sample Data

\mathbf{x}	\mathbf{y}
-1.5	1.13173
-1.39474	0.8262

Tutorials for Origin

-1.28947	1.06999
-1.18421	1.37155
-1.07895	0.79569
-0.97368	2.11346
-0.86842	2.32006
-0.76316	3.9205
-0.65789	5.81904
-0.55263	7.38037
-0.44737	8.31272
-0.34211	11.39718
-0.23684	8.39808
-0.13158	4.7305
-0.02632	4.11105
0.07895	2.39105
0.18421	1.65394
0.28947	0.42953
0.39474	0.83337
0.5	1.18758

Note: You can also use this method to initialize parameters for other rational polynomial fitting functions.

4.3.3.30 Surface Fitting with Multiple Peaks

Origin provides several built-in surface fitting functions which can be used to perform fitting on 3D data. The surface fitting function is similar to the nonlinear fitting function.

Surface Fitting is only available in OriginPro.
Minimum Origin Version Required: OriginPro 9.0 SR0

4.3.3.30.1 What you will learn

- How to do surface fitting on matrix data.
- How to fit the surface with multiple peaks.

4.3.3.30.2 Steps

This tutorial is associated with the Surface Fitting (Pro Only) folder in the Tutorial Data.opj (<Origin EXE Folder>\Samples\Tutorial Data.opj).

1. With the matrix sheet active, click Analysis on the main menu, and then click Nonlinear Matrix Fit... to open the NLFit dialog. (Alternatively, you can plot the matrix as a 3D surface or contour, and then select Nonlinear Surface Fit... to open the same dialog.)
2. Click Function Selection, select Gauss2D from the Function dropdown menu.

3. Click Advanced, set Number of Replicas to 3, and set Peak Direction as Positive.

4. Click Fit to perform a multiple peak fit and generate a report worksheet with fitting results.

4.3.3.31 Nonlinear Multiple Variables Fitting

4.3.3.31.1 Summary

Origin supports fitting functions with multiple dependent or independent variables. With the nonlinear fitting function, you can define multiple variables and separate them with semicolons. Since global fitting allows you to fit only one function at a time, this is a good way to defeat that limitation.

Origin ships with three built-in functions with multiple dependent and independent variables. These functions, available in the Multiple Variables category, are actually composites consisting of two ordinary functions. The GaussianLorentz function, for example, is a combination of the Gaussian and Lorentz functions, sharing y0 and $x c$:

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{A_{1}}{w_{1} \sqrt{\pi / 2}} e^{-2 \frac{\left(x-x_{c}\right)^{2}}{w_{1}^{2}}} \\
& y_{2}=y_{0}+\frac{2 A_{2}}{\pi} \frac{w_{2}}{4\left(x-x_{c}\right)^{2}+w_{2}^{2}}
\end{aligned}
$$

This tutorial will demonstrate how to fit such multi-variable functions.

4.3.3.31.2 What you will learn

- Use Nonlinear Multiple Variables Fitting to fit a curve with two different functions.
- Assign data to fitting variables.

4.3.3.31.3 Steps

1. Start with a new project or create a new workbook and import the data file \samples \curve fitting\Gaussian.dat.

2. Highlight Column (A) and Column(B). In the main menu, click Analysis, then point to Fitting, and then click Nonlinear Curve Fit.
3. In the NLFit dialog's left panel, select Function Selection. In the right panel, select Multiple Variables in the Category dropdown menu. In the Function dropdown menu, select GaussianLorentz.

As you can see on the Sample Curve tab, the equations in this fitting function share the same parameters, $y 0$ and $x c$.

4. In the NLFit dialog's left panel, select Data Selection. In the right panel, expand the Range node and assign data to the fitting variables. In this example, we have assigned column B to both $y 1$ and $y 2$, which means that both expressions will fit the same dataset.

5. Click Fit until converged to fit, then OK. In the results sheet, compare parameters A and w, with the Gaussian and Lorentz functions sharing the same offset and peak center.

4.3.3.32 Modifying Derived Parameters in Build-in Functions

4.3.3.32.1 Summary

Derived parameters are additional parameters computed using the fitted parameter values. You can define your own derived parameters for any built-in or user-defined fitting functions.
They are not involved in the fitting process and are computed only at the end of the fitting session.

4.3.3.32.2 What you will learn

- How to add derived parameters in a built-in fitting function by Fitting Function Organizer.
- How to remove derived parameters in a built-in fitting function by Fitting Function Organizer.

4.3.3.32.3 Adding Derived Parameters

1. The built-in Gauss function fits the peak area with the following equation:
$y=y_{0}+\frac{A}{w \sqrt{\pi / 2}} e^{-2 \frac{\left(x-x_{c}\right)^{2}}{w^{2}}}$

Suppose that you also want to know the peak height, which can be computed as follows:

$$
h=\frac{A}{w \sqrt{\pi / 2}}
$$

2. Select Tool: Fitting Function Organizer in the menu. In the left panel of the dialog, select Origin Basic Funcions: Gauss.
3. Go to Derived Parameters section and input the $h=A /\left(w^{*} \operatorname{sqrt}(P I / 2)\right)$

Note:

- Each derived parameter should be specified in a separate row.
- Derived parameters cannot be computed from other derived parameters.

4. Click on Save and the OK button.
5. Create a new workbook and import the data file \samples\curve fitting\Gaussian.dat, using Data: Import from File: Single ASCII.
6. Highlight column A and B, then select Analysis: Fitting: Nonlinear Curve Fit to open the Nonlinear Curve Fitting dialog, and select Gauss from the Function drop-down list.

7. Go to Code tab and click Derived parameters on the left panel. You can see the Derived Parameters listed on the right panel.

8. Click Fit button to generate report sheets. After fitting, Origin will compute the height and include the result in the Parameters table on the fitting results worksheet.

9. If you want to obtain the confidence interval for derived parameters, you can click on the green lock and select Change Parameters to go back to the NLFit dialog. Click Advanced option under Settings tab, expand Quantities node on the right panel and check the LCL and UCL checkboxes under Fit Parameters branch. Click Fit button to recalculate.

10. Then confidence interval 95% LCL and 95% UCL are calculated for both parameters and derived parameters as below:

Parameters		\checkmark							
		Value	Standard Error	t-Value	Prob>\|t		95\% LCL	95\% UCL	Dependency
Amplitude	y0	5.34198	0.58341	9.15655	$6.21151 \mathrm{E}-12$	4.16764	6.51631	0.54074	
	XC	24.9069	0.08666	287.40475	$1.60949 \mathrm{E}-76$	24.73246	25.08134	$1.07265 \mathrm{E}-11$	
	w	10.16969	0.20452	49.72362	$1.22804 \mathrm{E}-41$	9.75801	10.58138	0.52123	
	A	984.90204	21.45075	45.91457	$4.47306 \mathrm{E}-40$	941.72392	1028.08016	0.69383	
	sigma	5.08485	0.10226			4.879	5.29069		
	FWHM	11.9739	0.24081			11.48917	12.45862		
	Height	77.27256	1.21284			74.83123	79.71389		
	h	77.27256	1.21284			74.83123	79.71389		

Reduced Chi-sqr $=7.81572174469$
$\operatorname{COD}\left(R^{*} 2\right)=0.98966112534176$
Iterations Performed $=5$
Total Iterations in Session $=5$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
Standard Error was scaled with square root of reduced Chi-Sqr.
sigma, FWHM, Height, h are derived parameter(s).

4.3.3.32.4 Removing Derived Parameters

You can also remove derived parameters from result sheet. Continue with the tutorial above, follow the steps below:

1. Select Tool: Fitting Function Organizer in the menu to open the dialog again. In the left panel of the dialog, select Origin Basic Functions: Gauss.
2. Go to Derived Parameters section and remove expression $h=A /\left(w^{*} \operatorname{sqrt}(P I / 2)\right)$ from that panel.

3. You may need to wait one or two seconds before the Save button is enabled. Click Save button and then OK button to close dialog.
4. Click on the green lock on the top left corner in result sheet FitNL1 to change parameters and click Fit button again in the appeared NLFit (Gauss) dialog. We will see the derived parameter h has been removed from result table.

4.3.3.33 Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets

4.3.3.33.1 Summary

In some cases, you might have multiple datasets, and want to fit them using the user-defined function without parameter initial code. For increased efficiency, you can fit one and then apply the fit parameters for other datasets.

Minimum Origin Version Required: Origin 8.6

4.3.3.33.2 What you will learn

This tutorial will show you how to:

- Create a user-defined fitting function in Fitting Function Builder
- Perform an independent fit.
- Fit one of multiple datasets by doing 1-iteration, full-iteration.
- Apply the parameter values of one dataset to other datasets.

4.3.3.33.3 Steps

Create a User-Defined Function in Fitting Function Builder

The Fitting Function Builder can be used to create or edit a user-defined function. In the following section, we will define a fitting function MyExp with this tool.

1. Select Tools: Fitting Function Builder... from the main menu (or press F8) to open the Fitting

Function Builder. Select the Create a New Function radio box.

2. Click the Next button to go to the Name and Type page. Enter MyExp in the Function Name box and select the Origin \mathbf{C} radio box for the Function Type.

3. Click the Next button to go to the Variables and Parameters page. Enter the variables and parameters as shown in the following screenshot:

Fitting Function Builder - Variables and Parameters - MyExp

<

Constants
Peak Function

Cancel
4. Click the Next button to go to the Origin C Fitting Function page. Enter the function body $y=y 0+a * \exp \left(b^{*} x\right)$ in the Function Body box. To verify the correctness of the function, click the button beside the Function box to open the Origin Code Builder.

In the Code Builder, click the Compile button to compile the function. If passed, the message Compile Done will show, and then you can click the Return to Dialog button to return to the Fitting Function Builder.

5. Click the Finish button to create this fitting function MyExp.

Fit Multiple Dataset with User-Defined Fitting Function

1. Import \Samples\Curve Fitting\Exponential Decay.dat to Origin worksheet.
2. Highlight all columns and then select Analysis: Fitting: Non-linear Curve Fit from the menu to open the NLFit dialog.
3. Select the function just defined in Settings tab, Function Selection page:

4. Switch to Parameters tab, enter 80, 100, -5 on the Value column as initial values for $y 0, a, b$ of the first dataset. Then select 1 from the independent fit drop-down list and iterate the first dataset until converged.

5. The parameter values are calculated and the fitting result is hinted in the buttom left corner of this dialog.

6. To initialize the parameters of other datasets, apply the parameter values of the first dataset to other datasets by right-clicking the values, and then selecting Apply Whole Set of "Value" to All

Datasets from the fly-out menu.

7. Click Fit button to finish the fitting for all datasets.

4.3.3.34 Implicit Fitting with Three Variables

4.3.3.34.1 Summary

This tutorial will show you how to define an implicit fitting function with three independent variables, then perform implicit fitting with it on fitting data.

Minimum Origin Version Required: OriginPro 9.0 SR1

4.3.3.34.2 What you will learn

This tutorial will show you how to:

1. Define an implicit fitting function.
2. Perform implicit fitting with three independent variables.
3. Plot the fitted surface manually.

4.3.3.34.3 Examples and Steps

Import Data

1. Click the Import Single ASCII button $\stackrel{197}{\text { 声 }}$ to bring up the Open dialog. Browse to \Samples \Curve Fitting folder and select the file Ellipsoid.dat file.
2. Highlight column C, right click on selection and choose Set As: \mathbf{Z} from the context menu. Select Plot: 3D Symbol/Bar/Vector: 3D Scatter from Origin menu. Double click on the graph. In the Plot Details dialog, select Layer1 in the left panel, click Axis tab, set X, Y, Z Length as 100, 75, 50 respectively.

Click the Fit frame to layer button in the 3D Rotation toolbar. The graph should look like:

Define Fitting Function
The graph can be fitted with an ellipsoid. The function can be expressed as:

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}+\frac{\left(z-z_{0}\right)^{2}}{c^{2}}=1
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is the ellipsoid's center location, \mathbf{a}, \mathbf{b} and \mathbf{c} are semi-principal axes lengths, \mathbf{x}, \mathbf{y} and \mathbf{z} are three independent variables for fitting data.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from the Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next.
3. In the Name and Type page, select Implicit from Select or create a Category drop-down list, type Ellipsoid in the Function Name field, and select Implicit in Function Model group. And click Next.

Fitting Function Builder - Name and Type - Ellipsoid

-

<

File Name(.FDF)
Ellipsoid.FDF
Description \square
Function ModelExplicit

```
`) Implicit
```

Function Type

- ExpressionEquationsOrigin CLabTalk ScriptExternal DLL-based Function
\square Include Integration During Fitting

Note that implicit functions must be defined in Implicit category.
4. In the Variables and Parameters page, type $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in the Variable field and $\mathbf{x} \mathbf{0}, \mathbf{y} \mathbf{0}, \mathbf{z} \mathbf{0}, \mathbf{a}, \mathbf{b}, \mathbf{c}$ in the Parameter field. Click Next.
5. In the Expression Function page, type the following script in the Function Body edit box.

Note that for an implicit function $f_{1}\left(x_{i}, p_{i}\right)=f_{2}\left(x_{i}, p_{i}\right)$ where $x_{i}(\mathrm{i}=1,2 .$.$) are independent$ variables, $p_{i}(\mathrm{i}=1,2 \ldots)$ are parameters, it must be defined as $f=f_{1}\left(x_{i}, p_{i}\right)-f_{2}\left(x_{i}, p_{i}\right)$ in Origin where \mathbf{f} is the Estimate.
Set initial parameters as follows in the Parameters tab.
\square

```
x0=0 y0=0 z0=0 a=3 b=3 c=3
```

In the Quick Check group, click Evaluate button, it shows $\mathrm{f}=-0.667$ at $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$.
Fitting Function Builder - Expression Function - Ellipsoid
<

Parameters Constants

Param	Unit	Meaning	Fixed	Initial Value	Significant Digits	
$\times 0$?	\square	0	System	\checkmark
yo		?	\square	0	System	\checkmark
20		?	\square	0	System	\checkmark
a		?	\square	3	System	\checkmark
b		?	\square	3	System	\checkmark
c		?	\square	(3)	System	\checkmark

Function Body
$f=(x-x 0)^{\wedge} 2 / a^{\wedge} 2+(y-y 0)^{\wedge} 2 / b^{\wedge} 2+(z-20)^{\wedge} 2 / c^{\wedge} 2-1$

Click Next button, then click Next button again.
6. In the Bounds and General Linear Constraints page, set lower bounds for \mathbf{a}, \mathbf{b} and \mathbf{c},

Click Finish button to close the dialog.
Note that a message in Messages Log is shown that the implicit function is saved in the User Files folder.

Fit the Curve

1. For implicit fitting with more than 2 independent variables, Origin only supports input data from workbooks not graphs. So we have to make the workbook for fitting data active before fitting. Select

Analysis: Fitting: Nonlinear Implicit Curve Fit from Origin menu. In the NLFit dialog, select
Settings: Function Selection, in the page select Ellipsoid function from the Function drop-down list.
2. Select Data Selection page, expand Input Data: Range1, and choose column A as X, column B as Y and column C as Z. An error message is shown at the bottom of the Settings panel. Following the suggestion of the error message, go to the Fitted Curves page and change the Data Type of X to Fitted
Point for Input Data. The Data Type of \mathbf{y} and \mathbf{z} should automatically change as well.

Note that Origin doesn't support Fit Curve preview in the NLFit dialog or fitted surface in the fitted report for implicit fitting with more than two independent variables.
3. Since initial parameters have been set in Fitting Function Builder dialog, we can click Fit button to fit the curve.

Fitting Results

Switch to the fitted report. Parameters and Statistics tables are shown in the report.
Fitted Parameters are shown as follows.

Parameter	Value	Standard Error
x0	0.41073	0.01576

$\mathbf{y 0}$	0.32043	0.01352
z0	0.00147	0.00749
a	4.00325	0.02076
b	3.00097	0.01881
c	1.99972	0.00933

And Adj. R-Square is 0.99823 , which means the fitted result is very good. Note that this result is from Origin9.0 32Bit, while in Origin9.0 64Bit the result is slightly different, and the latter is better.

In the FitODRCurve1 worksheet, the first three columns show XYY coordinates for fitted points.
Note that in the implicit fitting, x, y and z are all independent variables, they will all be adjusted during iterations in the fitting.

Fitted Surface

Although Origin9.0SR1 doesn't show the fitted surface in the fitted report for implicit fitting with more than two independent variables, in this example you can plot the fitted ellipsoid using 3D Parametric Function Plot tool in Origin as follows.

1. Make the fitted report active, run following LabTalk script in the Script Window in order to get fitted parameter variables.
getnlr tr:=tt;
$x 0=t t . x 0 ;$
$y 0=t t . y 0 ;$
$z 0=t t . z 0 ;$
$a=t t . a ;$
$b=t t . b ;$
$c=t t . c ;$

Variables $\mathbf{x 0}, \mathbf{y 0}, \mathbf{z 0}, \mathbf{a}, \mathbf{b}$ and \mathbf{c} can be used in following steps.
2. Make Graph1 active. Select File: New: Function Plot: 3D Parametric Function Plot from Origin menu. In the Create 3D Parametric Function Plot dialog, set \mathbf{u} from 0 to pi, \mathbf{v} from 0 to 2*pi. And define \mathbf{X}, \mathbf{Y} and \mathbf{Z} as follows.
$X(u, v)=x 0+a * \sin (u) * \cos (v)$
$Y(u, v)=y 0+b * \sin (u) * \sin (v)$
$Z(u, v)=z 0+c^{*} \cos (u)$

And choose Add to Active Graph from the drop-down list at the bottom left of the dialog.

Click OK button to close the dialog. A 3D ellipsoid plot will be added to Graph1.
3. Double click on the graph. In the Plot Details dialog, you can customize the graph as follows.

Note that only OpenGL of 2.1 or higher version supports 3D transparency in Origin9.0. You can select
Preferences: 3D OpenGL Settings from Origin menu to see your OpenGL version, if your OpenGL version is lower than 2.1, you should ignore the setting for 3D transparency in Step 3.2.

1. Select Layer1 in the left panel, click Size/Speed tab, clear Worksheet data, maximum points per curve check box in the Speed Mode, Skip Points if needed group. Click Lighting tab, choose Directional in the Mode group, and select blue color as Ambient color in the Light Color group.
2. Select the second plot in the Layer1 branch, click Surface tab, set Transparency as 50%. Select Fill tab, and change Fill piece by piece color to white in the Front Surface group. Click OK button to close the dialog.

The graph for the fitted ellipsoid will look like:

4.3.3.35 Nonlinear fitting using Orthogonal Distance Regression

4.3.3.35.1 Summary

When performing non-linear curve fitting to experimental data, one may encounter the need to account for errors in both independent variables and dependent variables. In Origin, you can utilize the Orthogonal

Distance Regression (ODR) to fit your data with implicit or explicit functions. This tutorial will demonstrate how to perform non-linear curve fitting on data with both X errors and Y errors using ODR with a built in function.

Minimum Origin Version Required: Origin 9.1

4.3.3.35.2 What you will learn

This tutorial will show you how to use Orthogonal Distance Regression to fit nonlinear data with both X and Y errors.

4.3.3.35.3 Example and Steps

1. Open a new workbook.
 Fitting folder and select the file ODR fitting.dat.
2. Highlight column XError (long name) and right click to select Set As: X Error to set it as X error column.
3. Highlight column YError (long name) and right click to select Set As: Y Error to set it as Y error column.
4. Highlight all four columns and go to Plot:Symbol:Scatter to make a scatter plot with both X and Y error bars.
5. Go to Analysis:Fitting:Nonlinear Curve Fit:Open dialog... to open NLFit dialog.
6. On Function Selection page, select Category as Polynomial, Function as Poly4 and Iteration Algorithm as Orthogonal Distance Regression (Pro).

7. Since X error and Y error columns have been specified in step 3, 4 so that when Orthogonal Distance Regression is selected as iteration algorithm these two columns will be automatically assigned as corresponding weight for X and Y data respectively. You can go to Data Selection page and expand \mathbf{x}
and \mathbf{y} nodes under Input Data to see.

8. Click Fit button and choose No radio box in the appeared Reminder Message dialog, and click OK to close it, the fitting results are as shown below:

You can refer to this page for the details of the algorithm of ODR as well as Levenberg Marquardt (L-M) algorithm. Another example of using Orthogonal Distance Regression for Implicit Functions can be found here.

4.4 Signal Processing

4.4.1 Signal Processing

- FFT and IFFT
- FFT Filter
- Smoothing
- STFT (Short-Time Fourier Transform)
- IIR Filter
- 2D FFT and Filter
- Convolution
- Wavelet
- Coherence and Correlation
- Decimation and Signal Envelope
- Rise Time
- Sound Processing

4.4.2 FFT and IFFT

4.4.2.1 Summary

FFT (Fast Fourier Transform) is able to convert a signal from the time domain to the frequency domain. IFFT (Inverse FFT) converts a signal from the frequency domain to the time domain. The FFT of a non-periodic signal will cause the resulting frequency spectrum to suffer from leakage. Origin provides several windows for performing FFT to suppress leakage.

4.4.2.2 What You Will Learn

In this tutorial, you will learn how to:

- Perform FFT on signal with different windows.
- Recover the original signal with the spectrum.
- Perform FFT on a graph by using the FFT gadget.

4.4.2.3 FFT Gadget

Origin's FFT gadget places a rectangle object to a signal plot, allowing you to perform FFT on the data contained in the rectangle. This is convenient for quickly observing the FFT effect on the data.

The following tutorial shows how to use the FFT gadget on the signal plot.

1. Start with a new workbook, and import the data <Origin Installation Directly> \Samples\Signal Processing \Chirp Signal.dat.

\#\# ChirpSignal - Chirp Signal. dat			-		X
	$A(x)$	B(C)	슨		
Long Name	Time	Amplitude			
Units	(sec)	(a.u.)			
Comments					
Sparklines					
1	0.01	$6.1359 \mathrm{E}-5$			
2	0.02	$2.4544 \mathrm{E}-4$			
3	0.03	$5.5223 \mathrm{E}-4$			
4	0.04	9.8175E-4			
5	0.05	0.00153			
6	0.06	0.00221			
7	0.07	0.00301			
8	0.08	0.00393			v
4 \checkmark	nnal		< IIII	$>$!

2. Highlight column B and make a line plot by clicking menu item Plot>2D: Line: Line.

3. With the plot active, select menu Gadgets: FFT... to start the FFT gadget.

4. Using the default settings, click OK to add the rectanglar Region of Interest (ROI) to the graph.

5. Note that the FFTPREVIEW graph is created showing the FFT results for the selected data.

6. You can move the rectangle left and right to cover different portions of the data. You can also change the width of the rectangle to cover different numbers of data points. Repositioning or resizing the ROI changes the FFTPREVIEW graph.

4.4.2.4 FFT

In this example, we are going to change the window for suppressing the spectrum leakage.

1. Use the same data as the FFT Gadget subsection above.
2. Highlight column B, then select menu Analysis: Signal Processing: FFT: FFT.... This opens the FFT: fft1 dialog box.
3. In the dialog, check the Auto Preview box at the bottom to preview the result in the right panel. Change the Window to Blackman, but keep the remaining default settings. In the right panel, we can see that there is a sharp narrow peak spectrum for Amplitude. The Blackman window has suppressed the spectrum leakage very well.

4．Click OK to generate the resulting data and graphs．

\＃ChirpSignal－Chirp Signal．dat＊				（0） 0^{5}
	A（X）保	B［Y）甶	$\mathrm{C}(\mathrm{Y})$ 暒	＊
Long Name	Frequency	Complex	Real	1
Units	1／（sec）	（a．u．）	（a．u．）	
Comments	FFT of［ChirpSignalf Chirp Signall B^{\prime} Amplitude＂	FFT of［ChirpSignal］Chirp Signal＂ $1 B^{\prime}$ Amplitude＊	FFT of［ChirpSignal］Chirp Signal＂IE＇Amplitude＂	FFT of［C Signal
$F(x)=$				
2	0.04883	$1.35312+0.05927 i$	1.35312	
3	0.09766	$1.80944-0.13873 i$	1.80944	
4	0.14648	2．36092－0．85292i	2.36092	
5	0.19531	2．59074－2．272071	2.59074	
6	0.24414	1．81698－4．29756i	1.81698	
7	0.29297	$-0.72738-6.18918 i$	－0．72738	
8	0.3418	$-5.26597-6.2992 i$	－5．26597	
9	0.39063	$-10.37639-2.470171$	－10．37639	
10	0.43945	$-12.17611+6.17883 i$	－12．17611	
11	0.48828	$-5.63361+16.26424 i$	-5.63361	

4．4．2．5 IFFT

This example will show how to recover the signal from the results of doing an FFT．To do so，both settings for FFT and IFFT need to be the same，and the Spectrum Type needs to be Two－sided and Window needs to be set to Rectangle．

1．Start with your FFT results，above，and click on any of the green locks．Select Change
Parameters．．．from the menu to open the dialog box again．

2. As mentioned above, the Window needs to be set to Rectangle, and Spectrum Type should be Two-sided, so edit these two settings.

3. Click $\mathbf{O K}$ and the results will be modified.
4. Go to the FFTResultData 1 worksheet. We can see one column is Complex, one column is Real, and one is Imaginary. Here, we can use the Complex column (the Real column and Imaginary column also can be used). Highlight it and select the menu item Analysis: Signal Processing: FFT: IFFT... to open the FFT: ifft1 dialog. (Note, if using Real and Imaginary columns, the first line for Input should be the Real column, and the Imaginary box should point to the Imaginary column.) Check the Auto Preview check box at the bottom to preview the result in the right panel.

5. Keep the default settings and click the OK button.
6. Now, we can make a comparison between the IFFT result (in IFFTResultData1 worksheet) and the original signal data. As the image below shows, they are almost the same.

\# ChirpSignal - Chirp Signal.dat $\quad[\mathrm{B}$					\# ChirpSignal - Chirp Signal. dat			-	[\times
	Time((4) 会\|	Real(Y) 9	Imag C (${ }^{\text {a }}$	A		A(C)	BM		A
Long Name	Time(s)	Real	Imaginary		Long Name	Time	Amplitude		
Units	1/(sec)	(a.u.)	(a.u.)		Units	(sec)	(a.u.)		
Comments	IFFT of [Chimsignal]FFTResultData1 IF FT"Complex'	IFFT of [ChirpSignal\|FFTResultData1 IF FT'Complex'	IFFT of [Chirpsignal]FFTResultData1IF FT"Complex'	IChirp	Comments		Al\| ${ }^{\text {TM- }}$		
1	0	$6.1359 \mathrm{E}-5$	Imaginary is 0		1	0.01	6.1359E-5		
2	0.01	$2.4544 \mathrm{E}-4$	almost zers. $245 \mathrm{E}-17$		2	0.02	$2.4544 \mathrm{E}-4$		
3	0.02	$5.5223 \mathrm{E}-4$	-3.98986E-17		3	0.03	$5.5223 \mathrm{E}-4$		
4	0.03	$9.8175 \mathrm{E}-4$	-2.42861E-17		4	0.04	9.8175E-4		
5	0.04	0.00153	$7.63278 \mathrm{E}-17$		5	0.05	0.00153		
6	0.05	0.00221	$8.67362 \mathrm{E}-17$		6	0.06	0.00221		
7	0.06	0.00301	-6.93889E-18		7	0.07 0.08	0.00301 0.00393		
8	0.07	0.00393	-2.77556E-17		9	0.09	0.00497		
9	0.08	0.00497	-3.46945E-18		10	0.1	0.00614		
10	0.09	0.00614	$7.28584 \mathrm{E}-17$		11	0.11	0.00742		
11	0.1	0.00742	$3.46945 \mathrm{E}-18$		12	0.12	0.00884		
12	0.11	0.00884	6.28837E-18		13	0.13	0.01037		
13	0.12	0.01037	$1.64799 \mathrm{E}-16$		14	0.14	0.01203		
14	IFFT result 0.13	0.01203	$2.08167 \mathrm{E}-17$		$\begin{array}{r}15 \\ \hline 18 \\ \hline\end{array}$	0.15	0.01381		
15	IFFT result 0.14	0.0138	-7.63278E-17	$\stackrel{v}{ }$	$\text { riginal } \frac{16}{17}$	nal $\frac{0.16}{0.17}$	0.01571		$\stackrel{\sim}{V}$
1	Resulibata1 AFFTResultGraph1		$1 \mid \leqslant$	$2\|\mid$		mnal / FFT	Resultoa\|	LIm	$\geqslant 1 \square$

4.4.3 FFT Filter

4.4.3.1 Summary

Origin offers an FFT filter, which performs filtering by using Fourier transforms to analyze the frequency components in the input dataset.

There are six types of filters available in the FFT filter function: low-pass, high-pass, band-pass, band-block, threshold and low-pass parabolic. Low-pass filters block all frequency components above the cutoff frequency, allowing only the low frequency components to pass. High-pass filters work in the opposite way: they block frequency components that are below the cutoff frequency.

This tutorial will show you how to perform the low-pass and band-pass filtering using Origin's FFT filter.

4.4.3.2 What you will learn

This tutorial will show you how to:

- Perform low pass filtering.
- Perform band pass filtering.

4.4.3.3 Low-pass Filter

1. Start with an empty workbook.
2. Select Data: Import from File: Sound(WAV) menu item and import the file Origin 8

Message.wav located at <Origin EXE Folder> \Samples\Signal Processing \backslash. Accept the default import settings.

3. Highlight column $A(Y)$ and click the Line
 button on the 2D Graph toolbar to create a line plot.
4. This signal is a sound wave and it is already known that the high frequency components can be regarded as noise, and should be blocked. So we will use the Low Pass method in the FFT Filter tool to approximate the low frequency component for further analysis.
5. Make sure the line plot is active, then select Analysis:Signal Processing:FFT Filters to open the fft_filters dialog box.
6. Make sure the Filter Type is set to Low Pass.
7. Check the Auto Preview box to turn on the Preview panel:

The top two images show the signal in the time domain, while the bottom image shows the signal in the frequency domain after Fast Fourier Transform. The X position of the red vertical dot line indicates the cutoff frequency. By moving the vertical line horizontally, you can preview the comparison between the original signal and the filtered signal in real time, in the top part of this panel.
8. Move the vertical line to the X position of the peak amplitude (as in the image below). Note that human error may be introduced during this step, but it is acceptable since we only want to roughly filter the signal.

9. Click OK to apply the FFT filter to the original signal.
10. The signal after filtering will be added to the data plot of original signal. Select Graph:Speed Mode and turn off speed mode in this graph. The resulting graph should look like this:

11. In the resulting graph, we can see that the high frequency components are blocked by the Low Pass FFT filter.

4.4.3.4 Band-pass Filter

1. Start with a new workbook.
 Folder>\Samples\Signal Processing.
2. Highlight column B and click the Line \square button on the 2D Graphs toolbar to generate a line plot.

3. With the graph active, select Analysis:Signal Processing:FFT Filters. This opens the fft_filters dialog box.
4. Check the Auto Preview box to enable the Preview panel.
5. From the plot of frequency domain (the image below), we can see that this signal has components at several different frequencies> Now we are going to get the component at about 300 Hz . So we will use the Band Pass method.

6. Set the Filter Type to be Band Pass.

When Band Pass is chosen, there will be two vertical red lines in the preview panel, marking the Lower Cutoff Frequency and Upper Cutoff Frequency. You can similarly move these two lines and get the real time preview of filtering results in the top parts of this panel.
8. Enter the values of the lower and upper cutoff frequencies according to the image below:

As long as only the desired amplitude peak stays within the cutoff frequency range, the error in filtering could be considered as acceptable even though the values of upper and lower cutoff frequencies may slightly differ for different cases.
9. Click $\mathbf{O K}$ to execute filtering.
10. We obtain the components at a frequency of around 300 Hz after filtering.

4.4.4 Smoothing

4.4.4.1 Summary

Smoothing is a common technique for removing noise from signals. Origin provides multiple smoothing methods, including Adjacent Averaging, Savitzky-Golay, Percentile Filter, and FFT Filter. Additionally, there is a wavelet-based tool available.

For matrix data, Origin's smoothing is performed in two ways. If the number of columns or rows is less than 32 , it will expand the matrix first, then shrink it back to the original size. If greater than 31, the matrix if first shrank, then expanded.

4.4.4.2 What You Will Learn

This tutorial will show you how to:

- Smooth signals by several methods.
- Smooth signals using wavelets.
- Smooth a 3D surface.

4.4.4.3 Smoothing by Several Methods

1. Start with an empty workbook.
2. Select menu item Data: Import from File: Single ASCII... to import the data Signal with High Frequency Noise.dat under the folder <Origin Installation Directory> \Samples \backslash Signal Processing \backslash.

\# SignalwithHig - Signal with High ... $\square \times \times$				
	$\mathrm{A}(\times)$	B (1)		\wedge
Long Name				
Units				
Comments				
Sparklines				
1	1	-1.3483		
2	1.01905	-0.27967		
3	1.0381	0.85976		
4	1.05716	1.9451		
5	1.07621	2.80651		
6	1.09526	3.15696		
7	1.11431	2.99905		
8	1.13337	2.63606		
9	1.15242	2.21618		
10	1.17147	1.81566		$\stackrel{\rightharpoonup}{ }$

3. Highlight column B in the worksheet. Then, the select menu item Analysis: Signal Processing:

Smooth... (if the tool has been used before, select Open Dialog) to open the Smooth dialog box.

4.4.4.3.1 Adjacent-Averaging

The Adjacent-Averaging method performs a broad smoothing of data.

1. Choose Adjacent-Averaging for Method. Set the Points of Window to $\mathbf{1 0 0}$ and Boundary Condition to Periodic. To preview the result in the right panel, check the Auto Preview check box.

2. Click $\mathbf{O K}$ to generate the result.

4.4.4.3.2 Savitzky-Golay

The Savitzky-Golay method is good for preserving the shapes of signal peaks.

1. Select column B again. On the Analysis menu, click Signal Processing: Smooth:Open Dialog....
2. In the smooth dialog box, set Method to Savizky-Golay. Set Points of Window to 100, Boundary Condition to Periodic and Polynomial Order to 3.

3. Click OK.

4.4.4.3.3 Percentile Filter

1. Select column B again. On the Analysis menu, click Signal Processing: Smooth:Open Dialog.....
2. For Method, choose Percentile Filter. Set Points of Window to 100, Boundary Condition to Periodic, and for Percentile accept the default value of $\mathbf{5 0}$.

3. Click OK button.

4.4.4.3.4FFT Filter

1. Select column B again. On the Analysis menu, click Signal Processing: Smooth:Open Dialog.....
2. Set Method to FFT Filter. Set Points of Window to $\mathbf{1 0 0}$.

3. Click $\mathbf{O K}$ to close the dialog box.
4. Note that in the worksheet, there are now four added columns containing the results of your four smoothing operations. Highlight those four columns (C, D, E, F), then from the menu select Plot>2D: Line: Line to make a line graph with these four datasets.

5. Comparing the results of the four methods, you can see that the Savitzky-Golay method did the best job of preserving peaks in the data, while the FFT Filter method did the poorest job of preserving peaks.

4.4.4.4 Smoothing by Wavelet

1. Start a new workbook.
2. Select menu item Data: Import from File: Single ASCII... to import the data Signal with High Frequency Noise.dat under the folder <Origin Installation Directory> \langle Samples \backslash Signal Processing \backslash.

3. Highlight column B, and from the menu select Analysis: Signal Processing: Wavelet: Smooth... to open the Smooth: wtsmooth dialog box.
4. In the dialog, set Wavelet Type to DB6, and Cutoff (\%) to 98. Check Auto Preview to preview the result in the right panel.

5. Click $\mathbf{O K}$ to close the dialog box and generate your result.
6. To see the difference between the original signal and the smoothed signal, highlight all columns in the worksheet and from the menu select Plot>2D: Line: Line.

4.4.4.5 Smoothing Matrix

1. Start with a new matrix book.
2. Select menu Data: Import from File: Image to Matrix... to import the image scale.jpg under the folder <Origin Installation Directory> \Samples \Image Processing and Analysis \backslash (if the impImage dialog box opens, simply accept the defaults and click OK).
3. Origin is not able to apply to perform smoothing on an image so we must convert the image to matrix data first. From the menu select Image: Conversion: Convert to Data.... Accept the dialog box default settings and Click OK.
4. With the converted matrix activated, select menu View: Image Mode to view this matrix as image.

5. To perform smoothing, select Analysis: Signal Processing: Smooth.... This opens the Smooth: msmooth dialog box.

6. Accept the default settings and click OK. To view the result, select View: Image Mode from the menu.

4.4.5 STFT (Short-Time Fourier Transform)

4.4.5.1 Summary

Short-Time Fourier Transform (STFT) is a time-frequency analysis technique suited to non-stationary signals. Short-Time Fourier Transforms can provide information about changes in frequency over time.

4.4.5.2 What You Will Learn

In this tutorial, you will learn how to:

1. Perform Short-Time Fourier Transform (STFT).
2. Change dialog settings to improve the time and frequency resolution.
3. Change window type to improve resolution.

4.4.5.3 Steps

1. Start with a new workbook, and import the data <Origin Installation

Directory>\Samples\Signal Processing\Chirp Signal.dat.

2. Highlight column B, and select menu Analysis: Signal Processing: STFT... to open the STFT: stft dialog box.
3. In the dialog box, check Auto Preview at the bottom of the dialog so that you can preview your results in the right panel. Uncheck the Auto check box next to Window length and Overlap, then change Window length to 8, and Overlap to 7. Set Window Type to Hanning and Option to Amplitude Result.

4. Click OK to perform STFT with the chosen settings and obtain your results, including a matrix book with data and a color fill contour plot.

5. We can see from the above image that the time resolution is good, but the frequency is not so apparent. Click on the lock on the graph, then choose Change Parameters...from the menu. This reopens the STFT dialog box. Change the Window Type to Rectangle and click OK.

Graph1
 - 回 83

圆

6. Now, we are better able to see resolution of both time and frequency. Please note that it is not possible to optimize for both time and frequency; the best we can do is to find the balance between them.
7. To view the result in 3D, activate the resulting matrix, then select menu Plot>3D:Surface:3D Color Map Surface to create a 3D surface of the result.
8. Double click on the 3D graph to open the Plot Details dialog, and go to the Colormap/Contours tab in the right panel. Click the Line... heading to open the Contour Lines dialog and Hide All lines.

9. Go to the Mesh tab and clear the Enable check box.

10. Click $\mathbf{O K}$ to finish the settings. To get a better view, rotate the graph.

4.4.6 IIR Filter

4.4.6.1 Summary

In OriginPro, it is possible to design, analyze, and implement IIR (Infinite Impulse Response) digital filters. The IIR filter supports four methods, including Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic.

This provides users more choices in signal processing.

Minimum Origin Version Required: 9.0 SR0

4.4.6.2 What You Will Learn

This tutorial will show you:

- How to design and apply an IIR filter
- A comparison between IIR filter and FFT filter

4.4.6.3 Steps

4.4.6.3.1 Design and Apply IIR Filter

1. Start with a new worksheet and import the EMG Recording.dat file from \Samples \Signal Processing \backslash.
2. Highlight column B and Select Analysis:Signal Processing:IIR Filter from the top menu to open the dialog.
3. Change the Response type as High Pass, keep the Method as Butterworth, uncheck the Minimum for Filter Order and set it as 4. In the Frequency Specification branch, set the Cutoff Frequency(Fc) as 20, then check the Forward-Backward Filtering. The dialog settings should look like the following figure, and the IIR filter is designed.

4. Click OK to apply the created IIR filter to the input dataset.
5. A new column will be added to the original data as a new column of filtered data and a new SOS Matrix worksheet.

4.4.6.3.2 Compare Results with FFT Filter

1. Highlight column B in the original worksheet, perform FFT filter by Analysis:Signal Processing:FFT Filters.
2. In the opened dialog, choose High Pass for Filter Type and set $\mathbf{2 0}$ as Cutoff Frequency.

3. Click OK button. Column C in the EMGRecording worksheet is the filtered result of the previously designed IIR filter, highlight column B and column C to generate a line plot with the \square button (Graph 1).
4. Use the scale in button $\stackrel{\text { ④ }}{\text { +1 }}$ to zoom the area between 12.5 s and 13.3 s .
5. Column E in the EMGRecording worksheet is the filtered result of the FFT filter, highlight column B and column E to generate a line plot with the $\left.\Omega\right|_{\text {button (Graph 2). }}$
 used for visualized comparison.

- Note that there are many ripples in the FFT filter result, but almost no ripples in the IIR filter result.

4.4.6.3.3 Ripples in FFT Filter

1. Highlight column E and click on thebutton to create a line plot (Graph 3).
2. Activate Graph 3, choose Gadget:FFT and set the X Scale as From 12.664 To 13.052.
3. Click OK to bring up the preview window, in which ripples are almost pure 20.125 Hz sine.

4. Now we would try to remove the ripples at 20.125 Hz by applying another high pass filter at 25 Hz , keep highlighting column E and select Analysis:Signal Processing:FFT Filters.
5. Select High Pass for Filter Type and set Cutoff Frequency as $\mathbf{2 5 .}$
6. The result is listed in Column G , highlight column G and click on the \square button to create a line plot(Graph 4).
7. Activate Graph 4, choose Gadget:FFT and set the X Scale as From $\mathbf{1 2 . 6 6 4}$ To 13.052, in the preview window, there are still ripples, and they are shifted from 20.125 Hz to 25.157 Hz .

- Note that the ripples could not be removed by FFT filter for this dataset.

4.4.7 2D FFT and Filter

4.4.7.1 Summary

2D FFT (2-dimensional Fast Fourier Transform) can be used to analyze the frequency spectrum of 2D signal (matrix) data. Conversely, 2D IFFT (2-dimension Inverse Fast Fourier Transform) is able to reconstruct a 2D signal from a 2D frequency spectrum. OriginPro provides both for conversion between time and frequency domains in 2 dimensions, together with the 2D FFT filter to perform filtering on a 2D signal.

4.4.7.2 What You Will Learn

This tutorial will show you how to:

1. Convert image into data.
2. Perform 2D FFT on matrix data with DC shift to center.
3. Perform 2D IFFT on the 2D FFT result to recover the original matrix data.
4. Perform 2D FFT filter on matrix data.

4.4.7.3 Steps

4.4.7.3.12D FFT

1. Start with a new matrix book, and select menu item Data: Import from File: Image to Matrix... to import the image <Origin Installation Directory> \Samples\Image Processing and Analysis\cell.jpg.

2. Because Origin is not able to perform analyses on image data directly, we need to convert the image to matrix data first. So, select menu item Image: Conversion: Convert to Data to bring up the Convert to Data: img2m dialog box. Set Type to byte(1).

3. Click OK to finish the conversion. The result shows below. You can choose menu item View: Data Mode and View: Image Mode to convert between data mode and image mode.

4. With the converted result matrix active, select the menu item Analysis: Signal Processing: FFT: 2D FFT... to open the 2D FFT: fft2 dialog box. Check the DC Shift Center check box to shift the direct current to center. In the Output node, only check Complex Matrix and Log Amplitude Matrix.

5. Click the OK button to generate the FFT results. Both the complex matrix and the log amplitude matrix are in the same matrix book. Change to image mode (View:Image Mode) for the log amplitude matrix. The results should look like this:

4.4.7.3.22D IFFT

1. Start with the complex matrix (FFT2_Complex1) generated in the 2D FFT section above. Make it the active window.
2. Select the menu item Analysis: Signal Processing: FFT: 2D IFFT... to bring up the 2DIFFT: ifft2 dialog box.
3. In the dialog box, the imaginary matrix is not needed because the Input Matrix is a complex matrix. Check Undo Shift because DC has been shifted. Output should have the Real Matrix and Imaginary Matrix boxes checked.

4. Click the OK button, and the result will be output to the same matrix book as the input complex matrix.

䍘 FFT2result1 - FFT2_result1 :1/1 Real					\square	\times
	1	2	3	4	5	畐
1	169	175	177	173	172	
2	166	172	175	172	175	
3	159	167	172	171	$17{ }^{\circ}$	
4	150	160	168	170	171	
5	141	150	161	167	17 C	
6	132	140	150	158	162	
7	125	130	138	147	15t	
8	122	124	130	139	148	
9	121	119	121	127	132	
10	127	125	124	125	12 E	
11	125	126	125	123	123	
12	121	126	128	126	12 t	
13	122	128	132	129	127	
14	119	124	128	128	12 E	
15	116	118	122	126	12 E	
16	120	119	122	126	12 E	\checkmark
	Real	T2_111	170	($\left.{ }^{10}\right]^{\circ}$		-

5. From the comparison shown below, the IFFT has recovered the original signal.

4.4.7.3.32D FFT Filter

1. Start with an empty matrix book and from the menu select Data: Import from File: Image to

Matrix... to import the image <Origin Installation Directory> \Samples \Image Processing and
Analysis\myocyte1.tif.

2. With the imported image active. select the menu item Image: Conversion: Convert to Data. This opens the Convert to Data: img2m dialog box. Set Type to byte(1) and click OK to finish the conversion.

3. Activate the converted matrix and select the menu item Analysis: Signal Processing: 2D FFT Filters.... This opens the 2D FFT Filters: fft_filter2 dialog box.
4. In the dialog box, check the Auto Preview check box at the bottom to view the result in the right panel. Set Filter Type to Band Pass, and set Lower Cutoff Value and Upper Cutoff Value to $\mathbf{0 . 0 5}$ and $\mathbf{0 . 2 5}$ respectively. For other controls, keep the default values.

5. Click OK to obtain the filtered result. As the image below shows, the background noise (the light) is removed.

4.4.8 Convolution

4.4.8.1 Summary

Convolution is commonly used in signal processing. Origin uses the convolution theorem, which involves the Fourier transform, to calculate the convolution.

4.4.8.2 What You Will Learn

With this tutorial, you will learn how to perform convolution in Origin.

4.4.8.3 Steps

1. Start with a new workbook.
2. Import the data <Origin Installation Directory> \Samples \Signal Processing \Convolution.dat.

\#\# Convolution - Convolution. dat					$\square \times$
	$\mathrm{A}(\times)$	B()	$\mathrm{C}(1)$		\wedge
Long Name	Channel	Signal	Response		
Units					
Comments					
Sparklines					
1	1	0.3439	7E-4		
2	2	0.5552	0.0015		
3	3	1.0563	0.0031		
4	4	0.9792	0.006		
5	5	1.3847	0.0111		
6	6	1.5228	0.0198		
7	7	1.7604	0.0341		
8	8	1.9665	0.0561		
9	9	2.1246	0.0889		
10	10	2.5617	0.1353		\checkmark
4	lution		11	IIII	$\geq 1 \mid$

3. Highlight column B and C, and from the menu select Analysis: Signal Processing: Convolution.... This opens the Convolution: conv dialog box. In the dialog, column B is labelled as Signal, and column C as Response and the Sample Interval will be set according to the input signal's associated X column.
4. Expand the Options node and change Convolution Type to Circular, to repeat the data within range for the data outside range, but not pad with zeroes.

5. Click $\mathbf{O K}$ to obtain the result.
6. In the worksheet, highlight column B and E (press CTRL to select non-adjacent columns), then from the menu select Plot: Line: Line to make a graph with input signal and the output signal.

4.4.9 Wavelet

4.4.9.1 Summary

Wavelet transforms are useful for analyzing signals which exhibit sudden changes of phase and frequency, local maxima and minima, or related parameters. Wavelet transforms have become a popular tool in timefrequency analysis, especially for analysis of non-stationary signals. OriginPro provides wavelet transform tools for both continuous and discrete transforms.

4.4.9.2 What You Will Learn

This tutorial will show you how to:

1. Perform one-level discrete wavelet decomposition and reconstruct a signal from approximation coefficients and detail coefficients.
2. Apply multi-level discrete wavelet decomposition.
3. Perform continuous wavelet transform.
4. Remove noise from signals by using wavelet transform.
5. Perform 2D wavelet decomposition and reconstruction on matrix data.
6. Convert an image to matrix data.
7. Merge graph windows into one graph.

4.4.9.3 1D Wavelet Transform

4.4.9.3.1 Decomposition

1. Start with a new workbook, and select menu Data: Import from File: Single ASCII... to import the data <Origin Installation Directory> \Samples\Signal Processing\Chirp Signal.dat into the worksheet.

䏪 ChirpSignal - Chirp Signal.... \square			
	A(X)	$\mathrm{B}(\mathrm{Y})$	-
Long Name	Time	Amplitude	
Units	(sec)	(a.u.)	
Comments			
$F(\mathrm{x})=$			
Sparklines			
1	0.01	6.1359E-5	
2	0.02	$2.4544 \mathrm{E}-4$	
3	0.03	5.5223E-4	
4	0.04	$9.8175 \mathrm{E}-4$	
5	0.05	0.00153	
6	0.06	0.00221	
7	0.07	0.00301	
8	0.08	0.00393	\checkmark
		-00]-	$11 \bar{\square}$

2. Highlight column B, and select menu item Analysis: Signal Processing: Wavelet: Decompose... to open the Decompose: dwt dialog.
3. In the dialog, choose DB6 for Wavelet Type \& Order, and Zero-padded for Extension Mode.

Decompose: dwt		(8) ${ }^{\text {a }}$
Dialog Theme *		-
Description 1D discrete wavelet transform		
Recalculate Manual		
Input	ChirpSignal]"Chirp Signal"!B"Amplitude"	
Wavelet Type ${ }^{*}$ Orde Extension Mode		
Approx Coefficient Detail Coefficient	$\begin{aligned} & \hline \text { \|new> } \\ & \hline \text { <new> } \end{aligned}$	7-
		츤
	OK	Cancel

4. Click OK to close the dialog box and output the approximation coefficients and the detail coefficients.
5. Highlight columns B, C, and D (columns C and D should contain your approximation coefficients and your detail coefficients, respectively). From the menu, select Plot: Multi-panel: Stack... to open the Stack: plotstack dialog box.
6. In this dialog, clear the Link Layers check box in the Options node. Check the Auto Preview check box at the bottom to see the preview graph in the right panel.

7. Click $\mathbf{O K}$ to close the dialog box and create a stack graph.

Note: To perform level $2(3,4$, etc.) discrete wavelet decomposition, repeat steps 2 to 4 on the approximation coefficients (column C, in our example). Multi-scale wavelet decomposition (available in OriginPro) is demonstrated below.

4.4.9.3.2 Reconstruction

Reconstruction is the inverse operation of decomposition and this example will recover the signal from the result generated above.

1. Highlight columns C and D (your approximation coefficients and detail coefficients, from above).
2. Choose menu item Analysis: Signal Processing: Wavelet: Reconstruction... to bring up the Reconstruction: idwt dialog box.
3. To reconstruct the signal, we need to specify the same Wavelet Type, and Boundary, so set them to DB6 and Zero-padded, respectively.

4. Click $\mathbf{O K}$ and the recovered signal is output to column E of the worksheet.
5. Press CTRL and select columns B and E. From the menu, choose Plot: Line: Line to make a graph with these two columns of data.

6. We can see from the resulting graph that the original signal and the recovered signal overlay each other.

4.4.9.3.3 Multi-Scale Wavelet Decomposition

1. Start with a new workbook, and then import the same data used in the Decomposition section above.
2. Highlight column B and select menu item Analysis: Signal Processing: Wavelet: Multi-Scale DWT... to open the Multi-Scale DWT: mdwt dialog box.
3. In the dialog, change Extension Mode to Zero-padded, and Decomposition Level to 3. Click the arrow button beside Multiple Coeff Data and select [<input>]<input> from the menu.

4. Click OK to obtain 3rd level discrete wavelet decomposition results. The coefficients are stored in the same worksheet as the input signal.
5. Select all columns in the worksheet, then choose menu Plot: Multi-panel: Stack... to open the Stack: plotstack dialog box. Click the arrow button to the right of Dialog Theme and select System Default. Check the Auto Preview check box at the bottom of the dialog box to preview the graph.

6. Click OK. The resulting graph is shown below.

4.4.9.3.4Continuous Wavelet Transform

1. Start with a new workbook with two empty columns (columns A and B) in a single worksheet.
2. Select column A and then right-click and choose Set Column Values... from the shortcut menu. This opens the Set Values dialog box. In the text box, enter data(0, 1, 1/1023) and click Apply. This fills column A with data.

3. Click the \ggg button to select column B. Enter $\sin (1.5 /(0.25-\operatorname{col}(A)))+\cos (0.2 /(0.2-\operatorname{col}(A)))$ and click OK.

4. We can make a plot to see how the data looks. With column B selected, choose Plot: Line: Line from the menu.

5. With the worksheet active, add a new column to the worksheet by selecting Column: Add New Columns... from the menu. In the dialog box, accept the default value of 1 and click OK.

6. Column C is added to the worksheet. Select it, right-click and choose Set Column Values from the shortcut menu. In the text box, enter data $(1,512)$ and click OK.

7. Select both columns B and C, then from the menu, select Analysis: Signal Processing: Wavelet: Continuous Wavelet... to open Continuous Wavelet: cwt dialog box.
8. In the dialog, set Wavelet Type to MexHat, and check Coefficient Matrix.

Continuous Wavelet: cwt		Q 5
Dialog Theme		
$\begin{array}{ll}\text { Description } & \begin{array}{l}\text { Computes the real, one-dimensional, continuous wavelet transform } \\ \text { coefficients }\end{array}\end{array}$		
Recalculate Manual		
Discrete Signal [Book1]Sheet1!B		
Scale	[Book 1]Sheet1!C	$\underline{\underline{*}}$
Wavelet Type		
Use Pseudo-Frequency \square		
\checkmark Coefficient $\quad[$ <inpul>]<new>! 1		
\checkmark Coefficient Matrix $\quad\left\langle\right.$ new ${ }^{\text {a }}$,		
Create Image Plot		
		Cancel

9. Click OK button to exit dialog.
10. The coefficients are output to a new worksheet and a matrix and a contour plot is added. Double-click on the plot to open the Plot Details dialog box. Select the Colormap tab and click on the Fill... heading. The Fill dialog box opens with color contols. Click Load Palette, and choose Pumpkin Patch from the Select Palette menu. Click OK to return to the Plot Details dialog box.

11. Click OK to change the color of the contour plot. It should now look like the graph below.

4.4.9.3.5 Noise Removal by Wavelet Transform

1. Start with a new workbook and from the menu, select Data: Import from File: Single ASCII.... Import the file <Origin Installation Directory> \Samples\Signal Processing\Signal with Shot Noise.dat .

2. We can see from the Sparklines in the image above that there is shot noise in the signal. Highlight column B and select menu Analysis: Signal Processing: Wavelet: Denoise... to bring up the Denoise: wtdenoise dialog box.
3. Check Auto Preview to preview your result. Set Wavelet Type to DB9, Extension Mode to Zeropadded, Threshold Type to sqtwolog, and Thresholding Level to 7.

4. Click OK to remove the shot noise from the signal. Results are output to worksheet columns C and D.

5. Highlight all columns in the worksheet, then choose menu item Plot: Line: Line to make a graph with the original signal and the cleaned-up signal. We see from the graph below that the shot noise has been removed.

4.4.9.4 2D Wavelet Transform

4.4.9.4.12D Wavelet Decomposition

1. Start with a new matrix book. From the menu, choose Data: Import from File: Image to Matrix... and import the image, <Origin Installation Directory> \Samples \Image Processing and Analysis\Car.bmp.

2. To begin, we need to convert the image into data. To do this, select menu item Image: Conversion: Convert to Data. The Convert to Data: img2m opens. Set Type to byte(1).

3. Click OK to obtain the converted matrix data.
4. With the converted matrix active, select menu Analysis: Signal Processing: Wavelet: 2D

Decompose... and open the 2D Decompose: dwt2 dialog box.

5. Accept the default settings and click OK. This performs 2D wavelet decomposition on the matrix data. A matrix book with four matrix sheets ($C A, C H, C V$, and $C D$) is generated. $C A, C H, C V$, and $C D$ contain approximation coefficients, horizontal detail coefficients, vertical detail coefficients, and diagonal detail coefficients respectively. You can change the view mode to image mode by choosing

View: Image Mode from the menu.

6. With the CA matrix sheet active, make an image plot by selecting Plot: Image Plot from the menu. Repeat for CH, CV, and CD matrix sheets.
7. Double click on graph of them to open the Plot Details dialog, in the left panel, activate Layer1, and then go to the Size/Speed tab in the right panel, and uncheck Matrix data, maximum points per dimension. Click OK. select the axes related objects (including axis, label) in the graph and press the DELETE key to delete them.

4.4.10Coherence and Correlation

4.4.10.1 Summary

Coherence measures the degree of linear dependency of two signals by testing for similar frequency components. If two signals correspond to each other perfectly at a given frequency, the magnitude of coherence is 1 . If they are totally unrelated coherence will be 0.

Correlation is another measure of the relationship between two signals. A correlation coefficient is used to evaluate similarity. If two signals have a high degree of similarity, the magnitude of the computed correlation coefficient is large. If there is little or no linear relationship between two signals, the magnitude of the coefficient is small.

4.4.10.2 What You Will Learn

This tutorial will show you how to:

1. Test coherence and find out the frequency where two signals are in the highest degree of linear dependency.
2. Perform correlation and find the lag to translate a dataset.

4.4.10.3 Coherence

1. Start with a new workbook.
2. Select the menu item File: Import: Single ASCII... to import the data <Origin Installation

Directory>\Samples\Signal Processing\Coherence.dat.

3. Select column A, then right-click and select Set As: \mathbf{Y} from the shortcut menu. This sets the plot designation for column A to Y.
4. Highlight the two columns and from the menu select Analysis: Signal Processing: Coherence.... This opens the Coherence: cohere dialog box.
5. Change the Window Type to Welch, and click OK.

6. Two columns of data are added to the worksheet. Highlight these two new columns and from the menu select Plot: Line: Line to plot coherence against frequency.

7. Select the Data Reader on the Tools toolbar to read the strongest peak in the graph. The image above shows that at a frequency of 0.25 there is a strong peak, indicating a strong correspondence between the two signals at this frequency.

4.4.10.4 1D Correlation

1. Start with a new workbook.
2. Select menu File: Import: Single ASCII... and import the file <Origin Installation Directory>\Samples \Signal Processing \Correlation.dat.

\#\#\#\# Correlation - Correlation. dat					C	X
	$\mathrm{A}(\times)$	$\mathrm{B}(1)$				\wedge
Long Name						
Units						
Comments						
Sparklines						
1	-0.02861	0				
2	0.10097	1				
3	0.15188	0.8				
4	-0.02864	0.6				
5	-0.09683	0.4				
6	-0.01719	0.2				
7	0.0655	0				
8	-0.11455	0				
9	-0.00732	0				
10	0.13931	0				\checkmark
4 \square	lation/		\leqslant	III	\geq	. \quad.

3. Select column A. Right click on it to open the shortcut menu, then choose item Set As: \mathbf{Y} to set this column's plot designation to Y.
4. Highlight the two columns and from the menu select Analysis: Signal Processing: Correlation....

This opens the Correlation:corr1 dialog box. Accept the default settings.

5. Click $\mathbf{O K}$ to perform a correlation on the two signals.
6. The correlation result and a time lag column are output to the worksheet. Highlight column D, and from the menu select Plot: Line: Line to plot the result.

7. The Data Reader in the image above shows that at Time $=49$, there is a strong positive peak, which means that the second dataset needs to be translated forward 49 units to align these two signals.
8. Return to the worksheet, highlight column A and B, then from the menu select Plot: Multi-Panel: Vertical 2 Panel to plot the two signals to two separate graph layers.

9. Double click on the top plot to open the Plot Details dialog box. In the left panel, select Layer 2 (take care not to clear the check box). Go to the Link Axes Scales tab in the right panel and click the Straight ($\mathbf{1}$ to 1) radio button in the \mathbf{X} Axis Link group.

10. Click OK and both X axes now have the same scale.

11. To make the datasets movable, delete the lock by clicking on it and choosing Recalculate Mode: None. Click OK if the Reminder Message dialog pops up.

12．Select the top plot，then select menu Analysis：Data Manipulation：Horizontal Translate to add a vertical line to the layer，together with a triangle button．Click on the triangle button to open a menu and uncheck Keep Tool after Translation．Open the menu again，select Translate Duplication in：
New Columns from the menu．Another two columns will be added and the source data of current curve will be copied to these two new columns．

幽 Correlation－Correlation．dat＊						\square 回 x	
	A（Y）	$B(Y)$	C（X1）	D（Y1）	E（X2）	F（Y2）	－
Long Name			Time	Corr Y1			三
Units							
Comments				correlation of A, B	source： Correlation	source： Correlation	
$F(x)=$							
Sparklines	matrontand ${ }^{1}$						
1	－0．02861	0	－80	\＃\＃\＃\＃\＃\＃\＃\＃	－80	0	
2	0.10097	1	－79	\＃\＃\＃\＃\＃\＃\＃\＃	－79	1	
3	0.15188	0.8	－78	\＃\＃\＃\＃\＃\＃\＃\＃	－78	0.8	
4	－0．02864	0.6	－77	\＃\＃\＃\＃\＃\＃\＃\＃	－77	0.6	
5	－0．09683	0.4	－76	\＃\＃\＃\＃\＃\＃\＃\＃	－76	0.4	
6	－0．01719	0.2	－75	\＃\＃\＃\＃\＃\＃\＃\＃	－75	0.2	
7	0.0655	0	－74	\＃\＃\＃\＃\＃\＃\＃\＃	－74	0	
8	－0．11455	0	－73	\＃\＃\＃\＃\＃\＃\＃\＃	－73	0	
9	－0．00732	0	－72	\＃\＃\＃\＃\＃\＃\＃\＃	－72	0	
10	0.13931	0	－71	\＃\＃\＃\＃\＃\＃\＃\＃	－71	0	
11	－0．17216	0	－70	\＃\＃\＃\＃\＃\＃\＃\＃	－70	0	
12	0.1294	0	－69	\＃\＃\＃\＃\＃\＃\＃\＃	－69	0	－
4 Corre	lation／				$1 \square^{1}$	11	：

13．Again，open the menu and click Shift Curve．．．to bring up the Shift Curve dialog box．Set Value to 49.

14. Click OK to translate the plot. This should align the two signals.

4.4.11Decimation and Signal Envelope

4.4.11.1 Summary

Decimation is used to reduce the size of the signal sequence by merging every N samples into one.
Envelope detection adds an envelope curve to the input signal. Origin's signal envelope tool computes an envelope and plots an upper envelope, a lower envelope, or both.

4.4.11.2 What You Will Learn

This tutorial will show you how to:

1. Decimate a signal to reduce the size of the input signal sequence.
2. Perform envelope detection to add the envelope curve.

4.4.11.3 Decimation

In this tutorial, we are going to perform decimation on sunspot count data. Measurements of sunspot number were collected every month for more than 200 years. We will use decimation to reduce our dataset to one sunspot count for each year.

1. Start with a new workbook, and import the data <Origin Installation

Directory>\Samples\Signal Processing\Sunspot.dat.

\#\# Sunspot - Sunspot. dat				$\square \times$
	$\mathrm{A}(\times)$	$\mathrm{B}(\mathrm{C})$	CM	\wedge
Long Name	Year	Month	Sunspot Number	
Units				
Comments				
Sparklines				
1	1749	1	58	
2	1749	2	62.6	
3	1749	3	70	
4	1749	4	55.7	
5	1749	5	85	
6	1749	6	83.5	
7	1749	7	94.8	
8	1749	8	66.3	
9	1749	9	75.9	
10	1749	10	75.5	\checkmark
4 ∇ Suns			$11 \leqslant$	

2. Select column A. Right click on the column and choose Set As: \mathbf{Y} to set this column's plot designation to Y . This will ensure that sunspot number is not associated with column A as X . That is because decimation needs the X column data to be strictly monotonic.
3. Select column C and from the menu choose Analysis: Signal Processing: Decimation.... This opens the Decimation: decimate dialog box.
4. In the dialog, set Resample Factor to 12. Set the Filter Type to Moving Average Filter. To preview the result in the right panel, check the Auto Preview check box.

5. Click $\mathbf{O K}$ to output results.
6. In the worksheet, select column D (the X column generated from the result), then right-click and choose Insert from the shortcut menu to insert a new column. Right click again and choose Set As: \mathbf{Y} to change the column's plot designation as Y.
7. Highlight the newly inserted column and right click on it and choose Set As: \mathbf{X} from the context menu to change this column's plot designation to X. Right-click on the column again and choose Set
Column Values... to bring up the Set Values dialog box and enter data $(1749,1749+255)$ into the text box and and click OK.

8. Select column A, then right-click to choose Set As: \mathbf{X} from the shortcut menu, to set the column's plot designation back to X. The final worksheet will look similar to the one below.

\#\#\# Sunspot - Sunspot.dat						$\square \square$	
	A(X1)	B(\%1)	$\mathrm{C}(1)$	F1(X2)	$\mathrm{D}(\mathrm{Y} 2) \mathrm{M}_{4}$	$\mathrm{E}(\mathrm{Y} 2){ }^{\text {m }}$	\wedge
Long Name	Year	Month	Sunspot Number		Decimated	Decimated	
Units							
Comments						MA decimation of"Sunspot Number"	
Sparklines							
1	1749	1	58	1749	1	39.80828	
2	1749	2	62.6	1750	13	86.53432	
3	1749	3	70	1751	25	65.58876	
4	1749	4	55.7	1752	37	46.8645	
5	1749	5	85	1753	49	39.20533	
6	1749	6	83.5	1754	61	17.91893	
7	1749	7	94.8	1755	73	10.72722	
8	1749	8	66.3	1756	85	10.39822	
9	1749	9	75.9	1757	97	20.27811	
10	1749	10	75.5	1758	109	43.33136	
11	1749	11	158.6	1759	121	49.33373	
12	1749	12	85.2	1760	133	60.62604	\checkmark
4 Sunsp					\leqslant		

9. Press CTRL and select columns C and E. From the menu, choose Plot: Multi-Panel: Vertical 2 Panel to make a graph. Note that the decimated line looks smoother as the image below shows.

10. Start with a new workbook.
11. Select menu item Data: Import from File: Single ASCII... to import the data <Origin Installation Directory> \Samples\Signal Processing\Gaussian Envelope.dat.

12. Highlight column B and from the menu choose Plot: Line: Line to create a line plot.

13. With this graph active select Analysis: Signal Processing: Envelope... from the menu. This opens the Envelope: envelope dialog box.
14. In the dialog box, set Envelope Type to Both Envelopes, and Smooth Points to 10. Check the Auto Preview box to preview the result in the right panel.

15. Click OK to create the graph showing upper and lower envelope curves.

4.4.12Rise Time

4.4.12.1 Summary

In a step-like signal, rise time refers to the time required to change from a specified low value to a specified high value (or from a specified high value to a specified low value in the case of fall time). Origin's rise time tool allows you to graphically select a rectangular area tracing a rising or falling step in the signal, and from it calculate the rise time or fall time for this selected step.

4.4.12.2 What You Will Learn

With this tutorial, you will learn how to:

1. Use the Rise Time gadget tool to calculate the fall time.
2. Change the settings for fall time calculation.
3. Set the display elements on the graph.
4. Select the desired output options and output the result to worksheet.

4.4.12.3 Steps

1. Start a new workbook.
2. Select menu Data: Import from File: Single ASCII... to import the data file <Origin Installation Directory>\Samples \Signal Processing\Step Signal with Random Noise.dat.

3. Highlight column B and make a line plot of it by selecting Plot: Line: Line from the menu.

4. Click the Scale In $(\stackrel{\oplus}{4}$) button on the Tools toolbar, then select a range along the X axis from about 500 to 700 , so that we can focus on this portion of the plot.

5. With the graph active, choose Gadgets: Rise Time... from the menu to launch the tool.
6. In the dialog box, click the ROI Box tab and set X Scale From to $\mathbf{5 1 0}$ and To to 650. Set Tool to Fall Time and Method to Histogram.

7. Click the Fall Range tab and change From (\%) of Step Height to 20 and To (\%) of Step Height to $\mathbf{8 0}$.

8. Click the Quantities tab, check only three check boxes: Dataset Name(name), Fall Range(dVref) and Fall Time(dT).

9. Click the Output To tab, clear Script Window and check Append to Worksheet.

10. Click the Display on Graph tab, expand the Indicator branch, and change Edge Color to Blue. Check Fall Range.

11. Click OK to add the rectangular region-of-interest (ROI) to the graph.

12. As the above image shows, the two red horizontal lines delineate the upper level and lower level. The vertical distance between the two blue lines is the fall range, shown by the two indicator points on the line plot. At the top of the rectangle, the fall time and fall range are reported.
13. Click on the triangle button in the upper-right corner of the ROI to open a menu and select Fix ROI Position, so that the yellow ROI rectangle is locked in place.

14. Open the menu again and click New Output to output the results. Open the menu again and choose Go to Report Worksheet.

15. The report worksheet is activated and we can see that the three parameters that we chose on the Quantities tab are reported.

\#\#\# OkRiseTim			$\square \square$	
	A	日	c	\wedge
Long Name	Dataset Name(name)	Fall Range(dVref)	Fall Time(dT)	
Units				
Comments				
1	[StepSignalwit]"Step ...	1.30755	0.69596	
2				
3				
4				
5				
6				
7				
8				\checkmark
4 R Result			< III	$\geqslant 1 \square$

4.4.13Sound Processing

4.4.13.1 Summary

Origin features some useful signal processing tools, such as smoothing, FFT filtering, and spectral analysis tools like the Fast Fourier Transform (FFT) . These can be useful for performing sound analysis. This tutorial will remove a specific noise from an audio signal (.WAV file) based on the spectral range of the noise.

Minimum Origin Version Required: Origin 9 SR0

4.4.13.2 What You Will Learn

1. Import a sound file (.WAV) into Origin.
2. How to view sampling interval information.
3. How to use FFT gadget to check the frequency spectra of a signal.
4. Perform FFT filter on the audio signal.
5. Export a filtered signal as a .WAV file.

4.4.13.3 Steps

In this tutorial, we will use "Origin8 Message.wav" and "Dial Tone.wav" which can be found under the subfolder "\Samples\Signal Processing\" of the Origin installation folder.

Play the sound file "Origin 8 Message.wav" and you will hear a dial tone noise in the background. The 2nd file is a recording of the dial tone.

1. Start Origin, and create a new project with an empty worksheet in a workbook.
2. Select menu File: Import: Sound (WAV)... to open the Sound dialog. (Hint: if this menu item is not shown, select menu File: Import: Customize... to open the Import Menu Customization dialog to add it.) Navigate to the "\Samples\Signal Processing\" folder and double click "Origin 8

Message.wav" and "Dial Tone.wav" to add them to the import list. Make sure Show Options Dialog is checked and click OK.

3. In the Import and Export: impWav dialog, click the triangle button to to the right of Dialog Theme, and select System Default from the context menu. Then expand Import Options node, change Multi-File (except 1st) Import Mode to Start New Sheets.

4. Click $\mathbf{O K}$ to import the two sound files into two

5. In each worksheet, we can see the Sampling Interval has the same value of 2.26757E-5 (second). Click the i icon in the top left corner of the column and the Column additional information dialog pops up with the sampling interval information. Click OK to close this dialog.

6. With Dial Tone worksheet activated, highlight column A, and select menu Plot: Line: Line to make a line plot.

7. Using this graph, select menu Gadgets: FFT... to open the Data Exploration: addtool_curve_fft dialog. Using the default settings, click OK button to perform an FFT of the data and create the FFTPREVIEW graph with the results.

8. Uncheck the Log Scale checkbox on the FFTPREVIEW graph, and then select menu Graph:

Rescale to Show All to rescale the graph. We can see that the distribution of frequency is mainly under 2000 Hertz with the largest peaks being under 500 Hertz.

9. Activate the worksheet Origin 8 Message and highlight column A. Select menu Analysis: Signal Processing: FFT Filters to open the Signal Processing: fft_filters dialog. In the dialog, change Recalculate to None, select High Pass for Filter Type, uncheck the Auto checkbox for Cutoff Frequency and change value to 500. Clear Keep DC Offset checkbox. We can auto preview the result by ticking the Auto Preview checkbox at the bottom, and the result will be shown in the right panel, which can be shown or hidden by using the button in the bottom right corner of the left panel.

Note: If Recalculate is not None, the results need to be copied to new columns without the recalculate lock for changing the Data Type, see step 11 below.
10. Click OK to generate the results. We can see that the filtered result is in floating point format. In order to create a new WAV file, we need to convert this to an integer format.

11. Highlight column D (the filtered result column), and then choose Properties... item from the rightclick context menu, to open the Column Properties dialog. In this dialog, expand Options node, set Format to Numeric, then change Data Type to Short(2). Click OK to apply these settings to column D and close this dialog.

12. Keeping column D highlighted, select menu File: Export: Sound (WAV).... In the open dialog, enter a file name (such as Origin 8 Message_filtered.wav) and save to a familiar location. Make sure the Show Options Dialog checkbox is ticked.
13. Click Save button and the Import and Export: expWAV dialog pops up. Clear the Auto checkbox for Column, and change it to 4.

Note: The Column is specified for the Y column, and Origin will find its sampling interval if exists or its associated X column. If no X column or the X column is not even spacing, there will be error messages.
14. Click OK to export column D as a wave file. Now you can play this wave file and hear that the dial tone has been removed. Note that information with the same spectra as the dial tone is also removed.

4.5 Peak Analysis

4.5.1 Peak Analysis

4.5.1.1 Create and Subtract Baseline with Peak Analyzer

4.5.1.2 Batch Peak Analysis Using Theme with Script Before Each Process

4.5.1.3 Combine Quick Peaks Gadget with Peak Analyzer

4.5.1.4 Peak Finding

- Picking and Marking Peaks

4.5.1.5 Peak Integration

- Integrating Peaks

4.5.1.6 Peak Fitting

- Peak Fitting with Baseline
- Peak Fitting with Preset Peak Parameters
- Setting the Fix, Share Status or Bounds for Multiple Peak Parameters Simultaneously

4.5.2 Create and Subtract Baseline with Peak Analyzer

4.5.2.1 Summary

In OriginPro, the Peak Analyzer is capable of creating and subtracting baseline. There are various ways for baseline creation. You can generate baseline anchor points automatically or manually and then connect them with interpolation or fit them with a function.

Minimum Origin Version Required: 2016 SRO

4.5.2.2 What you will learn

- How to create baseline with 2nd Derivative method
- How to create baseline with Asymmetric Least Squares (ALS) Method (Pro)
- How to subtract a baseline from the spectrum

4.5.2.3 Steps

4.5.2.3.1 Create baseline with 2nd Derivative method

1. Start a New Workbook and import the <Origin EXE Folder>\Samples \backslash Spectroscopy \backslash Baseline.dat.

Highlight the second column. In the main menu, select Analysis: Peaks and Baseline: Peak Analyzer to open the dialog of the Peak Analyzer.
2. In the first page (the Goal page) of the Peak Analyzer, select Create Baseline as Goal. Click Next to go to the Baseline Mode page.

3. Next we are going to create an user defined baseline for this spectrum by defining anchor points. On the Baseline Mode page, select User defined from the Baseline Mode dropdown list. Check on Snap to Spectrum to make sure when you add or move a baseline anchor point, it will be pulled back onto the spectrum.
4. The first two methods in Anchor Points Finding are the most commonly used, and they can find anchor points automatically based on the derivative of the spectrum. If the baseline is approximately constant, 1st Derivative and 2nd Derivative is more powerful, otherwise, we should use 2nd Derivative. In this example, the baseline is more curly, so we use 2nd Derivative method for locating anchor points.

For other methods in Anchor Points Finding and related smoothing parameters, you can refer to the link: Baseline Mode Page.

5. Now click the Find button in the Baseline Anchor Points group. You can preview the anchor points in preview window.

6. Click Next to go to the Create Baseline page, select Interpolation in the Connect by drop-down list. In Interpolation method group, select Spline from the drop-down list. You can preview the spectrum in preview window, and then click Finish to get the baseline data.

Connect by	Interpolation
Snap to Spectrum	∇
Baseline Anchor Points	Add
Number of Baseline Points	1501
\square Interpolation Method	
	Mo Line
	O Spline
	OSpline

4.5.2.3.2 Create baseline with ALS Method (Pro)

1. Start from the Baseline Mode page, and select the Asymmetric Least Squares Smoothing

Baseline (ALS) as the baseline method. The ALS baseline can be tuned easily with a few parameters without pre-selecting any anchor points.

2. Click Next go to Asymmetric Least Squares Smoothing Baseline page, adjust the parameters to make the baseline optimal, then click Finish button to output the results table and graph.

4.5.2.3.3Subtract Baseline from a Spectrum

1. If you want to subtract baseline, select Subtract Baseline as the Goal at start page.
2. After you created a baseline, click Next button to go to Subtract Baseline page.
3. Click Subtract button for previewing the subtracted data. The baseline data and subtracted spectrum will be outputted after clicking Finish button. The figures below displayed the Subtract Baseline page and the preview of the subtracted spectrum.

4.5.3 Use Script to Search for Baseline Anchor Points in Peak Analyzer

In OriginPro, the Peak Analyzer is capable of creating and subtracting baseline. You can create a baseline by finding baseline anchor points first and then connect those anchor points either by interpolation or by fitting. To search for those baseline anchor points, you can either use built-in methods or define the search method on your own using LabTalk scripts.

4.5.3.2 What you will learn

- How to create baseline with user-defined scripts
- How to integrate peaks from user-defined baseline

4.5.3.3 Steps

4.5.3.3.1 Create baseline with User-Defined Scripts

1. Start a New Workbook and import the <Origin EXE

Folder>\Samples\Spectroscopy\Chromatography\Liquid chromatogram.dat. Highlight the second column.
In the main menu, select Analysis: Peaks and Baseline: Peak Analyzer to open the dialog of the Peak
Analyzer.
2. Make sure Goal is selected as Integrate Peaks and click Next button to go to Baseline Mode page.
3. Select Baseline Mode as User Defined and continue to select Anchor Points Finding Method under Baseline Anchor Points node as Use Script to Search.
4. Enter apt_x and apt_y in $\mathbf{X}=$ and $\mathbf{Y}=$ edit boxes, respectively. Then paste the scripts shown below into Before Formula Script box. Click Find button will run the scripts and the detected baseline anchor points will display on the preview window.

Dataset dspos;
pkfind iy:=(dsx, dsy) dir:=p npts:=5 value:=200 ocenter:=dspos; // Find major peak positions
int npk=dspos.GetSize(); // Get major peak numbers
// Create datasets to store anchor points
int $n=$ dsx. GetSize() ; // Get source X size
dataset apt_x, apt_y;// Create datasets to store anchor points
apt_x.SetSize(npk+1); // Set anchor points number
apt_y.SetSize(npk+1);

```
apt_x[1] = dsx[1]; // Set 1st data point as 1st anchor point
apt_y[1] = dsy[1];
apt_x[npk+1] = dsx[nn]; // Set last data point as last anchor point
apt_y[npk+1] = dsy[nn];
for (ii=1; ii<=npk; ii++)
{
int istart = dspos[ii]; // Get row index of ii-th peak
int iend = dspos[ii+1]; // Get row index of the next peak
range rtemp = [??]!dsy[$(istart):$(iend)]; // Declare the range and point to the
loose dataset
limit rtemp; // Get stats of the subrange
int ind = limit.imin; // Get min Y row index
apt_y[ii+1]=limit.ymin; // Get min Y between two peaks as anchor point
apt_x[ii+1]=dsx[ind];
};
```

The script will firstly find all major peak positions and then treat the minimum between every two adjacent peaks as one baseline anchor point, then add the first and last data points as two baseline anchor points.

Note: You can still uncheck Enable Auto Find checkbox and then use Add or Modify/Del to add or remove baseline anchor points.
5. Click Next button to go to Create Baseline page, make sure Connect by is selected as Interpolation and the Interpolation Method is Line. Then click Finish to obtain integration areas for each peak.

4.5.4 Batch Peak Analysis Using Theme with Script Before Each Process

4.5.4.1 Summary

Origin can perform batch peak analysis of multiple datasets using an Analysis Theme. You can choose to preprocess the peak data, e.g., exclude unwanted datasets, before actually input it for peak analysis using script specified before each process.

4.5.4.2 What Will You Learn

This tutorial will show you how to:

- Save analysis settings as a theme for batch peak analysis
- Write script before each process to pre-process data
- Do batch peak analysis using an analysis theme

4.5.4.3 Steps

4.5.4.3.1 Save Analysis Settings as a Theme

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Script Before Process in Batch PA folder in Project Explorer (PE).
2. Click on worksheet Data1 in the workbook. Highlight column B and go to menu Analysis: Peaks and Baseline: Peak Analyzer to open dialog. Select Fit Peaks(Pro) as Goal.
3. Click Next button, select $\operatorname{None}(\mathbf{Y}=\mathbf{0})$ as Baseline Mode. Click Next button twice to go to Fit

Peaks(Pro) page, expand Configure Graph subnode under Result node and set Create Summary Graph to <None> to turn off generating report graph, which can speed up the analysis process.
4. Now click the \square button next to the Dialog Theme control and select Save as ... to open Theme Save as... dialog. In the Theme Name edit box, enter MyPeakAnalysis and click OK button to save it.
5. Click Finish Button to perform the analysis and output results.

4.5.4.3.2 Prepare Script for Pre-processing Peak Data

The Batch Peak Analysis Using Theme dialog provides three edit boxes to allow running script before each process, after each process and at the end of all processes. In this section we will mainly show how to write script before each process to pre-process the peak data.

1. Activate worksheet Data1 again, we can see from the sparkline of each dataset that some of peak data are very noisy, e.g., column C, E, F, and we want to exclude such noisy dataset if it reaches certain noise level.
2. The way used to identify whether data is noisy in this tutorial follows the routine below:

- Filter raw data with a high-pass FFT filter to obtain the high-frequency noise from the data.
- Find the standard deviation(SD) of the noise and the corresponding raw data.
- Set a criteria that if the ratio of the square of SD of the noise over the square of SD of the raw data is over 30%, it will be regarded as noisy data and will be excluded for batch analysis.

3. Follow the routine above, the script for pre-excluding noisy data is as following:
\square
```
dataset dr;
fft_filters iy:=_ry filter:=high oy:=dr; // Perform high-pass fft filter
to obtain noise
stats dr;
double nSD = stats.sd; // Calculate SD of noise
stats _ry;
double sSD = stats.sd; // Calculate SD of raw data
if(nSD^2/sSD^2>0.3) // Set noise identification criteria
    _skip=1;
else
    _skip=0;
```

where _ry refers to current y data, _skip determines whether to skip current dataset.

4.5.4.3.3 Batch Analyze Datasets Using Analysis Theme

1. Activate worksheet Data1, highlight all columns in the sheet and go to menu Analysis: Peaks and Baseline: Batch Peak Analysis Using Theme... to open dialog.
2. Select MyPeakAnalysis from Theme drop-down list, Peak Properties(Pro) from Result Sheet dropdown list.
3. To output results to a specified sheet, you can enter the range syntax in Output Sheet edit box. Suppose we want to export to MyResults sheet in MySummary book, you can input [MySummary]MyResults! in the edit box.
4. Input the script we wrote in section above into Script Before Each Process under Script node.

5. Click OK button to perform batch peak analysis and you will see noisy datasets(say column C, E and F) are excluded in MyResults sheets.

4.5.5 Combine Quick Peaks Gadget with Peak Analyzer

4.5.5.1 Summary

The Quick Peaks gadget provides an intuitive way to carry out peak analysis, and Peak Analyzer provides further options for peak finding, fitting, etc. You can first use Quick Peaks gadget to find peaks and then use the Peak Analyzer to analyze the peaks. You can save the whole analysis as a theme in the Peak Analyzer for future use and/or batch processing.

Minimum Origin Version Required: OriginPro 9.0 SR0

4.5.5.2 What You Will Learn

This tutorial will show you how to:

- Use the Quick Peaks gadget to find peaks.
- Open the Peak Analyzer from Quick Peaks gadget.
- Further analyze the peaks found in Quick Peaks gadget using the Peak Analyzer.

4.5.5.3 Steps

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Quick Peaks Gadget folder in Project Explorer (PE).
2. Highlight all columns in the Nitrate worksheet and click the button on 2D Graph toolbar to generate a line graph.
3. Activate the generated graph window and select Gadgets:Quick Peaks.
4. In the ROI box tab, change the From and To values of X scale to $\mathbf{3 4 . 7 5}$ and $\mathbf{3 5}$ respectively, select the Fixed(Prevent moving by ROI) check box.

5. In the Baseline tab, select the Full Plot Range radio button for Range.

6. In the Find Peak tab, change the Method for Peak Filtering to By Number, and set the Number of Peaks as 3, select Blue as the color of the Peak Label.

7. In the Output to tab, change the Result Worksheet Name to [QkPeak]\%C_Result2.

8. In the Quantities tab, you can decide which quantities to output. Leave only the check boxes for Peak ID, Peak X, Peak Y, Height, Peak Area and FWHM checked, and clear the other check boxes. Click OK to add the gadget to the plot.

9. Click the triangle button to the right of the ROI box and select New Output to generate the report worksheet.
10. Bring up the context menu again to select Go to Report Worksheet to open the result worksheet.

11. Now we are going to open the Peak Analyzer to carry out peak fitting. Bring up the context menu and choose Switch to Peak Analyzer.

12. The Peak Analyzer is opened, the Fit Peaks goal is already selected, the baseline mode and peak finding method follow the settings in the Quick Peaks gadget.
13. Go to the Fit Peaks page directly and click the Fit button to fit the three found peaks with default Gaussian function.
14. Click the button and select Save As in the context menu to save this analysis as a theme with the name MyQuickPeaks.

15. In the Peak Analyzer, click the Finish button to generate the peak fitting results.

Notes: The theme can be used in the batch peak analysis. Select Analysis:Peaks and Baseline:Batch Peak Analysis using Theme to open the paMultiY dialog. The batch peak analysis is very useful when you have multiple data files that are similar. You can refer to this example for more details.

4.5.6 Peak Finding

4.5.6.1 Peak Finding

- Picking and Marking Peaks

4.5.6.2 Picking and Marking Peaks

4.5.6.2.1 Summary

The Peak Analyzer provides several methods to pick peaks automatically. Also, user can opt to add/delete/modify the peaks manually.

Labels are added to the peak centers after they are found or added, to show user the positions of the current peaks.

Minimum Origin Version Required: Origin 8.0 SR6

4.5.6.2.2 What you will learn

- How to use and customize the auto peak finding in the Peak analyzer
- How to customize the labels for the peak centers

4.5.6.2.3Steps

1. Start a new workbook and import the file <Origin Program

Folder>\Samples\Spectroscopy\HiddenPeaks.dat.
2. Highlight the second column.
3. Create a line plot by selecting Plot: Line: Line.
4. With the graph active, select Analysis: Peaks and Baseline: Peak Analyzer to open the dialog of the Peak Analyzer.
5. In the first page (the Start page), select the Find Peaks radio button in the Goal group. Then click the Next button to go to the next page.

Define a baseline, find and mark peak locations
Goal
Integrate Peaks
Create Baseline
Subtract Baseline
($)$ Find Peaks
-
Fit Peaks (Pro)
6. In the Baseline Mode page, select None $(\mathbf{Y}=\mathbf{0})$ for Baseline Mode.

Click the Next button to go to the Find Peaks page.
7. In the find Peaks page:

1. Expand the Peak Finding Settings branch. Make sure that Local Maximum is selected for Method. Then click the Find button. Only five peaks are detected.

2. Change Method to 2nd Derivative (Search Hidden Peaks). Click the Find button again. This time, seven peaks are detected.

3. Click Finish to complete the analysis. We will get this final graph:

4.5.7 Peak Integration

4.5.7.1 Peak Integration

- Integrating Peaks

4.5.7.2 Integrating Peaks

4.5.7.2.1 Summary

Use the Peak Analyzer to integrate peaks and find their areas.
Minimum Origin Version Required: Origin 8.0 SR6

4.5.7.2.2 What you will learn

- How to pick an existing dataset as baseline
- How to subtract a baseline from the spectrum data
- How to calculate peak areas with the Peak Analyzer

4.5.7.2.3Steps

1. Start a new workbook and import the file \Samples \Spectroscopy \backslash Peaks with Base.DAT.
2. Highlight the second column.

\# PeakswithBase - Peaks with Base.DAT				\square 回	x
	A(X)	B(Y)	C(Y)		A
Long Name	Time	Amp	Base		
Units					
Comments					
$F(x)$					
Sparklines		N			
1	10	0.15005	0.18868		
2	11	0.15005	0.18582		
3	12	0.15676	0.18296		
4	13	0.16741	0.18011		
5	14	0.17594	0.17725		
6	15	0.18433	0.17439		
7	16	0.17937	0.17153		
8	17	0.1766	0.16868		
9	18	0.17494	0.16582		
4 ${ }^{\text {P }}$, Peaks	ith Base		$11 \cdot$	III	,

3. In the main menu, click Analysis, then point to Peaks and Baseline, and then click Peak Analyzer.
4. In the first page (the Goal page) of the Peak Analyzer, select Integrate Peaks in the Goal group. Click Next to go to the Baseline Mode page.

5. On the Baseline Mode page, select Use Existing Dataset from the Baseline Mode dropdown list. Click the triangular button to the right of the Dataset dropdown menu, and then select [PeakswithBase]"Peaks with Base"!C"Base" on the fly-out menu. Click Next to go to the Baseline

Treatment page of the Peak Analyzer.

6. Select the Auto Subtract Baseline check box. Click the Integrate Peaks page icon in the upper panel (or click Next twice to go to the Integrate Peaks page). In the preview graph, you will see two numbered
yellow rectangles representing two peaks found with the default settings.

7. For Integration Window Width, select Adjust on Preview Graph. On the graph, click inside the rectangle marked with $\mathbf{1}$. A pair of "handles" appears on either side of the yellow integration window. Drag these handles to adjust the range for which integration will be performed. Click inside the rectangle
marked with 2 and adjust the integration range for the second peak.

8. In the Integrate Peaks page of the Peak Analyzer, make sure all the desired quantities to compute have been selected in the Quantities group. For example, if you want to calculate the peak centroid for each peak, select the Peak Centroid check box. If you don't want to output the percent areas, clear the Percent Area check box. When you are done, click Finish to perform the analysis.

The result is in a worksheet named Integration_Result1.

䏪 PeakswithBase－Peaks with Base．DAT									－回 E	
	Ind㬉	P0（Y）冨	P1违	P2（Y）冨	P3（）	$\mathrm{P} 4(\mathrm{Y})$（ ${ }^{\text {（ }}$	P5（\％）	P6（Y甼	P7（Y）	
Long Name	Index	Area	Row Index	$\begin{gathered} \text { Beginning } \\ X \end{gathered}$	Ending X	FWHM	Center	Height	Centroid	
Units										
Comments	Integr	Integral Re	Integr	Integral Re	Integral	Integral R	Integr	Integral	Integral R	
$\mathrm{F}(\mathrm{x})$										
1	1	26.62295	93	77	119	13.16915	103	1.87906	102.1242	
2	2	－27．62137	267	249	293	13.28994	277	－1．9043	275.88972	
3										$\stackrel{\square}{\square}$
	ss with Ba	e λ Integr	tion＿P	Result $1 /$	Integrated	Curve＿Data		III	\cdots	

If the Area check box was selected in the Quantities group，peak area data appears in the Area column of the result worksheet．

4．5．8 Peak Fitting

4．5．8．1 Peak Fitting

－Peak Fitting with Baseline
－Peak Fitting with Preset Peak Parameters
－Setting the Fix，Share Status or Bounds for Multiple Peak Parameters Simultaneously

4．5．8．2 Peak Fitting with Baseline

4．5．8．2．1 Summary

In OriginPro，the Peak Analyzer is capable of performing multiple peak fitting with several baseline subtraction options．

There are various ways to create a baseline for your spectrum data．You can select a few anchor points and then fit them with a function．The fitting of the baseline can be done along with the peak fitting．

4．5．8．2．2 What You Will Learn

－How to perform fitting of peaks
－How to fit the baseline

4．5．8．2．3Steps

1．Start a new worksheet and import the file＜Origin Program Folder＞\Samples \backslash Spectroscopy \backslash Peaks on Exponential Baseline．dat．
2. Highlight the second column in the worksheet.

3. Select Analysis: Peaks and Baseline: Peak Analyzer from the main menu to open the Peak Analyzer.
4. Select the Fit Peaks radio button in the Goal group on the first page.

5. Click Next to go to the Baseline Mode page. In the Baseline Mode page, select User Defined from the Baseline Mode drop-down list. Click the Find button in the Baseline Anchor Points group. Eight anchor
points should be found.

6. Click Next to go to the Create Baseline page. In the Create Baseline page, select Fitting with the Connect By drop-down list. In the Fitting group, select ExpDec2 from the Function drop-down list.

7. Click Next to go to the Baseline Treatment page. In the Baseline Treatment page, select the Fit Baseline with Peaks check box.

8. Click Next to go to the Find Peaks page. In the Find Peaks page, click the Find button to search peaks. Two peaks should be found.

9. Click Next to go to the Fit Peaks page. In the Fit Peaks page, click the Fit Control button to open the Peak Fit Parameters dialog.
10. In the Peak Fit Parameters dialog, make sure that both peak types are Gaussian. Click the Fit Until

Converge button.

11. When the fitting is done, click $\mathbf{O K}$ to close this dialog.
12. Back to the Fit Peaks page, click Finish to complete the analysis. See the results in the source workbook and the graph report.

4.5.8.3 Peak Fitting with Preset Peak Parameters

4.5.8.3.1 Summary

In some cases, you may want to perform peak fitting with preset peak parameters. For example, you may have many datasets with fixed numbers of peaks and the centers of these peaks do not vary from dataset to dataset. What you are interested in is mainly other parameters of the peaks, for example, heights. Using the theme feature of the Peak Analyzer, you may carry out peak fitting with fixed peak parameters easily.

Minimum Origin Version Required: OriginPro 2016 SR0

4.5.8.3.2 What You Will Learn

1. How to save Peak Analyzer settings in a theme and reuse them
2. How to fix peak parameters

4.5.8.3.3Steps

Save a theme with peak positions and peak parameters

1. Start a new worksheet and import the file <Origin Program

Folder>\Samples\Spectroscopy\HiddenPeaks.dat.
2. Highlight the second column and select Analysis: Peaks and Baseline: Peak Analyzer from the Origin menu to open the Peak Analyzer.

3. On the first page, select the Fit Peaks radio button in the Goal group. Click Next to go to the Baseline Mode page.

Define a baseline, find and fit peaks
Goal

- Integrate PeaksCreate BaselineSubtract Baseline
Find Peaks
(0) Fit Peaks (Pro)

Input
[HiddenPeaks]HiddenPeaks! (A, B)
4. In the Baseline Mode page, select None ($\mathbf{Y}=\mathbf{0}$) with the Baseline Mode drop-down list. Click Next to go to the Find Peaks page.

5. In the Find Peaks page:
a. Clear the Enable Auto Find check box, because we want to find the peaks manually. Click the Peaks Info button to open the Peak Info dialog.

b. In the Peak Info dialog, click the Add button seven times to add 7 peaks. Enter the peak centers and heights as follows:

Click OK to return to the Peak Analyzer.
c. Click Next to go to the Fit Peaks page.
6. In the Fit Peaks page:
a. Click Fit Control to open the Peak Fit Parameters dialog.
b. In the Peak Fit Parameters dialog, click the Fix or release all peak centers button. Then click the Fit Until Converge button. When the fitting is done, click OK to return to the Peak
Analyzer dialog.

c. Click the right-sided triangle button to the right of Dialog Theme in the upper panel. Select Save As from the short-cut menu. The Theme Save as dialog opens.
d. In the Theme Save as dialog, enter MyFitting after Theme Name. Clear and select the check boxes as the screenshot below:

Click OK to save the theme. This should bring you back to the Peak Analyzer dialog.
e. Click the Finish button in the Peak Analyzer to complete the analysis.

Reuse the theme

1. Start another new workbook and import the file <Origin Program

Folder>\Samples \Spectroscopy \backslash HiddenPeaks.dat.
2. Highlight the second column
3. Select Analysis: Peaks and Baseline: Peak Analyzer from the Origin menu to open the Peak Analyzer dialog.
4. On the first page of the Peak Analyzer, click the right-sided triangle button to the right of Dialog

Theme. From the short-cut menu, pick MyFitting.

5. Click Next to check if the settings in every step are correct. Note that in the Find Peaks page, you can see the peak centers and heights are same as last time.
6. When you reach the last page, click the Fit Control button to open the Peak Fit Parameters dialog. Make sure that all peak centers are fixed and the values are the same as last time. Click OK to return to the Peak Analyzer.
7. Click Finish to complete the analysis. Check the results to see whether they are the same as the results we got last time.

4.5.8.4 Setting the Fix, Share Status or Bounds for Multiple Peak Parameters Simultaneously

4.5.8.4.1 Summary

When performing peak analysis, one often wants to fix parameter values, or share parameters between multiple peaks, or specify bounds. If your data has a few peaks, you can simply perform these settings for each peak. But if your data has many, it may be time consuming to set individually. To make the process more efficient, the Peak Analyzer offers context menus which can allow you to set the fix, share status or bounds for multiple peak parameters simultaneously. For more details about these settings, please refer to the Origin Help File.

Minimum Origin Version Required: OriginPro 8.0 SR6

4.5.8.4.2 What You Will Learn

- How to set share status of multiple peak parameters simultaneously.
- How to set upper bounds and upper bound values to multiple peak parameters simultaneously.

4.5.8.4.3Steps

1. Start a new workbook and import the file <Origin Program Folder>\Samples\Spectroscopy\Positive \& Negative Peaks.dat.
2. Highlight the second column and select Analysis: Peaks and Baseline: Peak Analyzer to open the Peak Analyzer dialog. In the first page (the Start page), select the Fit Peaks radio button in the Goal group. Then press the Next button to go to the next page.
3. In the Baseline Mode page, select Constant with the Baseline Mode drop-down list and choose Mean in the Constant group. Then click Fit Peaks in the wizard map to directly go to the Fit Peaks page.

4. In the Fit Peaks page:
5. click Fit Control button to open the Peak Fit Parameters dialog. In the lower left corner of the dialog, set the fitting function to Voigt.
6. Make sure the Parameters tab is active and then select $\mathbf{1}$ in the Share column of the wG_1 row. Then right click on it and select Apply Same "Share" to All wG. Then you will find that all the parameters with the $\mathbf{w} \mathbf{G}$ prefix are shared in the same group.

7. Then select $\mathbf{2}$ in the Share column of the wL_1 row. Then right click on it and select Apply Same "Share" to All wL. Then you will find that all the parameters with the wL prefix are shared in the same group. After this, the Parameters tab should look like below:

8. Activate the Bounds tab. Double-click in the cell in the first Gaussian width row and the second $<$ or $<=$ column. And you will find $<=$ is shown in this cell (the $<$ will be shown if you doubleclick in the cell for one more time). Then type $\mathbf{5}$ into the Upper Bounds column in the same row.
9. Then right click on it and select Apply Same "Bounds" to All wG.

After this, the Bounds tab should look like:

5. Click the Fit Until Converged button. When the fitting is done, click $\mathbf{O K}$ to close the dialog.
6. Back in the Fit Peaks page, click Finish to complete the analysis. See the results in the source workbook and the graph report.

4.6 Data Manipulation

4.6.1 Data Manipulation

4.6.1.1 Setting Column Values

- Set Column/Cell Values

4.6.1.2 Worksheet Data Operations

- Worksheet Query
- Data Reduction
- Data Filter
- Lock Filter with Analysis

4.6.1.3 Pivot Table

4.6.1.4 Categorical Values Ordering and Sharing

4.6.2 Setting Column Values

4.6.2.1 Setting Column Values

- Set Column/Cell Values

4.6.2.2 Set Column/Cell Values

4.6.2.2.1 Summary

Origin provides several ways to fill a worksheet column with values. Use Auto Fill or script commands to fill a series of values. Use the $\mathbf{F}(\mathbf{x})$ row or the Set Values dialog box to define a mathematical formula to generate or transform a data set. Refer to values in other columns from the same sheet or from other sheets and books. Select from a large collection of built-in functions to compute values. Create variables from metadata stored in worksheets or column headers, and use these variables in your column formula.

This tutorial will show you how to compute column values by:

- Filling a Column with an Arithmetic Series
- Using Built-in Functions
- Using Other Columns
- Using Cell Values
- Using Variables from Workbook Metadata

Beginning with version 2018 SR0, Origin supports to use a formula to set cell values.

Then, this tutorial will also show you:

- How to Enter Formula in worksheet cell to compute cell values
- Auto behaviors of setting cell values

4.6.2.2.2 Setting Column values

Filling a Column with Arithmetic Series

Origin provides multiple methods to fill a column with arithmetic series.

Using Auto Fill

1. Enter a few starting values in cells.

\# Book1		$\square \square$	
	A(X)	$\mathrm{B}(\mathrm{Y})$	-
Long Name			
Units			三
Comments			
$\mathrm{F}(\mathrm{x})$			-
1	1		
2	3		
3			
4			
5			
6			
7			
8			
9			
10			-
4 ∇^{\prime} Sheet 1		11	110

2. Select the two cells.
3. Move the mouse to the bottom right-hand corner of the second cell. The cursor will change to display "+".

\# Book1		$\square \square$	
	A(X)	$B(Y)$	-
Long Name			
Units			三
Comments			
$\mathrm{F}(\mathrm{x})$			
1	1		
2	3		
3			
4			
5			
6			
7			
8			
9			
10			-
4		11	11

4. Drag the mouse toward the bottom of the column. The column will be filled with $1,3,5,7, \ldots$.

Note that a row can also be auto filled by dragging towards the right. In addition, to copy a sequence of cell values to other column or row cells, press SHIFT while selecting the desired sequence, then press CTRL and drag.

Using Filling A Set of Numbers

1. Right click on the column B and select Fill Column with: A Set of Numbers from the context menu to bring up the PatternN dialog
2. Enter 23 in the To edit box. Enter 2 in the Increment edit box

3. After you click the OK button, Column B will be filled with values: 1, 3, 5, 7,, 23

Using Other Columns

We will show you how to enter expressions in the $\mathbf{F}(\mathbf{x})$ row to set column values.

1. Create a new workbook. Import US Metropolitan Area Population.dat from the \Samples \Data

Manipulation\folder.
2. Add a new column to the worksheet (right-click to the right of the last column in the worksheet and select Add New Column from the context menu). Change the Long Name of the column to Population/Sq. Mi.
3. To calculate the population density, enter the expression, \mathbf{B} / \mathbf{A}, in the $\mathrm{F}(\mathrm{x})$ row of column E .

4. The column will get computed using data from the other two columns.

Using Built-in Functions

1. Create a new workbook. Import Step Signal with Random Noise.dat from the \Samples \Signal Processing \folder.We are going to calculate the moving average of column B, that is, calculating the adjacent average value at each point of column B.
2. Click the Add New Columns button +䀚 on the Standard toolbar to add a new column C. Highlight this column and right-click, and then click Set Column Values... to open the Set Values dialog.
3. In Set Values dialog, click the Search and Insert Functions button $\boldsymbol{f}_{\boldsymbol{x}}$ to search for keyword adjacent average.

Wearch and Insert Functions	Q
adjacent average	

Statistical Functions

Movavg(vd,back,forward)

Takes a vector vd, a backward and forward offset, and returns a vector of adjacent averages. Backward and forward offset are with respect to the current row number.
example: for (ii=1;ii=10;ii++) $\operatorname{col}(1)[i i]=i i ; \operatorname{col}(2)=\operatorname{movavg}(\operatorname{col}(1), 0$,
2) ; fills col(2) with adjacent average values at each point (Note that $\operatorname{col}(2)$ [9] $=(\operatorname{col}$
(1) $[9]+\operatorname{col}(1)[10]) / 2$ and $\operatorname{col}(1)[10]=\operatorname{col}(2)[10])$.
4. Double click function name Movavg(vd,back,forward) to insert it into dialog and close the dialog.

5．Highlight the characters vd．replace vd with B，replace back with $\mathbf{0}$ and replace forward with $\mathbf{2}$ ．Your formula should look like this：

－1．Set Values－［StepSignalwit］＂Step Signal with Random N．．．\square				
Formula wcol（1） $\operatorname{Col}(\mathrm{A})$ Function Variables Options				
Row（i）：From＜auto＞To	＜auto＞			
$\operatorname{Col}(\mathrm{C})=$			f_{x} ，$\lll<$	＞＞1
movavg（ $\mathrm{B}, 0,2$ ）				
Recalculate Auto		狊》 OK	Cancel Apply	v

6．Click OK．The last column will fill with the moving average from column B ．

盟 StepSignalwit－Step Signal with Random Nois．．．\square				
腮畀	A（X）	$\mathrm{B}(\mathrm{Y})$	C（Y）易	
Long Name	time	signal with noise		
Units				
Comments				
$F(x)=$			movavg（B，0，2）	
Sparklines		Mam		
1	1	－0．08277	－0．00402	
2	2	0.02274	－0．0171	
3	3	0.04798	0.00562	
4	4	－0．12202	－0．01639	
5	5	0.09091	－0．04684	
6	6	－0．01806	－0．10784	
7	7	－0．21336	－0．04822	
8	8	－0．09209	0.02915	
9	9	0.1608	0.0521	
 Step	10	0.01875	－0．01983	
	nal with R	ndom Noise $/$	$1 \cdot \square$ III 1	

When referring to another column in the same worksheet，you can use index（e．g． ＂col（1）＂），short name（e．g．＂A＂or＂col（A）＂），or long name（e．g．＂signal with noise＂）to identify the column．

Using Columns from Other Sheets

The Set Values dialog provides an Variable menu to easily insert range variables that point to columns in other books／sheets，which can then be used to compute column values for the current column．

1. Open the project \Samples\Data Manipulation\Setting Column Values.opj and click on the Columns from Other Sheets subfolder.
2. In the workbook, right-click on the worksheet tab labelled Sample and select Duplicate Without Data. Rename(by double-clicking on the current name) the new sheet as: Corrected Sample.
3. Now you will fill these three columns with data based on formulas that reference columns in the other sheets. Highlight the first column and right-click on it to select Set Columns Values to open the dialog. Select Variables: Add Range Variable by Selection to open the Select from Worksheet dialog. With this dialog, you could select a column from worksheet and insert it as a range variable to the Before Formula Script panel.
4. When the Select from Worksheet dialog is open, activate the Sample sheet, highlight column A to select and click the Done button to confirm selection and click OK (accept Column Notation) in the Insert Mode dialog box that appears.
5. "range $\mathrm{r} 1=$ Sample! $\operatorname{Col}(\mathrm{A})$;" will be automatically inserted into the Before Formula Scripts panel. Edit the formula to read as:

6. Then enter rTime in the Column Formula and click the $\mathbf{O K}$ button to generate data for the first column and close the dialog.

7. In the Corrected Sample worksheet, highlight column B and column C and right-click on them. From the shortcut menu, select Set Multiple Column Values to open the dialog. Select Variables: Add Range Variable by Selection and insert two range variables, one by one, to the Before Formula Script panel similarly as the previous steps. Edit these new entries as follows:

8. Now we will edit the range variables in the Before Formula Scripts panel and use another expression to get the same results. Remove the column names $\mathbf{C o l}(\mathbf{B})$ of the two range variables and select Variables: Predefined Variables: wcol(j) in both lines so it looks as follows:

9. Then input the following expression into the Column Formula:

11．Click the OK button to generate data for the column B and column C of the Corrected Sample worksheet．

皿 Book1			$\square \square \square$	
	$A(X)$ 昷	B （Y）县，	C（Y）界	－
Long Nam	Time	Transducer 1	Transducer 2	
Units	sec	mV	mV	
Sparklines				
$\mathrm{F}(\mathrm{x})$	rTime	rSample－（rSample［1］－rRef［1］）		
1	0	20.41	8.23	
2	1	19.99	8.17	
3	2	20.54	8.17	
4	3	20.84	8.21	
5	4	20.47	8.16	
6	5	21.13	8.16	
7	6	20.41	8.05	
8	7	20.25	8.11	
9	8	20.02	7.96	
10	9	20.15	7.95	
11	10	20.62	7.98	－
4×1 Samp	Corrected	Sample／	｜ 1 III	

1．You reference a particular cell value with square brackets，so［1］in the Column Formula expression above means the first element．
2．You can select Formula：Save and Formula：Load in the Set Column Values dialog to save your formulas and reload them into other columns to generate new data．

Using Cell Values

Values contained in specific worksheet cells can be referenced and used to compute the formula for setting column values. This provides an easy way to use worksheet cells as control cells for updating values in a column.

1. Open the project \Samples\Data Manipulation\Setting Column Values.opj and switch to the Cells in a Worksheet subfolder in Project Explorer.
2. Right-click on column C and select the Set Column Values... context menu to bring up the Set Values dialog.
3. Use the Variables: Add Range Variable by Selection menu item to open the Select from Worksheet dialog. Then select column G(Value) in this worksheet, click the Done button.
Click OK when the Insert Mode dialog appears (accept Column Notation) to add its expression to the Before Formula Scripts panel.
4. In the Before Formula Scripts panel, change the name of the range variable to be rControl and add these additional lines so that the script looks like below
```
range rControl = Col(G);
    //range r1 = Col(7);
    int nOrder = rControl[2];
    int nPoints = rControl[3];
    differentiate -se iy:=(1,2) order:=1 smooth:=1 poly:=nOrder npts:=nPoints
    oy:=(1,3);
```

The script calls the differentiate X-Function and passes the cell values from column G as arguments for polynomial order and number of points, which controls the Savitzky-Golay smoothing performed during the differentiation.
5. The Set Values dialog then should be as following:

6. Click $\mathbf{O K}$ to close the dialog and see the results in column C . Now you can try to change the values in column G, to change the output.

Note: Allowed values of polynomial order are 1 to 9 .

The graph shown in the worksheet was first created and then embedded into the worksheet by merging a group of cells.

Using Variables from Workbook Metadata

Metadata stored in the workbook, such as variables saved when importing data using the Import Wizard, can be referenced and used for computing column values.

1. Open or continue working with \Samples\Data Manipulation\Setting Column Values.OPJ, and switch to the Worksheet Metadata subfolder from the Project Explorer window.
2. Select column A and right-click to select the Insert menu option. A new column is inserted to the left of column A.
3. Select the first column (this newly inserted column) and right-click on it. Then select the Set Column Values menu item to open the Set Values dialog.
4. Select the Variables: Add Info Variable menu item to open the Insert Variables dialog. Select

Numeric int from the Variable Type drop-down list. Expand the USER.VARIABLES node and click to highlight NUMBEROFPOINTS row with Value as 3800. Press the Insert button to insert this variable into the Before Formula Scripts panel.

Current Origin Object: [Book4]
5. Next, set Variable Type to Numeric double. Hold the Shift key down to select both StartFrequencyKHz and StepFrequencyKHz, and then press Insert to insert these two variables. Press the Close button to close the dialog.
6. In the upper Column Formula panel, input \{d1:d2:d1+(n1-1)*d2\} and then press the OK button to generate data and close the dialog. The column will be filled with frequency values.
7. Highlight the first and second columns, right-click on them and select Set As: XYY to change the plotting designations to X and Y . After you change the long name of the first column to Frequency, the worksheet
should look like:

門 Book4			$\square \square$	
	C1(X)	A(Y)	$\mathrm{B}(\mathrm{Y})$	A
Long Name	Frequency	Real	Imaginary	
Sparklines			in\|whidwown	
$F(x)=$	\{d1:d2:d1+(n1-1)*d2\}			
1	500	6.35	-4.39	
2	500.25	5.98	-4.27	
3	500.5	5.86	-3.91	
4	500.75	6.23	-3.66	
5	501	6.47	-3.42	
6	501.25	6.47	-3.3	
7	501.5	6.71	-2.69	
8	501.75	6.1	-3.05	
9	502	5.74	-2.32	
10	502.25	6.23	-2.2	
11	502.5	6.1	-1.71	
12	502.75	5.86	-2.08	
13	503	5.74	-2.08	
14	503.25	5.37	-2.2	\square
 4	1e/ 5025	61	$4 \square^{1100}$	\square

4.6.2.2.3Setting Cell Values

In the Cell-Edit Mode, you can enter a cell formula beginning with an equals sign "=" into a cell (a data cell or UserDefined Parameter Row cell) just as below.

Morning	Evening	Stats	
$\left.{ }^{\circ} \mathrm{F}\right)$			

Once the formula has been entered, you exit edit mode (in-place edit or Edit: Edit Mode) to see the resulting cell value.

Let us use an example to show you how cell formulas work in Origin:

1. Open a new workbook in your Origin Project.

2．Import the sample data＂automobile2．dat＂located at the folder＜Origin Program
Folder＞Samples\Statistics into the workbook．

四 automobile2－automobile2．dat＊									－	［可	$\Sigma 3$
腮	$A(X)$	B（Y）	C（Y）	D（Y）	E（Y）	F（Y）	G（Y）	H（Y）	$1(Y)$		－
Long Name	Year	Make	country	luxury	Power	0～60 mph	Weight	Gas Mileage	Engine Displacement		
Units					kw	sec	kg	mpg	c		
Comments											
$F(x)=$											
Sparkines	ronn						mald				
1	1992		US	N	132	14	2238	11	－ 5736.5		
2	1992	Acura	Japan	Y	154	12	2324	11	5212		
3	1992	GMC	US	N	158	13	1531	10	5900.4		
4	1992	Chrysler	US	N	132	10	2088	12	6277.4		
5	1992	Kia	Korea	N	121	12	1202	12	5736.5		
6	1992	Suzuki	Japan	N	106	10	1417	14	5736.5		
7	1992	Volvo	Sweden	Y	95	14	1661	13	5031.7		
8	1992	Mercedes	Germany	Y	132	14	2208	12	5736.5 －		
$\begin{array}{\|l\|l} \hline \text { al } & \text { automobile2 }{ }^{1902} \text { Acura } \\ \hline \end{array}$			Ianan．	v	128	13	7^{110}	12			

3．Right－click on the header cell of column label row＂$F(x)=$＂and select Add User Parameters from the context menu to add a user parameter．

4．Here，let＇s add two user parameters and enter Mean and Std Dev as their parameter names separately． And then，add one more column at the end of this worksheet，enter Power／Engine Displacement as the column Long Name．

腮習	A（X）	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{Y})$	D（Y）	$E(Y)$	F（Y）	G（Y）	$\mathrm{H}(\mathrm{Y})$	IV）	$J(Y)$		＊
Long Name	Year	Make	country	luxury	Power	0－60 mph	Weight	Gas Mileage	Engine Displacement	Power／Engine Displ	ceme	
Units					kw	sec	kg	mpg	cc			
Comments												
$F(x)=$												
Std Dev												
Mean												
Sparkines	－				94 maumyons	mpritivalen	Wravivinder	．．．．．．．．．				
1	1992		US	N	132	14	2238	11	5736.5			
2	1992	Acura	Japan	Y	154	12	2324	11	5212			
3	1992	GMC	US	N	158	13	1531	10	5900.4			
4	1992	Chrysler	US	N	132	10	2088	12	6277.4			
5	1992	Kia	Korea	N	121	12	1202	12	5736.5			
6	1992	Suzuki	Japan	N	106	10	1417	14	5736.5			
7	1992	Volvo	Sweden	Y	95	14	1661	13	5031.7			
8	1992	Mercedes	Germany	Y	132	14	2208	12	5736.5			
9	1992	Acura	Japan	Y	128	13	1412	12	5736.5			\pm

5．Select Edit：Edit Mode menu to switch to the Edit Mode．And then，in the cell Mean and Std Dev of Col（＂Power＂），enter＝mean（this）and＝stddev（this）respectively．Once the edit done，click outside the cell
to exit cell-edit mode reselect the Edit: Edit Mode menu item to display cell formula results.

\# automobile2 - automobile2.dat *							
-9.7	$A(X)$	$\mathrm{B}(\mathrm{Y})$	C(Y)	D(Y)	E (Y)	$F(Y)$	G(Y)
Long Name	Year	Make	country	Iuxury	Power	0~60 mph	Weight
Units					kw	sec	kg
Comments							
$F(\mathrm{x})=$							
Std Dev					=stddev(This		
Mean					79.85		
Sparklines	-				404umyuno	muntumaden	Mualriximar
1	1992		US	N	132	14	2238
2	1992	Acura	Japan	Y	154	12	2324
3	1992	GMC	US	N	158	13	1531
4	1992	Chrysler	US	N	132	10	2088
5	1992	Kia	Korea	N	121	12	1202

Note: About the meaning of the variable "This", please refer to this page.
6. Click the cell Mean of $\mathrm{Col}($ "Power") to select it, put the cursor to the lower right corner of this cell. When the cursor turns to a cross + , grab this "+" handle and drag with your mouse horizontally to Col("Engine Displacement"). Release the cursor, you will found other cells of this row will be filled with some result values. Alternately, you could simply double-click on the " + " handle and copy the formula to all Mean row cells to the right of $\mathrm{Col}($ "Power").

7. Double-click those Mean cells, you will found the filled formulas are all same, =mean(this).

$E(Y)$	$F(Y)$	$G(Y)$	$H(Y)$	$\mid(Y)$
Power	$0 \sim 60 \mathrm{mph}$	Weight	Gas Mileage	Engine Displacement
kw	sec	kg	mpg	cC
28.07561				
79.85	15.58824	1337.75882	21.74706	Emean(This)
132	14	2238	11	

8. Do the same thing for the Std Dev row to calculate the standard deviation for all these five columns.
9. Go to the last column we just added, in the first cell enter $=E 1 / I 1$.

墭	$A(X)$	$\mathrm{B}(\mathrm{Y})$	C(Y)	$D(Y)$	$E(Y)$	$F(Y)$	G(Y)	$\mathrm{H}(\mathrm{Y})$	I(Y)	$J(Y)$
Long Name	Year	Make	country	luxury	Power	0-60 mph	Weight	Gas Mileage	Engine Displacement	Power/Engine Displacement
Units					kw	sec	kg	mpg	CC	
Comments $\quad \mathrm{C}$										
$F(x)=$										
Std Dev					28.07561	3.14842	341.95962	5.89141	1719.2832	
Mean					79.85	15.58824	1337.75882	21.74706	3408.43735	
1	1992		US	N	132	14	2238	11	5736.5	EEtill
2	1992	Acura	Japan	Y	154	12	2324	11	5212	

Note: Here, E1 means the first cell of col(E) and $\mathbf{I 1}$ means the first cell of col(I). You can refer to this page to learn more about the formula.
10. Release your cursor to execute the division. Use the same way at Step 6 to grab this " + " handle and drag with your mouse vertically to the end cell of this column (Hint: If you hover on the lower-right corner of the cell, directly over the cell handle, the cursor changes to a " $\boldsymbol{+}$ " sign. When this " $\boldsymbol{+}$ " sign appears, double-click to extend the formula to the end of the column. This is faster and easier than dragging with your mouse).

軖	$A(X)$	$\mathrm{B}(\mathrm{Y})$	C(Y)	D(Y)	E(Y)	F(Y)	G(Y)	$H(Y)$	I(Y)	J(Y)
Long Name	Year	Make	country	Iuxury	Power	0~60 mph	Weight	Gas Mileage	Engine Displacement	Power/Engine Displacement
Units					kw	sec	kg	mpg	CC	
Comments										
$F(x)=$										
Std Dev					28.07561	3.14842	341.95962	5.89141	1719.2832	
Mean					79.85	15.58824	1337.75882	21.74706	3408.43735	
1	1992		US	N	132	14	2238	11	5736.5	0.02301
2	1992	Acura	Japan	Y	154	12	2324	11	5212	,
3	1992	GMC	US	N	158	13	1531	10	5900.4	
4	1992	Chrysler	US	N	132	10	2088	12	6277.4	
5	1992	Kia	Korea	N	121	12	1202	12	5736.5	
6	1992	Suzuki	Japan	N	106	10	1417	14	5736.5	
7	1992	Volvo	Sweden	Y	95	14	1661	13	5031.7	
8	1992	\#\#\#\#\#\#\#	\#\#\#\#\#\#\#	Y	132	14	2208	12	5736.5	
9	1992	Acura	Japan	Y	128	13	1412	12	5736.5	

11. Release the cursor to get all division results of $\operatorname{col}(E) / \operatorname{col}(I)$ at each row.

$E(Y)$	F(Y)	G(Y)	$\mathrm{H}(\mathrm{Y})$	$1(Y)$	J(Y)
Power	0~60 mph	Weight	Gas Mileage	Engine Displacement	Power/Engine Displacement
kw	sec	kg	mpg	\cdots	
28.07561	3.14842	341.95962	5.89141	1719.2832	
79.85	15.58824	1337.75882	21.74706	3408.43735	
132	14	2238	11	5736.5	0.02301
154	12	2324	11	5212	0.02955
158	13	1531	10	5900.4	0.02678
132	10	2088	12	6277.4	0.02103
121	12	1202	12	5736.5	0.02109
106	10	1417	14	5736.5	0.01848
95	14	1661	13	5031.7	0.01888
132	14	2208	12	5736.5	0.02301
128	13	1412	12	5736.5	0.02231
124	17	1518	13	59004	0.02102
	10	1810	13	5212	0.02111

12. Select Edit: Edit Mode menu, you can check and edit all these cell formulas.

$E(Y)$	$F(Y)$	G(Y)	$H(Y)$	I(Y)	$J(Y)$
Power	0~60 mph	Weight	Gas Mileage	Engine Displacement	Power/Engine Displacement
kw	sec	kg	mpg	CC	
=stddev(This)	=stddev(This)	=stddev(This)	=stddev(This)	=stddev(This)	
=mean(This)	=mean(This)	=mean(This)	=mean(This)	=mean(This)	
132	14	2238	11	5736.5	EE1/11
154	12	2324	11	5212	=E2/12
158	13	1531	10	5900.4	=E3/3
132	10	2088	12	6277.4	=E4/44
121	12	1202	12	5736.5	= 5 //15
106	10	1417	14	5736.5	= E6/.6
95	14	1661	13	5031.7	=E7/7
132	14	2208	12	5736.5	=E8/8
128	13	1412	12	5736.5	=E9/19
124	17	1518	13	5900.4	=E10/10
110	10	1810	13	5212	$=E 11 / 111$
116	14	1899	13	5752.9	=E12/12
128	17	1696	14	5900.4	=E13/13
110	15	1488	13	5212	=E14/14
94	15	1536	13	4949.8	=E15/115
145	17	1426	12	7031.3	=E16/16
152	9	1542	12	7031.3	=E17.17
117	15	1754	12	5736.5	=E18:118
147	18	2140	10	50317	=E19/19
110	13	1437	11	6556	Ez2nan
165	14	1730	12	7457.4	$=E 21121$
139	15	1880	13	6558	工E 22122

Note: Additionally, you are also allowed to extend formulas acroos rows and columns.For more details about setting cell values with formula, please refer to this page.

4.6.3 Worksheet Data Operations

4.6.3.1 Worksheet Data Operations

- Worksheet Query
- Data Reduction
- Data Filter
- Lock Filter with Analysis

4.6.3.2 Worksheet Query

4.6.3.2.1 Summary

This tutorial will show you how to use the Worksheet Query dialog.
Minimum Origin Version Required: Origin 2019b

4.6.3.2.2 What you will learn

This tutorial will show you how to:

- Extract numeric and time data
- Use an alias in an extraction condition
- Use LabTalk functions in an extraction condition

4.6.3.2.3 Dialog Overview

The Worksheet Query dialog box will differ slightly from the image below if (a) Spreadsheet Cell Notation (SCN) is OFF in the active workbook (you see this icon
 n the upper-left corner of the workbook), or (b) you have SCN turned ON but you have checked the Use Alias box in the upper-right corner of Worksheet Query. The Worksheet Query dialog box was modified for version 2019b to allow for more flexible column naming. You can still work through this tutorial by defining column Aliases. See Select Column Variables for If Test, for guidance.

There are two main panels in the Worksheet Query dialog:

- The left panel lists all the columns in the active worksheet. Right-click in the left panel and choose which column properties to display (e.g. Format, 1st Value, etc). Note that only those columns checked in the Extract column will be output when you click OK in the dialog box.
- The right panel is where you set, test and execute query conditions. If SCN is off or you have opted to check the Use Alias box, select those worksheet columns that you want to use in the extract condition in the left panel, then click the $\left.\Rightarrow\right|_{\text {button to move them into the Select Column Variable for If Test box. }}$ You will then have the Aliases that you need to define your Condition. If you intend to use column names or indices instead of Aliases, you can simply define your Condition directly.

4.6.3.2.4 Define the Condition

Extract Numerical Data

1. Start with a new workbook and import the file \Samples \backslash Statistics \backslash body.dat.
2. Click the menu item Worksheet: Worksheet Query to open the Worksheet Query dialog box. If you know the correct syntax, you can type your expression directly into the Condition box. To aid you in constructing your expression, you can use the buttons to the right side of Condition. Additionally, you can insert functions and variables from the Function menu.
3. To extract the data of individuals who are at least 160 cm in height, type the following into the Condition box:

4. When there are multiple conditions, you can combine these conditions using logical operators AND, OR, NOT. We will add a second condition that tests for individuals that weigh no more than 50kg. Click the AND button and type the following after AND:

Your expression should now look like this:

5. To test your query, click the All Rows button to select all rows (note that the 0 in 1 To 0 signifies the last row in the sheet), then click Test -- select if true to test your expression. Origin will return 5 records found.

6. Accept other default settings and click the OK button. A new workbook containing the 5 found records, is created.

Extract Strings

When extracting strings, you need to enclose the string with double quotes (e.g. "California").

1. In order to extract just female (F) subjects, we type the following into the Condition box:

2. Click the All Rows button, then click Test -- select if true. A message shows that 18 records are found.
3. Accept other defaults and click the $\mathbf{O K}$ button to close the dialog and extract data for female subjects to a new workbook.

Extract Time Data

Date and Time data are internally saved as numeric values in Origin. Date is the integer part of the numeric value, while Time is the fractional part. You can use the int() and frac() functions to return the integer and fractional parts of a number, and use the Date(MM/DD/YY) and Time(HH:mm:ss) functions to convert datetime string data to numeric Julian day data.

1. Create a new workbook and choose Data: Import from File: Single ASCII and import <Origin Program Path>\Samples\Import and Export\Custom Date and Time.dat. Note that the "date-time" data in column A is left-aligned, indicating that it is being treated as text strings and not as true date-time data (which is numeric).
2. Select column A, right-click and select Properties. Set Format = Date, Display = Custom Display and in Custom Display enter the following:

This formats the date-time strings in column A as date-time numeric data.
3. Next, we will extract that portion of worksheet data that falls within the time period 10:00:00 and 11:00:00. Click Worksheet: Worksheet Query and in the Condition box, enter the following:

4. Click the All Rows button, then click Test -- select if true. A message shows that 120 records are found.
5. Accept other defaults and click the $\mathbf{O K}$ button to close the dialog and extract data recorded between 10:00:00 and 11:00:00 to a new workbook.

4.6.3.3 Data Reduction

4.6.3.3.1 Summary

Origin offers a number of tools which can be used for data reduction in worksheets: Data Filters, Worksheet Query and several X-Functions which reduce the number of data rows by different methods.

Minimum Origin Version Required: 2015 SRO

4.6.3.3.2 What You Will Learn

In this tutorial, you will learn how to:

- Reduce XY data to evenly spaced X
- Reduce Duplicate X Data for XY dataset
- Reduce XY data by Group
- Reduce worksheet rows

4.6.3.3.3Steps

Reduce to Evenly Spaced X

1. Create a new workbook and click the $\left.\stackrel{\text { 127 }}{\stackrel{\text { 雷 }}{ }}\right|_{\text {button to import the file Signal with High Frequency }}$ Noise.dat under <Origin EXE folder>\Samples\Signal Processing path.
2. Highlight column B and select Analysis:Data Manipulation:Reduce to Evenly Spaced \mathbf{X} to open the reduce_ex dialog. Edit the settings so that they match the following.

3. Click OK. A new column (column C) is added to the worksheet. This column contains its own sampling interval information. Click on the column header to select the column then choose Column: Show \mathbf{X} Column. In the Show \mathbf{X} Column: colshowx dialog box, click $\mathbf{O K}$ to generate an X column using the sampling interval. You can see that the original XY dataset has been reduced by generating a new, larger sampling interval.

浉 SignalwithHig - Signal with High Frequency ... $\square \square \leq$					
細	A(X1)	B(Y1)	C		\wedge
Long Name				ReduceEX	
Units					
Comments			Generated from Sampling Info of D	Y Mean(X Average) Stats Reduction of B	
$F(x)=$					
Sparklines \qquad $\mathrm{A}_{4} \mathrm{~m}_{\mathrm{H}} \mathrm{H}_{4}$	$\mathrm{A}^{2} \mathrm{~m}_{\mathrm{H}}$				
121	3.28627	5.45477	37.15	0.01108	
122 3.30532 4.93594 37.45 -0.1918					
123 3.32438 4.35703 37.75 -0.03399 1					
124 3.34343 3.87166 38.05 -0.12321					
125 3.36248 3.41072 38.35 0.07485 10					
126 3.38153 2.826 38.65 -0.00137 10					
127 3.40059 2.05593 38.95 -0.12254 1					
128 3.41964 1.17457 39.25 -0.17762 1					
129 3.43869 0.40375 39.55 0.10425 10					
130 3.45774 0.08745 39.85 -0.26257					
132 3.49585 1.28452					
133 3.5149 2.42692					
135 3.553 4.83102					
136 3.57206 5.628					
137 3.59111					\checkmark
\| \mid - Signal with High Frequency Noise / ${ }^{\text {/ }}$ <					

4. Highlight column B and D (hold down the Ctrl key for multiple selection), and click the
button to generate a line plot for original (Black) and reduced (Red) data.
5. You can see from the plot that the data size is considerably reduced:

Reduce Duplicate \mathbf{X}

Step01.dat, Step02.dat and Step03.dat under the file path <Origin EXE Folder>|Samples \Curve
Fitting \. Change the Import Mode to Start New Rows and make sure the default import filter step is applied. Click Finish to import these data files.
2. Highlight column A and B, select Analysis:Data Manipulation:Reduce Duplicate \mathbf{X} Data to open the reducedup dialog. Duplicate the settings as depicted below:

3. Click OK to apply settings and in the results sheet Sheet2, we can see that for each X value, 3 duplicates are found. In the reduced dataset, the Y values for each duplicated X have been replaced by the sum of the Y values.

\＃Book1－Step03．dat				$\square \square \square x^{\square}$	
	A（X1）䍏	B（Y1）早	C（X2）早	D（Y2）早	＊
Long Name	ReduceDu	ReduceDupY1	DupX1	DupXCount1	
Units					
Comments		Duplicates replaced with Sum of＂conc17＂			
$F(x)=$					
1	0	0	0	3	
2	1.6	－0．01038	1.6	3	
3	3.2	0.00635	3.2	3	
4	4.8	－0．01886	4.8	3	
5	6.4	－0．00427	6.4	3	
6	8	0.02093	8	3	
7	9.6	0.065	9.6	3	
8	11.2	0.00214	11.2	3	
9	12.8	0.06268	12.8	3	
10	14.4	0.06262	14.4	3	
11	16	0.10034	16	3	
12	17.6	0.06281	17.6	3	
13	19.2	0.11499	19.2	3	
14	20.8	0.1214	20.8	3	
15	22.4	0.12543	22.4	3	
16	24	0.13385	24	3	
17	25.6	0.18195	25.6	3	
18	27.2	0.17139	27.2	3	
19	28.8	0.138	28.8	3	\square
1	λ Sheet2／		｜ 1	III	：

Reduce／Combine Duplicate Rows

1．Go to Sheet1 of the previous section，highlight column A and select Worksheet：Remove／Combine Duplicated Rows．．．to open the wdeldup dialog．Select Average from Merge Duplications by drop－down list，and click the right－sided triangle button on the Output Worksheet row to select ＜new＞：New Sheet and check the Output Counts box and click OK．

2. Entire worksheet rows are reduced into the average values of merged rows which are determined by duplications in the selected column. A new column Counts is added to the end of the result worksheet wdeldup and it reports the number of duplicates found for each X value.

Book1 - Step03.dat					$\square \square$	
	M(X7)	N (Y7)	O(X8)	P(Y8)	Q(Y8)	-
Long Name	conc23	conc23	conc24	conc24	Counts	
Units						
Comments	Sensor Gx	Sensor Gy	Sensor Hx	Sensor Hy		
$\mathrm{F}(\mathrm{x})=$						
1	1.2	0	1.4	0	3	
2	2.8	0.11737	3	0.17448	3	
3	4.4	0.27997	4.6	0.41884	3	
4	6	0.40171	6.2	0.57955	3	
5	7.6	0.51925	7.8	0.68073	3	
6	9.2	0.63123	9.4	0.76457	3	=
7	10.8	0.69611	11	0.81905	3	
8	12.4	0.75454	12.6	0.8929	3	
9	14	0.82426	14.2	0.88688	3	
10	15.6	0.84269	15.8	0.93241	3	
11	17.2	0.86731	17.4	0.9457	3	
12	18.8	0.90261	19	1.00258	3	
13	20.4	0.93424	20.6	0.98714	3	
14	22	0.94843	22.2	1.03746	3	
15	23.6	0.95477	23.8	1.0414	3	
16	25.2	0.98433	25.4	1.03587	3	
17	26.8	0.98297	27	1.05837	3	
18	28.4	0.99487	28.6	1.07505	3	
19	30	1.01113	30.2	1.08614	3	
20	31.6	1.03864	31.8	1.07638	3	
21	33.2	1.04718	33.4	1.10826	3	
22	34.8	1.03794	35	1.11607	3	
23	36.4	1.04631	36.6	1.12785	3	
24	38	1.07383	38.2	1.14673	3	
25	39.6	1.06616	39.8	1.13881	3	
26	41.2	1.07251	41.4	1.14844	3	
4 - ${ }^{\text {a }}$ Sheet1	ASheet2 λ	wdeldup/			III	

The tool Reduce Duplicate \mathbf{X} works for XY dataset only, while the tool Remove/Combine Duplicate Rows works for an entire worksheet.

You can also remove duplicate XY data from an XYZ dataset by using the Statistics on Columns tool, please refer to this Quick Help.

Reduce by Group
 folder>\Samples\Data Manipulation path.
2. Highlight columns A and B and click the button to generate a line plot.
3. Activate this graph and select Analysis:Data Manipulation:Reduce by Group to open the reducexy dialog. Edit your settings as below:

4. Click OK to reduce the data. The reduced XY dataset will be added as two new columns at the end of original worksheet:

\＃Magnetization－Magnetization．dat								$\square \square \mid$ 回 $\square^{\text {a }}$
	A（X1）	B （Y1）	C（Y1）	D（Y1）	E（Y1）	F（Y1）	G（X2）县	H（Y2）盢
Long Name	Time Stamp	Temperature	Magnetic Field	Moment	M．Std．Err．	PPMS Status	ReducedX1	ReducedY1
Units	sec	K	Oe	emu	emu	code		
Comments								Reduction with Average of ＂Temperatur $\mathrm{e}^{\prime \prime}$
$F(x)=$								
Sparklines				$\sqrt{3}^{2}$	Ladad			
762	1462.3	19.95	929.9	\＃\＃\＃\＃\＃\＃\＃	$2.7 \mathrm{E}-6$	4449	3262.2	30
763	1463.3	19.95	920.9	\＃\＃\＃\＃\＃\＃\＃	2．3E－6	4449	3265.2	30
764	1464.3	19.95	910.2	\＃\＃\＃\＃\＃\＃\＃	3E－6	4449	3268.2	30
765	1465.3	19.96	899.5	\＃\＃\＃\＃\＃\＃\＃	2．8E－6	4449	3271.2	30
766	1466.3	19.96	889.4	\＃\＃\＃\＃\＃\＃\＃	3E－6	4449	3274.2	30
767	1467.3	19.96	878.3	\＃\＃\＃\＃\＃\＃\＃	2．2E－6	4449	3277.2	30
768	1468.4	19.96	866.3	\＃\＃\＃\＃\＃\＃\＃	$2.8 \mathrm{E}-6$	4449	3280.2	30
769	1469.4	19.96	855.1	\＃\＃\＃\＃\＃\＃\＃	2E－6	4449	\＃\＃\＃\＃\＃\＃\＃\＃\＃	30
770	1470.3	19.96	844.9	\＃\＃\＃\＃\＃\＃\＃	2．5E－6	4449	\＃\＃\＃\＃\＃\＃\＃\＃\＃	30
771	1471.3	19.96	833.8	\＃\＃\＃\＃\＃\＃\＃	$1.5 \mathrm{E}-6$	4449	\＃\＃\＃\＃\＃\＃\＃\＃\＃	30
772	1472.4	19.96	821.6	\＃\＃\＃\＃\＃\＃\＃	$1.8 \mathrm{E}-6$	4449	\＃\＃\＃\＃\＃\＃\＃\＃\＃	30
773	1473.4	19.96	810.3	\＃\＃\＃\＃\＃\＃\＃	$1.6 \mathrm{E}-6$	4449	\＃\＃\＃\＃\＃\＃\＃\＃\＃	30
774	1474.3	19.96	800.1	\＃\＃\＃\＃\＃\＃\＃	$1.5 \mathrm{E}-6$	4449	3298.3	30
775	1475.3	19.96	790.3	1．32E－4	$1.4 \mathrm{E}-6$	4449		
776	1476.4	19.96	779.4	\＃\＃\＃\＃\＃\＃\＃	$1.4 \mathrm{E}-6$	4449		
777	1477.4	19.96	768.1	\＃\＃\＃\＃\＃\＃\＃	$1.8 \mathrm{E}-6$	4449		
778	1478.3	19.96	758	\＃\＃\＃\＃\＃\＃\＃	$1.8 \mathrm{E}-6$	4449		
779	1479.4	19.96	746.8	\＃\＃\＃\＃\＃\＃\＃	1．7E－6	4449		
780	1480.4	19.96	735.7	\＃\＃\＃\＃\＃\＃\＃	2．3E－6	4449		
781	1481.4	19.96	724.5	\＃\＃\＃\＃\＃\＃\＃	$1.9 \mathrm{E}-6$	4449		
782	1482.4	19.96	713.3	\＃\＃\＃\＃\＃\＃\＃	$1.5 \mathrm{E}-6$	4449		\square
	tization／					$1 /$	III	$\square \cdot 10$

5．The reduced XY dataset is added as a new data plot to the original graph：

Reduce Worksheet Rows

 folder>|Samples\Spectroscopy). There are 6392 data points in this file.

2. Highlight both columns in the Nitrite worksheet and select Worksheet:Reduce Rows to open the wreducerows dialog, and edit the settings to match the image below:

Data Manipulation\Worksheet: wreducerows		\% x^{2}
Dialog Theme ${ }^{\text {x }}$		-
Description Reduce work sheet rows by deletion or mergence		
Recalculate \square Auto		
Input	[Nitrite]Nitrite! $1: 2$	큰
Reduce Method Delete Rows Skip Rows Starting Row to Delete Output	Delete N rows, then skip M rows	-
	9	
	1	
	\new ${ }^{\text {c }}$	(1)
	OK	Cancel

Note: You can select the arrow button right to the Output select box and choose <new>:New Column(s) to make the selection.
3. When you click OK, only the first of every 10 rows is kept. Ninety percent of data points are discarded. Remaining data points are output to new columns:

Nitrite - Nitrite.dat				$\square \square$	
	A(X1)	B(Y1)	C(X2) 畐	D(Y2)早	-
Long Name	Time	Voltage	Time	Voltage	
Units					
Comments					
$F(x)=$					
Sparklines		.			
634	0.33776	1.3	0.35425	1.5	
635	0.33777	0.9	0.35428	1.5	
636	0.33777	0.5	0.35431	1.1	
637	0.33777	0.8	0.35434	1.6	
638	0.33777	0.9	0.35436	2.1	
639	0.33778	0.8	0.35439	2.5	
640	0.33778	0.8	0.35442	1.5	
641	0.33778	1.2			
642	0.33779	1.4			
643	0.33779	0.9			
644	0.33779	0.8			
645	0.3378	0.9			
646	0.3378	0.9			
647	0.3378	0.8			
648	0.3378	1.4			
649	0.33781	0.7			
4 \mid \| Nitrite			1	\square	

4. Select the entire worksheet and click thebutton to generate line plots for original (Black) and reduced (Red) data:

5. Note that peak heights were changed with data reduction. To maintain data plot shape, we should keep more data points. Click the green lock on Graph 1 and choose Change Parameters to open the wreducerows dialog again. Change the value of Delete Rows to 3 and click OK.
6. This time 25% of data points were kept, better preserving the shape of the original data plot.

4.6.3.4 Data Filter

4.6.3.4.1 Summary

The Data Filter is a column-based tool to reduce rows of worksheet data, and consequently also hide the undesired rows for relevant data analysis and graphing. Three data formats are supported: numeric, text and date/time.

Minimum Origin Version Required: Origin 2015 SR0

4.6.3.4.2 What you will learn

This tutorial will show you how to:

- Use the data filter to reduce worksheet data
- Auto update the graphs and analysis results when apply a column filter
- Add a floating graph to a worksheet.

4.6.3.4.3Steps

1. Create a new workbook by clicking the New Workbook button . Then click the Import Single ASCII
 buttons are located in the Standard toolbar.
2. Highlight column C (Power), right click and choose Set As:X in the context menu to set this column as X.
3. Highlight column C and G (hold Ctrl key when clicking), click the :" $^{\text {. }}$ button on the 2D Graph toolbar to generate a scatter plot from these two columns.
4. Activate the generated graph and select Analysis:Fitting:Linear Fit from menu item to open the

Linear Fit dialog. In this dialog, set Recalculate to Auto to ensure auto update of the analysis result, accept other settings as default and click OK to carry out the analysis.

5. A fitted curve and a result table will be added to the graph. Activate the graph again and double click on the X axis to open the Axis dialog. Select the Horizontal icon in the Scale tab, then choose Auto for Rescale. Do the same for the Y axis (Vertical icon) and also set its rescale mode to Auto. Click OK to apply the settings and close the dialog.

6. Go back to the original worksheet automobile and click Column: Add New Columns and add 7 columns to the worksheet.
7. Right-click in the gray area to the right side of the worksheet columns and select Add Graph... in the context menu to open the Graph Browser. In this dialog, select the previously generated graph in the left panel and click OK to add this graph as a floating chart to the worksheet. Drag the floating chart onto the empty worksheet columns you just created and resize it using the selection handles.

8. Highlight column A and B and click the Add/Remove Data Filter button ${ }^{\nabla}$ on the Worksheet Data toolbar to add empty data filters to both columns.
9. Click the Filter icon $\mathbb{V}_{\text {on }}$ the column header of column B, clear the check boxes before Buick, Chrysler, GMC, Kia, Lincoln, Mercedes, Saab, Volvo to hide all rows with these entries, to leave only the Japanese makers. Click OK to apply the filter. The worksheet data, graph and analysis result will all be auto updated accordingly.

10. Click the Filter icon $\bar{\nabla}$ on the column header of column A and select Between, note that the data type of column A is numeric by default from importing. Accept default setting of the Between dialog and click OK. A data filter is applied to this column.
11. Again click the Filter icon ${ }^{\text {F }}$ on column A and this time choose Custom Filter in the context menu to customize the filter, change the Condition as x.between $(\mathbf{1 9 9 6}, \mathbf{2 0 0 0})$ to set the From and To value respectively, click the Test button and in the original worksheet, only the rows meet this testing condition will be highlighted, this works as a preview of the data reduction.

To view the whole worksheet at this stage, you can minimize the Custom Filter dialog, allowing you to scroll up and down the worksheet freely. You can later restore the dialog by clicking the "Minimize" button.

12. Click the OK button to apply the new filtering condition and the data, graphs and analysis results are updated and the graph is also auto rescaled.

Beginning with Origin 2019, you can copy data filters from one column and paste to other columns of data. Right-click on the column's Filter cell and choose Copy; or click on the Filter cell and press Ctrl+C to copy the filter. Select your target column(s) and press Ctrl+V to paste the filter and apply it to data in those columns.

4.6.3.5 Lock Filter with Analysis

4.6.3.5.1 Summary

Generally, when graphing or analysis is done on data with a filter, changes in the filter condition of the source worksheet trigger recalculation for the analysis results and graph.

However for Copy Columns and Pivot Table, in the Recalculate lock icon context menu, there are three worksheet filter options. These are used to control whether the results will be affected by further filter changes.

Minimum Origin Version Required: Origin 9.1 SR0

4.6.3.5.2 What you will learn

- How to copy columns to a new sheet or new workbook
- How to lock a Data Filter condition on copied columns
- How to push back the Data Filter condition to the source worksheet

4.6.3.5.3Steps

1. Import the Origin sample data automobile.dat which is located in <Origin Program Folder> \Samples\Statistics.
2. Highlight the Make column then from the menu choose Column: Filter: Add or Remove Filter or select the Filter button from the Worksheet toolbar.

3. To show only the Honda data, click on the filter icon ${ }^{\nabla}$ that appears on the top left of the column's first cell. Choose Select All to clear all the options. Select Honda. Click the OK button.

4. To copy columns to a different sheet, hold down the CTRL key and select the Make, Power and Engine Displacement columns. Next, right-click and select the Copy Columns to... in the context menu.
5. In the colcopy dialog, select Auto in the Recalculate drop-down list. Make sure the Destination Columns is set to a new worksheet in the same workbook (see Tip, below). A new sheet with the copied
columns will be created.

6. Click and drag the sheet tab of the copied worksheet to blank Origin workspace. This will create a new workbook to hold the copied data so the copied data and original data can now be compared side by side.
7. Click on the green Recalculate lock icon on the top left of the first cells' in the columns of this copied sheet. Select Worksheet Filters: Lock in the context menu. The filter conditions will be saved into the
operation.

8. In the source worksheet, add Data Filter to Power column, and click on the filter icon to select Greater Than.... In the Simple Number Filter dialog, set Value to 100, and click OK. The filter will show only the Power data above 100 in the original workbook but since the filter was locked in the copied workbook the data in it will no longer update.
9. The filter conditions on the original workbook were changed and in order to set them back to the way they are in the copied workbook, use Push Back. In the copied sheet, click on the green lock in column(A) and select Worksheet Filters: Push Back from the context menu. This will result in the data filter condition in the original workbook being pushed back so that the filter condition set on Power no longer applies.

The lock filters options are only available in the new sheet created by column copy. If you copy columns to the same worksheet, the options will not show in the Recalculate lock icon's context menu.

4.6.4 Pivot Table

4.6.4.1 Summary

The Pivot Table provides a quick way to summarize your data, and to analyze, compare, and detect relationships in your data. This tool can sort, count, sum, or compute minimum, maximum, or mean of data stored in a worksheet.

Minimum Origin Version Required: Origin 2015 SR0

4.6.4.2 What you will learn

- How to summarize data by a Pivot Table.
- How to sort output by row or column totals in Pivot Table.
- How to combine small values in columns or rows, and custom extra value.

4.6.4.3 Import Data from Database

1. Before creating a pivot table, we should can import data from database. Suppose we have already set up a database named AdventureWorks2008R2 on a server machine - myServer - running SQL Server, with user name as "accounting", and password as "mydatabase".
2. To connect the database, we use a connection string:
```
Provider=SQLOLEDB.1;Password=mydatabase;Persist Security Info=True;
User ID=accounting;Initial Catalog=AdventureWorks2008R2;Data
Source=myServer
```

3. Activate an empty worksheet and open SQL Editor by clicking the Open SQL Editor button on the

Database Access toolbar.

```
Database Access * x
```



```
        1. Open SQL Editor
        Edit Worksheet SQL Query with SQL
        Editor
```

4. Select menu item Edit Connection String... from SQL Editor's File menu, in the open dialog, put the connection string (see step 1 above) to the text box. And then you can click the Test button to test if the connection is fine. If fine, click the OK button to connection to the database.

Connection String
sword=mydatabase; Persist Security Info=True; User ID=accounting; Initial Catalog=AdventureWorks2008R2;Data Source=myServ -
5. In the right text box, put the following SQL statements.
6.


```
ON A.StateProvinceID = SP.StateProvinceID
INNER JOIN Person.BusinessEntityAddress AS BEA
ON BEA.AddressID = A.AddressID
INNER JOIN Person.Person AS P
ON P.BusinessEntityID = BEA.BusinessEntityID
INNER JOIN Sales.PersonCreditCard AS PCC
ON PCC.BusinessEntityID = P.BusinessEntityID
INNER JOIN Sales.SalesOrderHeader AS SOH
ON SOH.CreditCardID = PCC.CreditCardID
INNER JOIN Sales.SalesOrderDetail AS SOD
ON SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN Production.Product AS Pr
ON Pr.ProductID = SOD.ProductID
INNER JOIN Production.ProductSubcategory AS PS
ON PS.ProductSubcategoryID = Pr.ProductSubcategoryID
INNER JOIN Production.ProductCategory AS PC
ON PC.ProductCategoryID = PS.ProductCategoryID
--WHERE SOH.OrderDate BETWEEN '1/1/2005' AND '12/31/2008'
```

7. Select menu File: Save to Active Worksheet to save these settings to the worksheet, and then select menu Query: Import to import the data into worksheet, and then close SQL Editor. We can see the imported data form the image below.

Hipl								
32	A(X)	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{Y})$	$D(Y)$	E(Y)	F(Y)	A	
Long Name	YEAR	CustomerCountry	ProductName	ProductColor	ProductCategory	ProductSubcategory		
Units								
Comments								
$F(x)=$								
1	2005	Canada	Road-150 Red, 62	Red	Bikes	Road Bikes		
2	2005	France	Mountain-100 Silver, 44	Silver	Bikes	Mountain Bikes		
3	2005	United States	Mountain-100 Silver, 44	Silver	Bikes	Mountain Bikes		
4	2005	United States	Road-650 Black, 62	Black	Bikes	Road Bikes		
5	2005	Australia	Mountain-100 Silver, 44	Silver	Bikes	Mountain Bikes		
6	2005	United States	Road-150 Red, 44	Red	Bikes	Road Bikes		
7	2005	Australia	Road-150 Red, 62	Red	Bikes	Road Bikes		
8	2005	Australia	Mountain-100 Black, 48	Black	Bikes	Mountain Bikes		
9	2005	Australia	Mountain-100 Silver, 38	Silver	Bikes	Mountain Bikes		
10	2005	United States	Road-150 Red, 48	Red	Bikes	Road Bikes		
11	2005	United States	Road-150 Red, 48	Red	Bikes	Road Bikes		
12	2005	United Kinadom	Road-650 Red. 52	Red	Bikes	Road Bikes		
	7				\|	$\square_{\text {III }}$		

9. Click Close to close the dialog.

4.6.4.4 Create a Pivot Table

The imported dataset is a total cost summary of three product categories(Bikes,Accessories, Clothing) in six different countries by year. Suppose now you want to create a pivot table to see the yearly Sum of Total Cost of different product category. Follow the steps below to create the pivot table.

1. Activate the Sheet1, select Worksheet: Pivot Table from the main menu to open the dialog. And specify the following settings in the dialog:

- For Pivot Table Row Source, click the triangle button to add column A.
- For Pivot Table Column Source, click the triangle button to add column E.
- Select Sum with the Summarize by drop-down list. Then select column I for Pivot Table Data Source.
- Expanding Options branch, check Total for Rows and Total for Columns check boxes, and select Row Label Ascending from the Sort Output Rows drop-down list.

2．Click the $\mathbf{O K}$ button to create the pivot table．The table should like this：

	A（X）县，	$\mathrm{B}(\mathrm{Y})$ 早	$\mathrm{C}(\mathrm{Y})$ 易	D（Y）早	$E(Y)$ 早
Long Name	YEAR	Sum of TotalCost			
Units					
Comments		Accessories	Bikes	Clothing	Total＿YEAR
$\mathrm{F}(\mathrm{x})=$					
UserParam1					
1	2005	0	3．11421E6	0	3.11421 E 6
2	2006	0	6．26258E6	0	6.26258 E 6
3	2007	281089.1	8．96743E6	132728.69	9.38125 E 6
4	2008	391752.38	8．79936E6	192688.76	9.3838 E 6
5	Total＿ProductCategory	672841.48	2.71436 E 7	325417.45	2.81418 E 7
6					
7					

In this section, we will show you how to present those categories with the percentage of the summarized value (Count/Sum/Mean/Min/Max) accounts for that of grand total exceeding a threshold percent, and combine small value categories into a default Others category.

1. Based on the above example, click on the lock icon in the Pivot1 worksheet, and select Change

Parameters to open the dialog again.

	$\mathrm{A}(\mathrm{X})$ 品	ovi al cinal	茼
Long Name	YEAR	Recalculate	
Units		Change Parameters...	
Comments		Delete	EAR
$F(x)=$			
UserParam1			
1	200¢ \checkmark	Recalculate Mode: Manual	1 E 6
2	2006	Recalculate Mode: Auto	8E6
3	2007	Recalculate Mode: None	5E6
4	2008		8E6
5	Total_ProductCategory	Show Info (wpivot)	$8 \mathrm{E7}$
6			

2. Specify the following settings in the dialog:

- Expanding Combine Smaller Values branch, select Column in the Combine Direction dropdown list,
- Select By Percent of Grand Total in Mode drop-down list.
- Enter $\mathbf{3 0}$ in Percent textbox and Other Smaller Items in the Column Label textbox.
- Expanding Options branch, uncheck the boxes of Totals for Rows and Totals for Columns

3. Click OK button. The pivot table shows the summarization of data by Sum. And only Category Bikes has the percent of grand total exceeding the threshod percent 30%, other smaller categories has been
reduced into Category Other Smaller Items．

	$A(X)$ 昷	$\mathrm{B}(\mathrm{Y})$ 早	C（Y）甼
Long Name	YEAR	Sum of TotalCost	
Units			
Comments		Bikes	Other Small
$F(x)=$			
UserParam1			
1	2005	3．11421E6	0
2	2006	6.26258 E 6	0
3	2007	8．96743E6	413817.79
4	2008	8.79936 E 6	584441.14
5			
6			

4．6．4．6 Extra Categories Source

In this section，we will show you how to present those categories that are missing in the source data sheet with＇Column Source Extra Value．This is useful when you want to ensure all needed categories will be presented in the result pivot table that might be used for later plotting．

Suppose we want to know the Sum of Total Cost of different product categories before Year 2007．Follow the steps below to create the pivot table．

1．To filter the years before 2007，we use the data filter．Go to Sheet 1 and select Col A．Click ${ }^{\text {V }}$ button in the main menu bar．Click again the filter icon on Col A and select Less Than．Customize the pop－out filter dialog as follow，then click OK to close the dialog．

2．Click on the lock icon in the Pivot1 worksheet，and select Recalculate．As shown in the following pivot table，only Bikes is presented here，because other two product categories do not has any cost data record
in Year 2005 and 2006.

	A (X 茼,	B (Y) 早
Long Name	YEAR	Sum of Total
Units		
Comments		Bikes
$F(x)=$		
UserParam1		
1	2005	3.11421E6
2	2006	6.26258 E 6
3		
4		
5		

3. Back to Pivot1 worksheet, select col(b) and then click Plot > 2D: Bar: Column to plot a column graph(Graph1).
4. Next we want to add two missing categories back into the pivot table. Click on the lock icon in the Pivot1 worksheet, and select Change Parameters. Customize the dialog as follow, click OK to close the dialog. The pivot table would look as follow.

Options

Totals for Rows
Sort Output Rows

Totals for Columns
Sort Output Columns
Column Labels Ascending

Normalize by Column Totals

> None

V
Show Zeros when Empty
Row Source Extra Values
Column Source Extra Values AccessoriesIClothing
Separate extra values by T. For example A|B|C
Combine different column/row info by ' $'$ ', for example, A_1A_2

The pivot table would look as follow.

5. Back to Pivot1 worksheet again. Click again the filter icon on $\mathbf{C o l} \mathbf{A}$ and select Clear Filter from the popup menu to remove the filter. Then select all columns to plot a column graph(Graph2). The graph would show the missing categories.
6. Back to Pivot1 worksheet again, right click the grey area and select Add Graph to add Graph2 onto the Pivot1 worksheet

Year filtering can also be obtained in Database. In this case, you can customize the favorable time period by rewriting this script:

```
--WHERE SOH.OrderDate BETWEEN '1/1/2005' AND '12/31/2008'
```


4.6.4.7 Create analysis template

In this section we will show you how to create analysis template for the pivot table, reimport data from database and reuse the analysis template to create pivot table for new data.

1. Activate the Book1, click File: Save Workbook as template and save it as SumTotalCost.ogw.
2. Open a new OPJ file and then click File: Open to open SumTotalCost.ogw.
3. To change the data source as AdventureWorks2008 in database,

- Activate Sheet1 and open SQL Editor by clicking the Open SQL Editor button .
- Click File: Edit Connection String then type the following string in the open dialog, click Test then click OK to connect the database.

```
Provider=SQLOLEDB.1;Password=mydatabase;Persist Security Info=True;
User ID=accounting;Initial Catalog=AdventureWorks2008;Data Source=myServer
```

- Back to the SQL Editor dialog, On the right panel, rewrite the last script as

- Select menu File: Save to Active Worksheet to save these settings to the worksheet, and then select menu Query: Import to import the data into worksheet, and then close SQL Editor. We can see the imported data form the image below.

\# Book1					$\square \square$	
32	A(X)	B (Y)	C(Y)	D(Y)	E (${ }^{\text {- }}$	
Long Name	YEAR	CustomerCountry	ProductName	ProductColor	ProductC	
Units						
Comments						
$F(\mathrm{x})=$						
Filter						
1	2001	Canada	Road-150 Red, 62	Red	Bikes	
2	2001	France	Mountain-100 Silver, 44	Silver	Bikes	
3	2001	United States	Mountain-100 Silver, 44	Silver	Bikes	
4	2001	United States	Road-650 Black, 62	Black	Bikes	
5	2001	Australia	Mountain-100 Silver, 44	Silver	Bikes	
6	2001	United States	Road-150 Red, 44	Red	Bikes	
7	2001	Australia	Road-150 Red, 62	Red	Bikes	
8	2001	Australia	Mountain-100 Black, 48	Black	Bikes	
9	2001	Australia	Mountain-100 Silver, 38	Silver	Bikes	
10	2001	United States	Road-150 Red, 48	Red	Bikes	
4 Sheet	$7 \quad 2001$	Unitod Stator	Road 150 Rod 10	Dand III	Diven , \\|	

4. To update the pivot table, go to Sheet'Pivot1, click the yellow lock and select Recalculate. The pivot table would be updated according to new data.
5. To update the embedded graph,

- double click the embedded graph and a floating chart would pop up.
- Select the graph and click Rescale button to refresh $\stackrel{\uparrow}{\longleftrightarrow}$. The floating chart would be updated too.
- click the arrow button at the upper right corner of the floating chart to put it back to the worksheet. The worksheet would look as follow.

4.6.5 Categorical Values Ordering and Sharing

4.6.5.1 Summary

Categorical values are used to store categories information in a column. In Origin, you have the capacity to manually add, remove, order categories in a column and the categorical information stored in the column will be carried over to result sheet during analysis. You can easily save categories into a text file and share across columns or worksheets.

Minimum Origin Version Required: Origin 2015 SR0

4.6.5.2 What you will learn

- How to manipulate categorical values
- How to order categorical map
- How to share categorical values

4.6.5.3 Manipulate Categorical Values

1. To import the Origin sample data, select Data: Import from File: Excel(XLS, XLSX, XLSM...) from the Origin menu. Browse to <Origin Program Folder>\Samples \Statistics and select
HouseholdCareSamples.xls. Click the Add File(s) button. Make sure that the Show Options Dialog: check box is selected. Click the OK button to open the impMSExcel dialog.
2. Specify the following settings in the impMSExcel dialog:

- Under File Info, expand the HouseholdCareSamples.xls branch. Unselect File Sheet(s), then check the check boxes next to HQ Family Mart and TX Trust-Mart.
- In the Header Lines branch, select $\mathbf{1}$ in Number of Subheader Lines drop-down list and then 1 for Long Names. Check Apply Header to All Sheets box.
- Click OK to import the data into Origin.

3. On the HQ Family Mart worksheet, highlight column Category (long name) and right click to select Set As Categorical. Double click on the Unsorted on Categories label row to bring up Categories dialog.
4. Now we want to only keep Household Clean, Kitchen Clean, Dishwashing Liquid, Laundry Powder and Fabric Conditioner five categories and order them as listed. To do so, first check Customize

Categories (Add, Delete, Set Arbitrary Order) box, hold Ctrl key to select unwanted categorical values
and use Remove button
 to remove them.

5. Drag the row headings or use the
 buttons to reorder, as shown below:

6. Then click Save > button and select Save As to bring up Categories Save as dialog. Enter HouseholdCare Category as Name and click OK to save the categorical values in a text file under displayed Save Path for sharing later.

7. Click OK to close Categories dialog box.
8. Next we want to know the total number of items in each of the five categories specified in step 4 and make a column plot of results. To do so, highlight column Number (long name) and go to Statistics: Descriptive Statistics: Statistics on Columns: Open Dialog... to bring up Statistics on Columns dialog, click right-sided triangle icon on Group row to select $\mathbf{E}(\mathbf{Y})$:Category as grouping column and click OK to close the dialog. In the prompt dialog, click OK.
9. Switch to DescStatsQuantities1 flat sheet, select column N total (long name) and go to Plot: 2D: Bar: Column to create the column plot.
10. Double click on the X axis tick labels to bring up Tick Labels page on Axis dialog, go to Format tab and select 45 from Rotate (deg.) drop-down list and click OK to close the dialog.
11. Double click on the graph to bring up Plot Details dialog, expand Layer1 node to go to its subnode. In the Pattern tab, expand the Color drop-down list in the Fill group, select By Points tab, and choose the color Black under Increment from list to set it as the starting color. Click OK to close dialog.

12. Right click on the page and select Fit Page To Layers... and click OK in the appeared dialog to bring the X axis label into page. Delete the legend, use Text tool to add HQ Family Mart as graph title. Move X axis
title and added graph title to proper positions, and the column plot looks like the following:

4.6.5.4 Share Categorical Values

1. Continue from the section above, now we want to share the categories saved earlier with second worksheet TX Trust-Mart. To do so, activate TX Trust-Mart sheet and highlight column Category (long name) and right click to select Set As Categorical.
2. Double click on the Unsorted on Categories label row to bring up Categories dialog, check Customize Categories (Add, Delete, Set Arbitrary Order) box and click Load > button on the right and select
appeared HouseholdCare Category file.

3. Follow steps 7-12 in above section and add text TX Trust-Mart instead of HQ Family Mart in step 12, we will obtain a column plot from TX Trust Mart source sheet as following:

4.7 Analysis Templates

4.7.1 Analysis Templates

- Creating and Using Analysis Templates
- Creating Analysis Templates using Set Column Value
- Creating a Custom Report Sheet

4.7.2 Creating and Using Analysis Templates

4.7.2.1 Summary

Routine tasks can be simplified by creating an Analysis Template. Such templates can contain multiple analysis results and also custom report sheets. A new instance of the template can then be opened at any time and source data can be changed to update all analysis results and custom reports.

Minimum Origin Version Required: Origin 2015 SR0

4.7.2.2 What you will learn

- How to create an analysis template (OGW)
- How to re-use an analysis template with new data

4.7.2.3 Steps

4.7.2.3.1 Importing Data

1. Start with a new workbook.
2. Click the Import Single ASCII button 贯 on the Standard toolbar to open the ASCII dialog box. Browse to the <Origin EXE folder> \Samples\Curve Fitting\folder and select the file Sensor01.dat. Make sure that Show Options Dialog is selected and click the Open button. This will open a dialog for specifying import settings.
3. In the impASC dialog, expand the Rename Sheets and Books node and clear the Rename Sheet with (Partial) Filename box.
4. Click the arrow button next to Dialog Theme, and select Save to <Sheet> in the fly-out menu. This will save your import settings to the worksheet.
5. Click OK to import the file to Sheet1.
6. Double-click on the worksheet tab and rename the sheet as Data.

4.7.2.3.2 Performing Analysis

1. Highlight column B and use the Analysis: Fitting: Linear Fit menu item to open the Linear Fit dialog box.
2. Set Recalculate to Auto, accept other default settings and click OK to perform a linear fit. A hierarchical report sheet will be added to the book, with result tables and embedded graphs.
3. Answer Yes to the attention message to go to the FitLinear1 report sheet.
4. Double-click to open the graph under the Fitted Curves Plot tree node. This graph contains the data plot and fitted curve.
5. Click the menu item View:Show:Frame to show the graph frame.
6. Double click on the data plot to open the Plot Details dialog box. In the left panel, select FitLine to open the Page Properties dialog box. Go to the Legends/Titles tab and clear the Indicate Active Dataset check box, then press OK to close the dialog.
7. Select Format: Axes: Y Axis... in the main menu to open the Axis dialog box. Verify that the Type under Major Ticks node is set to By Increment and set the Value to 5. Use Shift/Ctrl key to select both Horizontal and Vertical icons on the left panel and change the Rescale mode to Auto for both X and Y axes. Click Apply to apply settings and choose OK to close the dialog.
8. Manually move the legend object to a suitable position so all text is visible then delete the result table box on the graph. The final graph should look like the image below:
```
FitLine - Linear Fit - \{[Sensor01]FitLinear1!B21[2:2]\} \(\square \square\)
1
B
```


9. Put this graph back into the result sheet by clicking on the restore button at the top right of the title bar.

4.7.2.3.3Saving an Analysis Template

1. Activate the workbook and select File:Save Workbook as Analysis Template.
2. Browse to the desired location and enter a file name, for example MySensorData, and press the Save button.
3. Now the file MySensorData.OGW(U) is saved as an Analysis Template. This template can be re-used in the future to carry out similar analyses.

4.7.2.3.4 Re-using the Analysis Template

1. Start a new project, then select the menu item File: Recent Books. From the fly-out menu options, select the Analysis Template MySensorData.ogw(u) that was saved earlier.
2. Make the Data worksheet active, and click the Import Single ASCII button \qquad Browse to the file Sensor02.dat under the <Origin EXE Folder>\Samples \Curve Fitting \backslash path and import the file. Note:You can also locate the Sensor02.dat file in your local drive, drag and drop it into this Data sheet to import.
3. Since the Recalculate mode was set to Auto, the linear analysis will be performed automatically for the new data.
4. Go to the FitLinear1 worksheet and under the Fitted Curves Plot node, double-click to open the graph and view the updated results.

The Analysis Template can be used in the batch processing of similar data, see this tutorial for details.

4.7.3 Creating Analysis Templates using Set Column Value

4.7.3.1 Summary

This tutorial will demonstrate how to add a column, set up Before Formula Script and have that script run whenever data changes in other columns. This technique can be used to create an Analysis Template for repeated analysis of similar data.

Minimum Origin Version Required: Origin 8.0 SR6

4.7.3.2 What you will learn

- How to use Set Column Values to create an analysis template
- How to select rows via the Go to function

4.7.3.3 Steps

1. Import the data from \Samples\Statistics\automobile.dat into a newly created workbook, as below. In this example, we will extract data, according to the Make column, into different worksheets.

\# Book1					$\square \square$	
	$A(x)$	BC	CO	DC	E(V)	\wedge
Long Name	Year	Make	Power	$0 \sim 60 \mathrm{mph}$	Weight	
Units			kw	sec	kg	
Comments						
1	1992	Buick	132	14	2238	
2	1992	Acura	154	12	2324	
3	1992	GMC	158	13	1531	
4	1992	Chrysler	132	10	2088	
5	1992	Kia	121	12	1202	
6	1992	Suzuki	106	10	1417	
7	1992	Volvo	95	14	1661	
8	1992	Mercedes	132	14	2208	
9	1992	Acura	128	13	1412	
10	1992	Isuzu	124	17	1518	\checkmark
4 1 autom	e/			$1<$	\geqslant	. 11

2. Add an empty column to the worksheet and bring up the Set Column Values dialog of the column. In the Before Formula Script box, enter the script below.
```
// Data range on which to perform discrete frequency count
```

range makeCol = !col (make);
// Worksheet to be extracted
range sourceWks = !;
// Clear worksheets
int sheetNum = page.nlayers;
int colNum $=$ wks.ncols - 1;
if (sheetNum>1)
\{
for (jj=2; jj<=sheetNum; jj++)
\{
layer -d 2;
\}
\}
// Tree variable to hold discfreqs outputs
tree tr;
// Perform discrete frequency count

```
discfreqs irng:=makeCol rd:=tr;
// String array to get result from tree
StringArray sa;
sa.append(tr.FreqCount1.Data1);
if( sa.GetSize() != NANUM )
{
    // Loop to extract data
    for (ii=1; ii<=sa.GetSize(); ii++)
    {
            string sn$ = sa.GetAt(ii)$;
            // Extract condition string
            string cond$ = "makeCol$ = " + sn$;
            // Create worksheet with different Make name
            newsheet name:=sn$ cols:=colNum outname:=on$ active:=0;
            // Extract data
            wxt test:=cond$ iw:=sourceWks c2:=colNum ow:=on$;
    }
}
```

This script will first perform a discrete frequency count on the Make column to get distinct values for Make. It will then create a new worksheet for each brand and extract data into these sheets.

3. Make sure the recalculate mode is set to Auto and click OK. The data will be separated into different worksheets. Then the empty column (H) with a green lock icon indicates that this procedure can be updated automatically.

\# Book1				$\square \square \times$	
	E(Y)	F(\%)	G()	HN0	1
Long Name	Weight	Gas Mileage	Engine Displacement		
Units	kg	mpg	cc		
Comments					
1	2238	11	5736.5		
2	2324	11	5212		
3	1531	10	5900.4		
4	2088	12	6277.4		
5	1202	12	5736.5		
6	1417	14	5736.5		
7	1661	13	5031.7		
8	2208	12	5736.5		
9	1412	12	5736.5		
10	1518	13	5900.4		\checkmark
4 -	ile Acu	A Buick A S $^{\text {a }}$	uzuki (GMC A $1 \leqslant$	IIII	\geqslant

4. There are 18 makes of cars in the source data, so 18 new worksheets were created. Now we can check whether auto-update works.
Go to the Honda tab. Notice that there are 19 rows.
5. Switch to the first sheet. Scroll down and delete the last row.

Then auto-update will be triggered. Go to the Honda tab. You will see there are only 18 rows.

\#\# automobile - automobile.dat							$\square \square$	
	$A(x)$	B(\%)	CO	D(1)	E(V)	F(V)	G(1)	\wedge
Long Name	Year	Make	Power	0~60 mph	Weight	Gas Mileag	Engine Dis	-
Units			kw	sec	kg	mpg	cc	
Comments								
Sparklines								
13	1999	Honda	70	18	1067	24	2196.3	
14	2000	Honda	44	13	1210	24	1606.2	
15	2001	Honda	64	17	746	27	1589.8	
16	2001	Honda	66	14	1847	26	2474.9	
17	2002	Honda	51	17	1240	29	1475.1	
18	2003	Honda	38	19	1024	31	1245.6	
19								
20								
21								
22								
23								\checkmark
	oyota A	aturn $\mathrm{A} N$	A Chrysle	入Honda	$1<$	III)	\cdots

4.7.4 Creating a Custom Report Sheet

4.7.4.1 Summary

Worksheets in Origin can be customized by merging cells and coalescing various objects such as graphs, external images, links to variables and tables/cells in other sheets, into a custom report.

This tutorial will show you how to add a custom report to an existing analysis template. You can then import new data, recalculate results, and export or print the custom report.

Note: This tutorial suggests that you can drag-and-drop data files onto Origin. If you do so, please do not run Origin as administrator.

Minimum Origin Version Required: Origin 9.0 SRO

4.7.4.2 What you will learn

- How to create a custom report sheet
- How to save a custom report as part of an Analysis Template (OGW) and re-use it with new data

4.7.4.3 Steps

Note: Please complete the previous tutorial named "Creating and Using Analysis Templates" in which an analysis template named MySensorData.OGW is created.

4.7.4.3.1 Importing Data

1. Using the File:Open menu item, set the Files of type drop-down to Workbooks (*.ogw), then navigate to and open the Analysis Template MySensorData.OGW. This analysis template was saved with a linear fit analysis for column B of the first worksheet, and a customized embedded graph with the data and the linear fit line (note that templates do not contain data, so at this point, you see no data and no results).
2. Make the Data worksheet active, and click the Import Single ASCII button $\stackrel{\substack{182 \pi \\ \hline \boldsymbol{Z}}}{\text { to directly import the }}$ file Sensor01.dat under <Origin EXE Folder> \Samples\Curve Fitting \backslash path.

Note: You can also locate the Sensor01.dat file in your local drive, drag and drop it into this Data sheet to import.

4.7.4.3.2 Creating a Custom Report Sheet

1. Right-click on the Data worksheet and select Add to add a new worksheet. Rename this worksheet as Custom Report.
2. Activate the Custom Report sheet and choose Format:Worksheet (or hit F4) to open the Worksheet Properties dialog. Go to the Size tab and under the Size node, set Row Number as $\mathbf{2 0}$ and Column Number as 9. Then go to the Miscellaneous tab and check the Auto Add Rows check box. Click OK to apply these settings and close the dialog.
3. In the worksheet, click and drag on the row headers for Long Name, Unit, Comments and $\mathbf{F}(\mathbf{x})=$ to select these four rows. Then right click and select Hide from the context menu. This hides the four rows from the worksheet.
4. Highlight the range of the cells in the first three rows for all columns and click the Merge Cells button国 located in the Styles toolbar to merge the cells. Enter the text Sensor Data Analysis Report in this merged cell.
5. In the 5th row, merge the cells in columns G and H. Repeat for the 6th row. In row 5, column F, enter the text File Name: In row 6, column F, enter the text File Date:.
6. Right click the merged (column G and H) cells in row 5 and choose Insert Variables from the context menu. Make sure the dialog settings look like those in the image below and insert the FILENAME variable into this cell.

7. Right click the merged (column G and H) cells in row 6 and choose Insert Variables from the context menu. Insert the FILEDATE variable following the settings in the image below:

8. Right click on the cell containing the date information and choose Format Cells from the context menu. Change the Format drop-down to Date and click OK.
9. Go to the FitLinear1 worksheet and locate the Parameters table. Click the triangle button next to it and choose Copy Table from the fly-out menu.
10. Go to the Custom Report sheet and select the 9th row in column E. Right click and choose Paste Link. Clear the pasted text Sensor Output in column E by pressing the Delete key.
11. In the 13th row, merge the cells in columns G and H. Do the same in the 14th row.
12. Return to the FitLinear1 sheet and in the Statistics table, select the two data cells for Pearson's \mathbf{r} and Adj. R-Square. Right click and choose Copy to copy only these two cells.
13. Go to the Custom Report sheet and select the merged cell in the 13th row, then right-click and choose Paste Link. The two merged cells are filled with corresponding values. Enter the text Pearson's \mathbf{r} and Adj. R-Square in the cells to the left of these pasted values.
14. In the 8th row, merge the three cells in columns F, G and H. Do the same in rows 12 and 20 . Enter the text Fit Parameters, Fit Statistics and Report Date: \$(@D, D1) in rows 8, 12 and 20, respectively.
15. Right click on the merged cells in row 20 and choose Set Data Style:Rich Text from the context menu. By enabling rich text, the string \$(@D,D1) will display as the actual system date.
16. Hold the CTRL key and select all cells with numeric values, then right-click and choose Format Cells in context menu, then choose Set Decimal Places= from the Digits drop-down menu, and enter $\mathbf{3}$ as Decimal Number, and press OK.
17. Using buttons in the Style and Format toolbars, change cell borders, font sizes, styles and colors to customize the report as in the image below below. You may also need to manually adjust the width of some columns to ensure that all text is displayed.

\#\#\#\#nsor01-Sensor01.dat										
	A($\times 1$	B()	cm	DM	E(9)	FM)	GM	$\mathrm{H}(1)$	Ior	\wedge
1 2	Sensor Data Analysis Report									
4		--							--	
5		--	--			File Name:	Sen	sor01.dat	--	
6			--	--		File Date:		13/2012		
7						Fit Parameters				
8										
9							Value	Standard Error		
10						Intercept	0.119	0.504		
11					-	Slope	1.448	0.078		
12						Fit Statistics				
13						Pearson's I	0.975			
14						Adj. R-Square	0.947			
15						--				
16						--				
17						--				
18						--				
19						--				
20						Report Date: Thursday, May 23, 2013				v
4 $\sqrt{ }$, Data $/$ FitLinear1 A FitLinearCurve1						λ Custom Report \square <				1

18. Go to the FitLinear1 sheet and double-click on the graph under Fitted Curves Plot to open the embedded graph. Right click on the graph's title bar and choose Duplicate from the context menu to duplicate the graph window (Graph1). Double click on the axis of duplicated graph to bring up Axis dialog. Go to Scale tab under both X Axis and Y Axis and choose Auto from the Rescale drop-down list. Then close the original embedded graph window.
19. Return to the Custom Report worksheet, right click on the gray area of this worksheet and select Add Graph from context menu. In the Graph Browser, select Graph1 which was created by duplicating the embedded graph. Click OK to add this graph to this worksheet as a floating chart.
20. You can manually resize and move this floating chart using its anchor points and position it anywhere in the worksheet.
21. Go to Format:Worksheet (or press F4) to open the Worksheet Properties dialog. In the View tab, under the Show Grid Lines node, clear the check boxes next to Column Grid and Row Grid. On the Format tab, make sure Apply To is set to Data, and select Show Missing as Blank to show missing values as blank instead of displaying the "--" characters. Press OK to close this dialog.
22. Select File:Print Preview to preview the custom report. It should look similar to the image below:

Beginning with Origin 2018b all merged cells within a selected range, including noncontiguous blocks of merged cells, can be un-merged by clicking the Merge cells button $\stackrel{\text { 国 }}{\text { 盎 }}$ on the Style toolbar.

4.7.4.3.3Saving the Analysis Template

1. Activate the workbook and select File:Save Workbook as Analysis Template.
2. Browse to a desired file path and enter the file name SensorDataReport and click Save.
3. You can use this SensorDataReport.OGW as an Analysis Template for future analyses of similar data, and the custom report will also be included in the workbook.

4.7.4.3.4 Re-using the Analysis Template

1. Start a new project and then select the menu item File: Recent Books and from the fly-out options select the Analysis Template SensorDataReport.ogw which was saved earlier.
 file Sensor02.dat under <Origin EXE Folder>\Samples\Curve Fitting \backslash path.

Note:You can also locate the Sensor02.dat file in your local drive, drag and drop it into this Data sheet to import.
3. The linear fit results and the custom report are automatically generated using the newly imported data.

4.8 Analysis Themes

4.8.1 Summary

In Origin 8, analysis procedures can be controlled by Themes. Themes are actually XML files which save settings in the analysis dialog.For example, after performing the analysis, there will now be a <Last Used> theme for this dialog which has saved the most recently used settings. You can assign a proper name for the theme and use it in the future.

For this tutorial, the Statistics on Columns dialog will be used to demonstrate how to create and use an analysis theme. This analysis provides descriptive statistics about the data such as mean, standard deviation, minimum, maximum, and more. For visualization, a histogram or box chart can also be created in the Analysis Result Sheet.

Minimum Origin Version Required: Origin 8.0 SR6

4.8.2 What you will learn

This tutorial will show you how to:

- Perform simple descriptive statistics
- Create an Analysis Theme
- Use the theme

4.8.3 Steps

4.8.3.1 Save the analysis procedure as Theme

1. Start with a new workbook and import the file \Samples \Statistics $\backslash a u t o m o b i l e . d a t$.
2. Highlight column C and use the menu item Statistics: Descriptive Statistics: Statistics on Columns to open the dialog.
3. Select Quantities tab, then expand the Moments tree node, and check the N Total, Mean, Standard Deviation, SE of Mean and Sum box.
4. Expand the Plots tree node, and check the Histograms and Box Charts check boxes. You will then get the corresponding histogram as well as box chart graphs.
5. Your selections in this analysis dialog can be saved as your theme, so that you may easily repeat the procedure. Click the arrow to the right of Dialog Theme and choose Save as... ...

... to bring up this dialog:

Theme Save as...

? \times

Please specify theme name

6. Type a proper theme name, such as "MyTheme" and click OK.
7. Click the OK button in the Statistics on Columns dialog. Results are reported to a new worksheet named DescStatsOnCols1.
Descriotive Statistics

	-				
Power	N total	Mean	Standard Deviation	SE of mean	Sum

You can save a customized dialog theme as default, so it will be used every time you open the dialog of analysis operation. To do this, choose Save as <Default> to save the current dialog theme as the default setting of this dialog. It is also possible to delete the default theme and roll back to system default, to do this, choose Delete from the fly-out menu.

You can save also save your Analysis Report Sheet configuration to a Theme file by expanding or collapsing output nodes, then choosing Save Node Configuration from the shortcut menu. For more information, see Save Node Configuration in this table.

4.8.3.2 Repeat the analysis procedure by Theme

Once you save a theme, there are many ways to use it. For example, you can highlight column E and perform the same statistical analyses on it.

- Open the Statistics on Columns dialog from the Most Recently Used items at the bottom of the Statistics menu. Most of the menu accessible dialogs can be opened from MRU menus.

When you open the dialog from MRU, the default theme is <Last Used>. To use the MyTheme theme, select MyTheme from the Dialog Theme shortcut menu. The settings from that theme will then be displayed in the dialog. Click the OK button to do the analysis.

$?$	Save as <Default> Save Save As...	
		Reset Delete...

- Another way to apply the analysis theme is to use the cascaded menu item. Once you use an analysis dialog for the first time after installation, or save a theme for a dialog, there will be one more menu level added. You can choose the MyTheme menu.

When selecting, Open Dialog..., the dialog will open to the <Factory Default> theme. To change the settings of your theme, you can select your theme name from the Dialog Theme shortcut menu inside the dialog, make changes, and resave the theme. Alternatively, to open a dialog with a saved theme without performing the analysis, hold down the shift key while selecting the theme from the menu. This will bring up the dialog with your theme applied so you can make changes as needed.

4.9 Batch Processing

4.9.1 Batch Processing

- Batch Processing Multiple Datasets
- Batch Processing Multiple Files using Analysis Template
- Batch Processing with Summary Report in External Excel File
- Batch Processing with Word Template for Reporting
- Batch Processing Grouped Datasets Using Analysis Template with Multi-Data Sheets

4.9.2 Batch Processing Multiple Datasets

4.9.2.1 Summary

Origin can perform batch analysis of multiple files or datasets, using a pre-saved Analysis Template or current active workbook with analysis operations. This tutorial will focus on batch analysis of multiple datasets using current active workbook/analysis template.

4.9.2.2 What You Will Learn

This tutorial will show you how to:

- Perform analysis on one sample data and create new result sheet with the results you desired
- Perform batch processing multiple datasets using current active workbook containing analysis operations with recalculation.

4.9.2.3 Steps

4.9.2.3.1 Perform fitting on one data firstly

 Fitting \backslash folder and select file Sensor01.dat to import data with default import settings.
2. Highlight col(B) to select Analysis: Fitting: Linear Fit... to open the Linear Fit dialog. Set Recalculate to Auto, and then go to the tab Fit Control, check Fix Intercept check box and set Fix Intercept at as 0.
3. Click OK button to perform the fitting.
4. Go to the sheet FitLinear1, click the downward arrow aside the Summary branch to select Create Copy as New Sheet. A new sheet "Summary" will be created with the fitting results. Go to this new sheet, rename it to "Result" and delete the col(A).
4.9.2.3.2 Performing the fitting on multiple datasets with Batch Processing tool

1. With the workbook active. elect File: Batch Processing from the menu or click the Batch Processing button to open the Batch Processing dialog.
2. Select the Repeatedly Import into Active Analysis Template Window check box for the Batch Processing Mode.
Note: You can also save an analysis template and use it with Load Analysis Template option in your Batch Processing routines.
3. Select Import From Files for the Data Source drop-down list.
4. Click on the Browse button \ldots in the File List section and select all sensor data Sensor\#\#.dat from the <Origin EXE Folder> \Samples\Curve Fitting folder.
5. Select File Name for the Dataset Identifier.
6. Make sure the Data Sheet drop-down is set to Sensor01.
7. Make sure the Result Sheet drop-down is set to Summary.

8. Click OK. All sensor data will be analyzed, and a workbook "Summary" will be generated, displaying the summarized analysis results based on the Result sheet in the original worksheet.

A Summary *							
捅	$A(Y)$	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{yEr} \pm$)	$\mathrm{D}(\mathrm{Y})$	$\mathrm{E}(\mathrm{yEr} \pm)$	F(Y)	*
Long Name	Dataset ID	Intercept	Intercept	Slope	Slope	Statistics	
Parameters		Value	Standard Error	Value	Standard Error	Adj. R-Square	三
1	Sensor01.dat	0	- -	1.46454	0.03425	0.98917	
2	Sensor02 dat	0	--	2.50729	0.0282	0.99748	
3	Sensor03.dat	0	-	4.50124	0.03048	0.99908	
4	Sensor04.dat	0	-	1.3868	0.06444	0.95852	
5	Sensor05.dat	0	-	2.82436	0.01652	0.99932	
6	Sensor06.dat	0	-	2.9465	0.03261	0.99756	
7	Sensor07.dat	0	-	3.392	0.02625	0.9988	
8							
9							
4 b Results							

4.9.3 Batch Processing Multiple Files using Analysis Template

4.9.3.1 Summary

Origin can perform Batch Analysis utilizing an previously created Analysis Template by either importing multiple files, or loading existing datasets.

This tutorial focuses on the former case of batch analysis - importing multiple files with a common (ASCII) file structure, then repeatedly applying the analysis template for the linear curve fitting to the every imported data file.

4.9.3.2 What You Will Learn

This tutorial will show you how to:

- Make an analysis template which contains a Result Summary Sheet to collect the output of batch processing.
- Perform batch processing with multiple data files using an analysis template

4.9.3.3 Steps

In general, the procedure of batch processing is divided into two parts:

1. In preparation, make an Analysis Template which is an empty framework of a workbook. This workbook template contains a Result Summary Sheet to collect the outputs of your analysis (e.g.,, linear curve fitting) during batch processing.
2. Perform the Batch Processing using the prepared analysis template for multiple data files.

4.9.3.3.1 Preparing an Analysis Template containing a Result Summary Sheet to Collect Outputs of Batch Processing

Before performing the batch processing, we need to make an analysis template which contains a result worksheet (which may contain a graph in a worksheet cell as shown in this tutorial) to collect the outputs of batch processing inside the analysis template workbook.

Note1: Hereafter, you can find the location of <Origin EXE Folder> by choosing "Help: Open Folder: Program Folder" menu in Origin. Similarly for <User Files Folder>, choose "Help: Open Folder: User Files Folder" menu.

Note2: If you want to skip this preparation step to make the analysis template, you can use the ready-to-use analysis template file, <Origin EXE Folder> \Samples \Batch Processing \MySensorData.OGWU (or .OGW in Origin 2017 or before). Also, if you only want learn how to make the analysis template regardless the batch processing, refer to the tutorial, "Creating and Using Analysis Templates".

1. Let us import a data file as a model. In a new workbook, choose "Data: Import from File: Single

Fitting \Sensor01.dat file in the ASCII dialog box, and check Show Options Dialog checkbox. Click OK. This opens the impASC dialog to set import options In the appeared impASC dialog, turn OFF the "Rename Sheet with (Partial) Filename" check box (under the "Rename Sheets and Books" node). By clearing this option, the imported data goes always the same data sheet name (in our case "Data" sheet). Also, click the arrow button next to Dialog Theme, and select Save to <Sheet> in the flyout menus. By selecting this flyout, Origin saves your import settings to the worksheet, and Origin imports the files always in the same manner. Click OK, and the data file is imported to the worksheet. Double-click the Sheet1 sheet tab and rename to the more meaningful name, "Data".
2. Now, let us perform the linear fit as a sample run. Highlight column B, and choose the Analysis: Fitting: Linear Fit: Open Dialog menu. The Linear Fit dialog box will be opened. In the dialog, set Recalculate to Auto (because we automatize the batch process without manual intervention), and click

OK to perform a linear fit. In the workbook, go to the FitLinear1 analysis report sheet. (In the Reminder box, you can answer Yes.)
3. Now, let us add a Result Summary Sheet to this workbook as a collection place of the output of batch processing. Go to the FitLinear1 sheet, and find the Summary table in it. This table contains the important analysis results such as the slope and the intercept, and it is a good place to start constructing the Result Summary Sheet. To do so, click the triangle button next to the table name, and choose Create Copy As New Sheet flyout. A new sheet named Summary is created from the table.
4. Now, let us design and customize this new Summary sheet for our purpose. We let it contain the Pearson's \boldsymbol{r} statistics, and the fitted curve graph. First, click the + 目 button TWICE to add two new columns (columns G and H). Let us add the the Pearson's \boldsymbol{r} to the column G-First, go back to the FitLinear1 sheet, right-click on Pearson's \boldsymbol{r} value cell in the Statistics table, select Copy flyout. Next, go to the Summary sheet, right-click on the first data cell of column G, and choose Paste Link to paste the link of the \boldsymbol{r} value. For the caption of this statistics, go to the FitLinear1 sheet, in the Statistics table, click on the caption text Pearson's r, and right-click and choose Copy. Then, switch to Summary, rightclick the cell in column G, Parameters row, and select Paste Link flyout to paste the parameter label.
5. In the similar way, let's add the fitted plot graph to the column H. First, go back to the FitLinear1 sheet, right-click the fitting result graph under the Fitted Curves Plot branch, right-click on the graph to select Copy context menu. Next, switch to the Summary sheet, right-click on the first data cell of column H, select Paste Link flyout to paste the graph as a link. Give the long name of column H Fitted Curve.
6. Finally, let us save this workbook as an Analysis Template for batch processing. Choose File:Save Workbook As Analysis Template menu, navigate to your <User Files Folder>, and enter Sensor Analysis for the analysis template name. Click Save. You can close Origin - because you have already save the Analysis template, it is not necessary to save this project unless you just want to keep it as a practice record.

4.9.3.3.2 Performing Batch Processing with Multiple Data Files

Once you have made an Analysis Template including a Result Summary Sheet, it is quite easy to perform a batch processing to get the summarized Output from many source data files.

1. In a new project, choose "File: Batch Processing..." menu (or, click 䒼button). "Batch Processing" dialog appears.
2. At the Batch Processing Mode, select the Load Analysis Template so that we can use the analysis template we already have made.
3. At the "Analysis Template", select the Sensor Analysis.OGWU (or .OGW in older versions) file in <User Files Folder> which we have saved in the previous section. (You can click "..." button to locate your analysis template.) Similarly, at the Data Source, select Import From Files from the drop-down as we want to import multiple files.
4. At the "File List", Click on the "..." button, and select ALL source files Sensor\#\#.dat (\#\# is the sequence number of the file) from the <Origin EXE Folder> \Samples \Curve Fitting folder (use SHIFT or CTRL key to select multiple files).
5. At the Dataset Identifier, select File Name so that the file name of every imported file will appear in the Result Summery Sheet as the data source.
6. At the Data Sheet drop-down, select Data to specify the receiving worksheet of import in the Result Summary Sheet.
Similarly, at the Result Sheet drop-down, select Summary to specify the output destination of the Result Summary Sheet.
7. The "Delete Intermediate Workbook" check box may be either checked not to produce a large number of intermediate workbooks/worksheets, or unchecked to preserve all intermediate outputs in addition to the Result Summary Sheet. (Note: In Origin 2018, even if you check this check box, you don't have to be worried about loosing the intermediate reports because "Open Book(s)" button in the Result Summary sheet can regenerate individual full report later.)

8. Click OK. All seven data files will be processed as indicated by the progress bar. A Summary workbook is generated, which contains summarized analysis results from the seven Result sheets in the analysis template. Put your mouse cursor on any graph cell, the fitted result graph will pop up to let you see the details. In Origin 2018, or later, if you want to extract full analysis reporst or their individual graphs, highlight the desired rows, and press the "Open Book(s)" button.

4.9.4 Batch Processing with Summary Report in External Excel File

4.9.4.1 Summary

This tutorial is associated with the Sample Origin Project:
Samples \Batch Processing\Summary Report in External Excel File.opj

Minimum Origin Version Required: Origin 8.1 SR2

4.9.4.2 What you will learn

- How to perform batch processing of multiple data files
- How to send results to an external Excel file and save that file

4.9.4.3 Steps

1. Make the 'Raw Data' Worksheet in the 'Book1' Workbook active.
2. Select File: Batch Processing... from the menu or click the Batch Processing button
 on the Standard Toolbar.
3. Select the Repeatedly Import into Active Analysis Template Window radio.
4. Set Data Source as Import From Files.
5. Check the Use Import Setting in Workbook check box.
6. Click the ... browse button next to File List.
7. Select All Files (*.*) in Files of Type and browse to Origin's \Samples \backslash Batch Processing folder.
8. Select all 10 .cs files in the folder, click Add Files) then click OK.
9. Dataset Identifier should be set to None.
10. Data Sheet(s) should be set to 'Raw Data'. Note: 'Raw Data' is the first sheet of 'Analysis Template', it will be renamed as the file name of last import file by default if this template has already been used and re-saved.
11. Result Sheet should be set to 'My Results'.
12. Click the button to the right of the "Output Sheet" edit box. This will minimize the main dialog. Then click on the title bar of the Excel book (Book2), and press the button to the right of the scrolled up dialog to expand it again.
13. Expand the Options branch and check the Clear Output Sheet on Start check box and enter $\mathbf{7}$ as the

Starting Row of Output Sheet.
14. Check the Append Label Rows check box.
15. Click OK

4.9.5 Batch Processing with Word Template for Reporting

4.9.5.1 Summary

Origin can perform batch analysis of multiple files and output cell-linked analysis results to an external Word template for reporting.

Minimum Origin Version Required: Origin 2016 SR0

4.9.5.2 What you will learn

This tutorial will show you how to:

- Add bookmarks from a Word template to a specific Analysis Template
- Link analysis results to bookmarked cells in Word template and adjust the sizes of graphs to be exported
- Sending one time results to Word template for reporting
- Perform batch analysis of multiple files and export results to Word/PDF files

4.9.5.3 Steps

In this tutorial we will use a built-in Word template Sensor Analysis Report.dotx which is located at <Origin EXE folder> \Samples \Batch Processing \backslash folder. To view the bookmark labels on the Word template, with the file open go to File: Options to open Word Options dialog. Then select Advanced on the left panel and scroll down to section Show document content on the right panel and check Show bookmarks checkbox there.

4.9.5.3.1 Add Bookmarks to Analysis Template

1. Start Origin. Click File: Open and browse to <Origin EXE> Samples \backslash Batch Processing \backslash folder and select the file Sensor Analysis.ogw (NOT "Sensor Analysis.ogwu") and open it.
2. Activate worksheet Data, click the button ${ }^{123} /{ }^{\left[\frac{1}{2}\right.}$ and browse to <Origin EXE folder>|Samples \backslash Curve Fitting \backslash folder and select file Sensor01.dat to import data for analysis.
3. Go to menu File: Add Word Bookmarks to Analysis Template... to open dialog. Click the browse button … to the right of the Word template box and browse to <Origin EXE folder>|Samples \backslash Batch Processing \backslash folder to select Sensor Analysis Report.dotx.
4. Click to select all bookmark entries in the Bookmarks list under Select Bookmarks and click OK to add a Bookmarks sheet to the active analysis template.

4.9.5.3.2 Link Analysis Results to Word Template

1. Click on the Bookmarks tab.
2. In the Links column, right-click the cell to the right of FileName and select Insert Variables.
3. In the Insert Variables dialog, click the Info tab, expand the SYSTEM.IMPORT node and highlight FILENAME. Click the Insert button to insert the file name into the worksheet cell.
4. Right-click the cell beside FileDate and again choose Insert Variables, expand the SYSTEM.IMPORT node, highlight FILEDATE and click the Insert button to insert the file date into the worksheet cell. Note that the value that is inserted is a Julian Day value, the number that Origin uses internally to store datetime data. To display in a more familiar date format, right-click the cell and select Format Cells.
5. From the Format drop-down list, select Date and click OK to close the dialog.
6. Right-click the cell beside the FittedGraph cell and select Insert Graph. Click the browse button … to the right of the Graphs box to open Graph Browser dialog. Check the Show Embedded Graph box to display a list of worksheet-embedded graphs. Click to select the FitLine graph and add it to panel on the right. Click OK twice to insert the graph into Bookmarks worksheet. In the GraphWidth column to the right, enter 250 (units = point size) to specify the size of the graph that will be exported to Word.

7. Repeat the last step for the row ResidualPlot.
8. For bookmarks related to parameter values, we will copy and paste link values from the report sheet FitLinear1. Click the report sheet FitLinear1 and locate the Parameters table. Click on the data cell at the intersection of Intercept and Value, right-click and select Copy. Return to the Bookmarks sheet, rightclick the cell to the right of InterceptValue and select Paste Link to create a link between bookmarks in the Word template and values in report sheet.
9. Repeat this "Copy and Paste Link" operation to fill in the rest of cells in the Links column (you'll find the R Square value beside Adj. R-Square in the Statistics table). When done, click File: Save Workbook as

Analysis Template... to save the analysis template as Sensor Analysis Template.ogw or .ogwu .

Sensor01-Sensor01.dat *				$\square \square$
w- w^{1}	A(X)	B (Y)	$\mathrm{C}(\mathrm{Y})$	
Long Name	Bookmarks	Links	GraphWidth	
Comments		1. For meta data, right click and select "Insert Variables". 2. For analysis results, copy from the report sheet, and then paste link. 3. For graph, right click and select "Insert Graph", or copy from the report sheet and then paste link.	If the link is a graph, specify the width to be set in the export word report for this graph, by unit of points(72 point=1 inch).	
Word Template		C:IProgram Files\OriginLablOrigin2018bISamples\|Batch ProcessingiSensor Analysis Report.dotx		
1	FileName	Sensor01.dat		
2	FileDate	1/17/2018		
3	FittedGraph	\square	250	
4	ResidualPlot	-	250	
5	InterceptValue	0.11883		
6	InterceptError	0.50426		
7	SlopeValue	1.44803		
8	SlopeError	0.07839		
9	RSquare	0.9471		
10				

You can follow the steps in the previous tutorial "Creating a Custom Report Sheet" to learn how to copy and paste results as link to desired cell.

4.9.5.3.3Sending One Time Results to Word Template to Create Word Report

Sometimes we may just want to analyze one data file and quickly create one Word report. Continue from the example above, suppose we have all results linked to Word bookmarks as shown in Bookmarks worksheet, to create an one time Word report for active sheet you can simply click Export to Word button w on the top left corner to create it.

You can further specify where to output the Word report in appeared Export Path dialog.

4.9.5.3.4 Batch Process and Export Results to Word/PDF Files

1. Start with a new project.
2. Click on the Batch Processing button

3. Make sure Load Analysis Template is selected as Batch Processing Mode. In the Analysis Template drop-down, select the Sensor Analysis Template.ogw(u) file we created earlier (you may need to click the button to the right of the list and browse to the created file).
4. Select PDF from Export to drop-down list to export report as PDF file.
5. Click the browse button \ldots to the right of the Word template box and browse to <Origin EXE folder>\Samples \backslash Batch Processing \backslash folder to select Sensor Analysis Report.dotx.
6. Optionally you can click browse button \cdots on the right of Export Path to specify another path for export.
7. Click on the browse button \cdots to the right of File List, browse to the <Origin EXE Folder> ${ }^{-\cdots}$ Samples \backslash Curve Fitting folder and select all sensor files Sensor0\#.dat.
8. Click Add File(s), then click OK.
9. Select File Name as Dataset Identifier.
10. Make sure the Data Sheet drop-down is set as Data.
11. Make sure the Result Sheet drop-down is set as Result.
12. Make sure that Delete Intermediate Workbook is cleared.
13. Click OK to close the dialog and process the "Sensor" data files.
14.

If you forget where to look for your exported PDF files, the location is output to Messages Log.

Criginlab

$20+$ years senving the scientific and
engineoring community
One Roushouse Phem Suike 308
Northarption MA4 0/060
IES4
Sensor Data Analysis Report

File Name	Sensor02.dat
File Date:	$9 / 13 / 2017$

Summary Table			
Intercept	-0.85811	\pm	0.36326
Slope	2.62654	\pm	$\mathbf{0 . 0 5 6 4 7}$
Adj. R-Square	0.99129		

4.9.6 Batch Processing Grouped Datasets Using Analysis Template with MultiData Sheets

4.9.6.1 Summary

Origin can perform batch analysis on grouped datasets using an analysis template with multiple data sheets.
Minimum Origin Version Required: 2016 SRO
4.9.6.2 What you will learn

This tutorial will show you how to:

- Create a multi-data sheets analysis template
- Perform batch analysis on grouped datasets using analysis template

4.9.6.3 How the Analysis Template Works

The reference multi-data sheets analysis template Multi-Data Sheets Analysis.ogw that we are going to make is located in <Origin EXE Folder> \Samples \Batch Processing folder. This analysis template will process 10 CSV files located in <Origin EXE Folder>|Samples \backslash Batch Processing folder in group of 5. Every 5 data files will be imported into the sequential data sheets in the analysis template and a non-linear fit will be conducted to obtain the peak area and its standard error of each curve. Eventually we will perform linear fit to peak area versus temperature data extracted from file name and output the results.

4.9.6.4 Steps

4.9.6.4.1 Create Multi-Data Sheets Analysis Template

Import CSV Files into Sequential Data Sheets

1. Create a new workbook. Go to menu Data: Import from File: Comma Delimited (CSV)... to open CSV dialog.
2. Browse to <Origin EXE Folder>\Samples \Batch Processing folder and select the first five data files, make sure Files of type: is selected as *.csv, then click Add Files(s) and OK button to open Comma Delimited(CSV): impCSV dialog.
3. Expand Import Options: Header Lines node, select Number of Subheader Lines as 2, Long Name as 1 and Units as 2. Click OK to finish import.

Perform Nonlinear Fit to Obtain Peak Area
4. Highlight column 2 in sheet $T 275 k$, hold Ctrl +Y or go to menu Analysis: Fitting: Nonlinear Curve Fit to open the NLFit dialog.
5. Select Gauss as Function in Origin Basic Functions category.
6. Click Fit button to perform the fitting. Click $\mathbf{O K}$ in the prompt to close it.
7. Repeat steps 4, 5, 6 for data $T 285 k, T 295 K, T 305 K, T 315 K$ to obtain peak areas for all five peaks.

Prepare Data for Linear Fit

8. Right click sheet tab FitNLCurve5 and select Add to add a worksheet. Double click on the name and input TempData as sheet name.
9. Hold Ctrl+D to open Add New Columns dialog and input 2 in the edit box to add 2 extra columns. Click OK button to close dialog.
10. Set the Long Name of the 4 columns as Data File, Temperature, Area Value, Area Error, respectively.
11. Right click the first data cell in column Data File and select Insert Variable to open dialog. Right click the node of workbook $T 315 K$ on the right panel and check Show Sheet Level item to show sheets under it. Then click $T 275 K$ sheet on the right panel and click Label tab on the left panel. Click property Name to highlight that row and click Insert button to insert sheet name into this cell.
12. Repeat this step for other four sheets to add the sheet name to column Data File.
13. Next we want to extract the temperature number from sheet name in first column, to do so highlight column Temperature and right click to select Set Column Values.... Input formula below in the edit box to extract the middle 3 numbers from file name and click OK to close dialog and apply.

14. Go to sheet FitNL1 and highlight the two value cells under area \boldsymbol{A} section in Summary' node. Right click to select Copy to copy the data. Then go to TempData sheet and paste link the data in the first row in column Area Value and Area Error. Repeat this step for other four data files.
15. Set the designation of column Temperature as \mathbf{X}, column Area Error as \mathbf{Y} Error.

Perform Linear Fit and Create Result Sheet
16. Highlight column Area Value and Area Error and go to menu Analysis: Fitting: Linear Fit to open dialog, select Recalculate mode as Auto, click OK to perform linear fitting and close the dialog. Click OK in appeared prompt to close it.
17. Right click sheet tab FitLinearCurve1 and select Add to add a new sheet and name it as Results.
18. Hold Ctrl + D to open Add New Columns dialog and input 3 in edit box to add 3 new columns.
19. Set the Long Name of the 5 columns as Intercept Value, Intercept Error, Slope Value, Slope Error and Adj. R-Square, respectively.
20. Go to sheet FitLinear1, copy the 5 value cells under Summary node and go back to Results sheet and click the first cell in first data row to paste as link.
21. Go to menu File: Save Workbook As Analysis Template... to save it as an analysis template and name it as Multi-Data Sheets Analysis.

4.9.6.4.2 Batch Analyze Files in Groups

In <Origin EXE Folder> \Samples\Batch Processing folder, we have 10 CSV data files. Suppose now we want to group the files as two groups and re-order them as: group 1 as T365K, T345K, T325K, T305K, T285K; group 2 as T355K, T335K, T315K, T295K, T275K. After we will process those two grouped files using the analysis template we created in section above.

1. Go to menu File: Batch Processing... to open dialog, click the more options button next to Analysis Template edit box to browse to analysis template Multi-Data Sheets Analysis.ogw.
2. Click the more options button next to File List edit box to bring up Open dialog. Firstly drag and drop CSV files one by one to re-order them as shown below and click Add File(s) button to add the files to list.

Click OK button to exit dialog.

(5) Open				x^{x}
Look in:	1] Batch Proce	ing *	(企	
Recent Places Desktop Libraries	Name		Date modified	Type
	(1). T365K.csv 1 T345K.csv 1. T325K.csv (1.). T305K.csv 1. T285K.csv	Group 1	$\begin{aligned} & \text { 8/4/2015 2:42 PM } \\ & \text { 8/4/2015 2:42 PM } \end{aligned}$	Microsoft
				Microsoft
			$\begin{aligned} & \text { 8/4/2015 2:42 PM } \\ & \text { 8/4/2015 2:42 PM } \end{aligned}$	Microsoft
			8/4/2015 2:42 PM 8/4/2015 2:42 PM	Microsoft
			$\begin{aligned} & \text { 8/4/2015 2:42 PM } \\ & \text { 8/4/2015 2:42 PM } \end{aligned}$	Microsoft
	T. T355K.csv	Group 2	8/4/2015 2:42 PM	Microsoft
	(10.) T335K.csv		8/4/2015 2:42 PM	Microsoft
	(1.) T315K.csv		$\begin{aligned} & \text { 8/4/2015 2:42 PM } \\ & \text { 8/4/2015 2:42 PM } \end{aligned}$	Microsoft
	冈. T295K.csv			Microsoft Microsoft
	(1.). T275K.csv		8/4/2015 2:42 PM 8/4/2015 2:42 PM	
Computer Network	4 \square II		\square	*
	File name:	sv" "T305K.csv" "T285K.csv" *	Add File(s)	OK
	Files of type:	O.csv	Remove File(s)	Cancel
	File Name	Size	Modified	-
	T365K.csv	6KB	08/04/15 14:42	E
	T 345 K . csv	6KB	08/04/15 14:42	
	T325K.csv	6KB	08/04/15 14:42	
	T305K.csv	6KB	08/04/15 14:42	
	T285K.csv	6KB	08/04/15 14:42	
	T355K.csv	6KB	08/04/15 14:42	-

3. Select File Name as Dataset Identifier, Results sheet as Result Sheet and uncheck Delete Intermediate Workbook.

4. Click OK button to start processing. And click OK button to save the Batch Processing dialog settings into the analysis template used(only available since Origin 2018b). The results will be outputted to Summary workbook as shown below:

5 Statistics

5.1 Statistics

5.1.1 Descriptive Statistics

- Descriptive Statistics
- Cross Tabulation
- 2D Binning
- Distribution Fit
- Partial Correlation Coefficient

5.1.2 Hypothesis Tests

5.1.3 ANOVA

- One Way ANOVA
- One-Way Repeated Measures ANOVA
- Two Way ANOVA
- Two Way Repeated Measures ANOVA
- Two-Way Mixed-Design ANOVA
- Three-Way ANOVA

5.1.4 Nonparametric Tests

- Non-parametric Statistics Overview

5.1.5 Survival Analysis

- Kaplan-Meier Estimator
- COX Model Estimator
- Weibull Fit

5.1.6 Multivariate Analysis

- Principal Component Analysis
- Cluster Analysis
- Discriminant Analysis
- Partial Least Squares

5.1.7 Power and Sample Size

5.1.8 ROC curve

5.2 Descriptive Statistics

5.2.1 Descriptive Statistics

- Descriptive Statistics
- Cross Tabulation
- 2D Binning
- Distribution Fit
- Partial Correlation Coefficient

5.2.2 Descriptive Statistics

5.2.2.1 Summary

Origin provides comprehensive Descriptive Statistics support including basic statistics (mean, median, variance, etc.), frequency counts, and correlation coefficients of your data sets. In addition to strong plotting features, Origin's statistical tools help you summarize and analyze your data.

5.2.2.2 What You Will Learn

This tutorial will show you how to:

- Use the Statistics on Column dialog to calculate descriptive statistics for grouped data.
- Copy statistical results to a new worksheet for further processing.
- Sort worksheet data by the attribute values in a designated column.
- Analyze data sets with the Correlation Coefficient Tool.

Minimum Origin Version Required: Origin 2015 SRO

5.2.2.3 Finding Frequency Information for Groups

We will use the Discrete Frequency tool to quickly obtain frequency information for groups of data.

1. Open a new workbook. From the Menu Bar select Data: Import from File: SingleASCII:

Statistics|automobile.dat.
2. Highlight the first two columns in the automobile worksheet. From the Menu Bar, select Statistics:

Descriptive Statistics: Discrete Frequency. Change the Recalculate mode to Auto. To make operation in the source data worksheet Controlling the Categorical Values section working, change the Sort Data By to Categorical Order. Then click OK

3. The resultant worksheet DiscretFreq1 displays data and its counts for automobile Year and Make, respectively.

In spite of the fact that there are locks on the columns, the worksheet can be rearranged by highlighting the desired column, going to the Menu Bar, selecting Worksheet:Sort Worksheet, and selecting Ascending, Descending, or Custom from there.
5.2.2.4 Calculating Descriptive Statistics on Grouped Data

Basic statistical treatments can be performed on the data in individual columns using the Statistics on Columns tool.

1. Return to the automobile worksheet. From the Menu Bar, select Statistics: Descriptive Statistics: Statistics on Columns: Open Dialog....
2. In the Statistics on Columns dialog box, in the Input tab, expand Range $\mathbf{1}$ and click the interactive button to the right of Data Range. Return to the worksheet, select column \mathbf{C} and drag to column \mathbf{G}. Click the interactive button again to restore the dialog box. In the dialog box, after adjusting Input Data under Range 1, click the arrow button at the top-right corner of the Group control box to select $\mathbf{B}(\mathbf{Y})$: Make as grouping data. Change the Recalculate mode to Auto.

3. In the Output tab, under the Graph branch, check the Arrange Plots of Same Type in One Graph box. Also, in the Plots tab, check the Box Charts check box.

4. Click OK to get the results in a report sheet.

In order to modify any embedded box plot in report sheet, double-click to open it, then customize the graph and click the Return button in the top right corner to restore the modified graph back to the report sheet.

5.2.2.5 Using Statistical Results for Further Operations

It is possible to perform further data analysis and to plot the statistical results.
For example, to obtain average attribute values (i.e. horsepower, 0-60 mph time, weight, mileage) by Vehicle Make from 1992 to 2004, perform the following:

1. Return to the automobile - automobile.dat workbook, and open the DescStatsQuantitiesi worksheet. Highlight the $\mathbf{D}(\mathbf{Y 2})$ and the $\mathbf{E}(\mathbf{y E r} \pm)$ columns, go to the Menu Bar and select Worksheet: Unstack Columns: Open Dialog....
2. In the wunstackcol dialog box, change the Recalculate mode to Auto, select Group Columns and click the context menu button \rightarrow and select A(X1) Data.
3. Expand Options and check the Include Other Columns box. On Other Columns, click the context menu button \dagger and select A2:(X) Make. Set Matching Longest Group as Extract Rule for Other Columns Values, expand Output Settings, and from Put Grouping Info. to, select Long Name. Click

OK.
Unstack Columns: wunstackcol

Dialog Theme
Description UnStack grouped data into multiple columns

4. To see the results, open worksheet UnstackCols1, highlight the worksheet, and from the Menu Bar, select Plot>2D: Multi-Panel: Stack.
5. In the Plotting:plotstack dialog box, set Plot Type to Scatter. Click OK.
6. Now we are going to rotate the tick labels at top X axis for clarification. Double click on the top X axis tick labels to open the Axis dialog, and set the following in Top icon. Click OK.

Rotate the Tick Labels for bottom in the same way.
7. The report sheet and the graph will appear as shown below:

5.2.2.6 Analyzing the Relationship Between Different Indicators

Use a correlation coefficient to explore the relationship between columns of the automobile data. Next, construct scatter plots with confidence ellipses to obtain graphical representations of the correlations.

1. In the automobile - automobile.dat workbook, open the automobile worksheet, and highlight the last five columns.
2. From the Menu Bar, select Statistics: Descriptive Statistics: Correlation Coefficient: Open Dialog.... In the corrcoef dialog box, expand Correlation Types and check the Pearson box.
3. Expand Plots and check the Add Confidence Ellipse box. The Scatter Plot check box will be automatically selected. Click OK.
4. The ScatterMatrix1 and CorrCeof1 worksheets should appear as below; demonstrating the high positive correlation between Engine Displacement and Power, and the high negative correlation between Gas Mileage and Engine Displacement.

5.2.2.7 Controlling the Categorical Values

1. In the following steps, we want to customized the order of values shown in the graph but not change the source data. Right click Column B in workbook, select Set As Categorical in the context menu, double click the Categories cell of the column, "Unsorted", to open the Categories dialog.

2. Check Customize Categories checkbox, use
 follow the image below, in this way we can sort the items by country of the manufacturers, which is U.S.->Japanese/Korea->Europe. Click OK to close the dialog.

3. You can go to the report sheet created in section above. Because Auto mode is used for recalculation, the report sheet of Discrete Frequencies and Statistics on Columns, including the box charts, are updated automatically with the specified order of the Categorical data.

4. The results of Unstacked Columns and the stacked graph are updated automatically as well.

Note: If the operation hasn't been auto-updated, you can also manually trigger the operations by clicking the Recalculate button \square in the Standard toolbar. The button will turn green after recalculation is done

5.2.3 Cross Tabulation

5.2.3.1 Summary

Cross tabulation is particularly useful for analyzing categorical data. In these analyses, a contingency table is used to display the frequency distribution of two or more variables. Analyses based on the table can determine whether there is a significant relationship between variables, and assess the strength of the relationship between the variables.

Minimum Origin Version Required: Origin 2016 SR0

5.2.3.2 What you will learn

This tutorial will show you:

1. How to perform the Cross Tabulation.
2. How to interpret the results.

5.2.3.3 User Story

Our data are from the Montana Economic Outlook Poll conducted in May 1992, with accompanying demographics for 209 out of 418 poll respondents. We have data on seven variables: Age(under 35, 35-54, 55 and over),Sex(male, female),Financial Status(worse, same, or better than a year ago), etc. With the data, we want to learn:

1. The frequency distribution of financial status in three different age groups, and whether male and female differ in the distribution.
2. Whether there is significant relationship between "Financial status" and "Age" for male and female groups.
3. The strength of the relationship.

5.2.3.4 Preparing Data for Analysis

1. Open a new project or a new workbook. Import the data file
\Samples\Statistics \MontanacOutlookPoll.dat
2. We begin by sorting the categorical values.

- On the MontanacOutlookPoll worksheet, highlight column B and right click to select Set As Categorical. Double-click on Unsorted in the Categories label row to open the Categories dialog box. Check Customize Categories (Add, Delete, Set Arbitrary Order) box. Then use the Move To Top $\boldsymbol{\square}$, Move Up $\boldsymbol{\Delta}$, Move Down $\boldsymbol{\text { and Move To Bottom buttons } \boldsymbol { \text { I } } \text { to }}$ reorder categories as "under 35", "35-54" and "55 and over":

- Repeat the same steps for column \mathbf{C} so that the categorical mapping is <Female, Male> - Repeat the same steps for column \mathbf{G} so that the categorical mapping is <Better, Same, Worse>

To exclude missing values from analysis, we should set the columns as categorical. Otherwise the missing values will be kept as numeric values.

5.2.3.5 Performing Cross Tabulation

1. Open the Cross Tabulation dialog by choosing the menu item Statistics: Descriptive Statistics: Cross Tabulation.
2. Click on the Input tab. The data is in raw data mode, so select column B, \mathbf{G} and \mathbf{C} for Row, Column and Layer, respectively.

3. Click on the Statistics tab, uncheck the Expected Counts, Residuals, Standardized Residuals and Adjusted Residuals and accept all the other default settings.

| Input | Statistics | Tests |
| :--- | :--- | :--- | Output $\quad \mid$

4. On the Tests tab, select the Chi-Square Test check box. Expand the Measures of Association branch, and then select the Contingency Coefficients, Phi, and Cramer's V boxes (for measuring nominal association).

5. Click on the Output tab and select the Mosaic Plot check box. Accept the other default settings and click OK.

5.2.3.6 Interpreting The Results

Go to sheet Crosstab1

5.2.3.6.1 Frequency Distribution

We can get frequency distribution information from the Mosaic Plot and the Contingency Table. The area of each rectangle in the Mosaic Plotis proportional to the percentage of the Y variable for each level of the X variable, so we can visually compare the frequency distribution of "Financial status" and "Age" for female, male and total. From the Contingency Table we can get more specific information. Combining the Mosaic Plot with Contingency Table, we learn:

1. There is a major difference between younger and older women's views.

- A majority of women under 35, 59.5\%, feel they have better financial status. A majority of women 55 and over, 58.3% think their financial status remains the same.
- Fewer women under $35,11.9 \%$, think their wealth status remains the same, while fewer women over 55, 11.1% think that they are better off financially.

2. Compared to women, men's feeling for financial status shows another interesting pattern:

- Men show no significant difference in financial status between age groups.
- Men between 35-54 are a little more likely to be confident of their financial status.

ex $=$	ale *					
				Financia	Status*	
			Better	Same	Worse	Total
"Age"	Under 35	Count	9	11	9	29
		Row\%	31.03448	37.93103	31.03448	100
		Col\%	28.125	25.5814	29.03226	27.35849
		Total\%	8.49057	10.37736	8.49057	27.35849
	35-54	Count	16	16	11	43
		Row\%	37.2093	37.2093	25.5814	100
		Col\%	50	37.2093	35.48387	40.56604
		Total\%	15.09434	15.09434	10.37736	40.56604
	55 and over	Count	7	16	11	34
		Row\%	20.58824	47.05882	32.35294	100
		Col\%	21.875	37.2093	35.48387	32.07547
		Total\%	6.60377	15.09434	10.37736	32.07547
	Total	Count	32	43	31	106
		Row\%	30.18868	40.56604	29.24528	100
		Col\%	100	100	100	100
		Total\%	30.18868	40.56604	29.24528	100

3. Regardless of the sex of respondents, there are some trends by age:

- People under 55 are more likely to be confident of their financial status
- People over 55 are more likely to feel that their financial status did not change.

5.2.3.6.2 Detecting Relationships Between Age and Financial Status

The Chi-Square Tests Table show test results for the independence of row and column variables. If the Prob $>$ ChiSq is less than 0.05 , this means the row and column variables, in this case age and financial status, are significantly related. Note the conclusions in the footnotes beneath the table. We conclude that:

- Women of different ages differ in financial status.
- In contrast, there is no evidence to show an association between men's age and their financial status.
- Regardless sex, people of different ages usually differ in financial status.

5.2.3.6.3 Assessing the Strength of the Relationship

The Measures of Association table helps in assessing the strength of the relationship between "Financial status" and "Age". As this is a $3 * 3$ table(three levels for Age and three levels for Financial status), we can choose a Contingency Coefficient to compare across layers. (See the introduction page for the difference of the three statistics). From the table we can see

- Women's financial status shows a stronger association with age than is the case with men. (0.444 v.s. 0.155)

		Value
Sex $=$ Female	Phi	0.49634
	Cramer's V	0.35096
	Contingency Coefficient	0.44459
Sex = Male	Phi	0.15694
	Cramer's V	0.11097
	Contingency Coefficient	0.15504
Sex = Total	Phi	0.31607
	Cramer's V	0.2235
	Contingency Coefficient	0.30137

Cramer's V, Contingency Coefficients: Values range from 0 to 1 . A larger value indicates the stronger association of two variables. Gamma, Kendall, Somer's D: Values range from -1 to 1. A postive value means one ordinal variable increases with the other. Lambda, Uncerainty Coefficient: Values range from 0 to 1 . A larger value indicates better prediction of Y by X .

5.2.4 2D Binning

5.2.4.1 Summary

The 2D Frequency Count/Binning operation counts the frequencies for data with two variables.A 3D bar graph and/or an image plot of the results can be generated, giving a graphic representation of data distribution.

Minimum Origin Version Required: Origin 2015 SR0
5.2.4.2 What you will learn

- How to count the frequencies for data with two variables.
- How to plot 2D binning into 3D Histogram.

5.2.4.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder 2D Frequency Count (Binning), and activate the 3D Histogram.dat book.
2. Highlight column A and column B, select menu Statistics: Descriptive Statistics: 2D Frequency Counts/Binning to bring up the TwoDBinning dialog.
3. Specify the following settings in the dialog box:

- Uncheck the Auto checkbox, set the Bin Size for X to 40.
- Set the Bin Size for Y to 15 .

- Check on Output Matrix checkbox in the end of the dialog and check on 3D Bars for Matrix Plot.

4．Click the OK button，then you will get the following outputs：
－Worksheet

	$\mathrm{A}(\mathrm{X})$ 䍏	$\mathrm{B}(\mathrm{Y})$ 缶	$\mathrm{C}(\mathrm{Y})$ 再	$\mathrm{D}(\mathrm{Y})$ 再	$\mathrm{E}(\mathrm{Y})$ 冎	$F(Y)$ 茼	G（Y）
Long Name	Bin Ends of＂Tensile Strength＂	Count	Count	Count	Count	Count	Count
Units							
Comments		120－135	135－150	150－165	165－180	180－195	195－21
Bin Begins of＂Brinell Hardness＂		120	135	150	165	180	195
Bin Centers of＂Brinell Hardness＂		127.5	142.5	157.5	172.5	187.5	202.5
Bin Ends of＂Brinell Hardness＂		135	150	165	180	195	210
$\mathrm{F}(\mathrm{x})=$							
1	840	0	0	1	0	0	
2	880	0	0	1	0	3	
3	920	1	0	3	2	14	
4	960	0	0	7	17	32	
5	1000	0	2	4	39	58	
6	1040	1	3	9	36	71	
7	1080	0	2	3	22	44	

－Matrix

	1	2	3	4
1	0	0	1	0
2	0	0	0	0
3	1	1	3	7
4	0	0	2	17
5	0	3	14	32
6	0	1	11	42
7	0	0	10	37
8	0	0	10	17
9	0	0	1	6

5.2.4.4 Further Customizations

3.
4. Double click the 3D Histogram to go to the Plot Details dialog, go to the Colormap tab, click the Fill button to open the Fill tab, specifies the Fill tab follows the graph below
5.

Click OK to close the Fill tab, and click OK in Plot Details to close the dialog.
3. Double click the Axis to open the Axis dialog and go to Scale tab, specifies the Scale for XYZ axis follows the graphs below:
4.

- Change the scale for X axis in X icon form 820 to 1220 with Major Ticks value 40.

- Change the scale for Y axis in Y icon form 127.5 to 277.5 with Major Ticks value 15.
- Change the scale for Z axis in Z icon form 0 to 100 with Major Ticks value 20.

5. Change title for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis in Title tab into Tensile Strength, Brinell Hardness and Number of Tests, respectively. Click OK to apply the setting and close the dialog.

5.2.5 Distribution Fit

5.2.5.1 Summary

Knowing the distribution model of the data helps you to continue with the right analysis. or make estimation of your data. The Distribution Fit tool helps users to examine the distribution of their data, and estimate parameters for the distribution.

5.2.5.2 What you will learn

This tutorial will show you:

- How to carry out distribution fit for practical data with Origin
- How to interpret the generated results

5.2.5.3 User Story

A house builder is trying to decide how many new houses he should build in the next year based on past sales of houses in the surrounding area. He would like to know the following:

- If he is going to build 80 new houses, what is the probability that all of them will be sold?
- The builder believes that he can make a profit if there is at least a 60% probability that he will sell all of his houses. How many houses should he build?

To solve this problem, The house builder needs to:

- Perform a distribution fit to sample data (houses sold in the surrounding area)
- Select the best fitting distribution
- Calculate the probability using the cumulative distribution function of the selected distribution
- If the probability is more than 60%, reconsider the schedule.

5.2.5.4 Choosing Distributions

1. Start with a new project or a new workbook. Import the data file: \Samples \Statistics \backslash HouseSold.dat
2. Highlight Column B, select Plot > 2D : Histogram: Histogram from Origin menu

3. Consider the facts as below to choose the distributions:

- The data are taken on integer values only so we can consider to fit both continuous and discrete distributions. (If there are floating point numbers, only continuous distributions can be considered). However, as usually continuous distributions provide better fit than discrete distributions we want to choose from continuous distributions.
- Value of new house sold are positive values, we don't need to consider the normal distribution, which can take on negative values
- Look at the histogram, the data is clustered around a value, we don't need to consider the exponential distribution, which is for data extremely asymmetric

5.2.5.5 Performing Distribution Fit

1. Return to the HouseSold worksheet and highlight the column B. From the Menu Bar, select the Statistics: Descriptive Statistics: Distribution Fit menu
2. In the dialog that opens, in the Distributions tab, clear Normal and select the following three distributions based on the conclusions in the Choosing Distributions section

- LogNormal
- Weibull
- Gamma

3. In the Plots tab, select Probability Plot

4. In the Goodness of Fit tab, check all three methods. Click OK to apply the settings and close dialog.

5.2.5.6 Comparing and Selecting Fitting Models

We can compare and select a fitting model based on the following results of distribution fit:

- Probability (P-P) Plot

The closer all the scatter points are to the reference line, the better the distribution is for the dataset. From the Probability Plot, both lognormal and gamma distribution can be considered as good models for the data.

Probability Plot of Column New House Sold.

- Goodness of Fit Tests table

Look at the P-values in table, if the p-value is less than 0.05 , it means we reject the distribution at the 0.05 level. P-value of lognormal and gamma are larger than 0.05 , then from the Goodness of Fit Tests, we can see that both lognormal and gamma are good models for the data.

	Distribution	Goodness of Fit tests	Statistics	P-value	Decision at level(5\%)
New House Sold	Lognormal	K-S test	0.03457	0.45539	Can't reject Lognormal
		K-S modified test	0.03295	0.0998	Can't reject Lognormal
		A-D test	0.68316	0.07408	Can't reject Lognormal
	Weibull	K-S modified test	0.06783	$<=0.01$	Reject Weibull
		A-D test	4.90331	<0.01	Reject Weibull
	Gamma	K-S test	0.02828	0.74285	Can't reject Gamma
		K-S modified test	0.02797	$=0.25$	Can't reject Gamma
		A-D test	0.54291	0.18207	Can't reject Gamma

From the Probability (P-P) Plot and Goodness of Fit Tests table, we can draw a conclusion that lognormal and gamma are both good choices. Here we choose the lognormal as an example for further analysis.

5.2.5.7 Making Estimations

Once the best distribution model is found, we can use the CDF and INV functions to calculate these probabilities:

- If he is going to build 80 new houses, what is the probability that all of them will be sold?
- How many houses should be built if he hopes to have a 60% chance of selling all of the houses?

1. To answer the first question, open the Command Window or the Script Window from the Windows menu, and type commands as below

where 3.94262 is mu and 0.35614 is sigma, obtained from the Parameter Estimates table in the Report Sheet

2. You will get

We can conclude that if the house builder builds 80 new houses, there is an 89% probability that he will NOT sell all of those houses.

1. To answer the second question, run the script below in the Command Window or the Script Window
\square
logninv(1-0.6, $3.94262,0.35614)=$
2. You will get

We can conclude that the house builder is more likely to make a profit if he builds 47 new houses.

We choose the lognormal model in Choosing Distribution section so we use logncdf and logninv for the estimation. If we choose gamma, we can use gamcdf and gaminv for the estimation, which will result in a similar conclusion.

Notes:There are also other descriptive statistics and graphs in results of Distribution Fit which help you to take a quick look of your data

- Descriptive Statistics table
- Quantiles table
- Histogram
- Box Chart
- CDF (Cumulative Distribution Function Plot)

5.2.6 Partial Correlation Coefficient

5.2.6.1 Summary

The Partial Correlation Coefficient is a tool for measuring the the linear relationship between two random variables, after excluding the effects of one or more control variables.

5.2.6.2 What you will learn

This tutorial will show you:

- How to carry out partial correlation in Origin, using a practical example.
- How to interpret the generated results.

5.2.6.3 User Story

We have some public data from the World Bank that includes 11 indicators (health expenditure, GDP, population, etc.) by country, for years 2000 to 2010. We want to study the relationship between internet use, mobile phone use and health expenditures in the United States.

5.2.6.4 Detect Relationship with Pearson's R

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder Partial Correlation Coefficient, and activate the Partial Correlation Coefficient book.
2. Activate Sheet1 with source data. We have already applied a data filter to get data for the United States between 2000 and 2010.
3. First we will use the Correlation Coefficient tool to visually detect the relationship between Mobile phone subscribers, Total internet users, Health expenditures per capita and the GDP per capita.
4. Press the $\mathbf{C t r l}$ key and highlight $\mathbf{C o l}(\mathbf{E}), \mathbf{C o l}(\mathbf{U 1}), \mathbf{C o l}(\mathbf{H})$ and $\mathbf{C o l}(\mathbf{S})$.
5. From the menu, select Statistics: Descriptive Statistics: Correlation Coefficient.
6. In the opened dialog, select the Scatter plots and Add Confidence Ellipse check boxes under the Plots branch. Clear the Show Significance in Result Table check box and select the Flag Significant Correlations check box.

7. From the Pearson's correlation coefficient and the scatter matrix, we can see:
8.

- The scatter data are fairly linear.
- The shape of confidence ellipses is narrow.
- All Pearson's correlation coefficients are flagged in red.
- Each Pearson's correlation coefficient is larger then 0.9.

It appears that there is a strong relationship between Mobile phone subscribers, Total internet users, Health expenditures per capita and GDP per capita.

	Business: Mobile phon	Scatter Matrix			PP per capit	
"Business Mobile phone subscribe rs						
Total internet user						
$\begin{aligned} & \text { Tealth: } \\ & \text { Health } \\ & \text { expenditur } \\ & \text { e per } \\ & \text { capita } \\ & \text { (current } \end{aligned}$				-		
			Business: Mobile phone	total internet user	Health: Health expenditure per	Finance GOP per capila
		Business: Mobile phone subscribers	1	0.95379	0.99157	0.98192
Finance: GDP per capita (current US\$) ${ }^{-}$		total internet user	0.95379	1	0.9306	0.95665
		Health: Health expenditure per capita (current US5)	0.99157	0.9306	1	0.96685
		Finance: GDP per capita (current USS)	0.98192	0.95665	0.96685	1

5.2.6.5 Revealing the Real Relationship with Partial Correlation Coefficients

Though it appears that Mobile phone subscribers, Total internet user and Health expenditure per capita are strongly related, we know that GDP per capita also affects these three indicators. We want to measure the real relationship of the three indicators after excluding the effect of GDP per capita.

1. Activate the sheet with source data. Press the $\mathbf{C t r l}$ key and highlight $\mathbf{C o l}(\mathbf{E}), \mathbf{C o l}(\mathbf{U 1})$ and $\mathbf{C o l}(\mathbf{H})$.
2. Choose menu Statistics: Descriptive Statistics: Partial Correlation Coefficient.
3. In the opened dialog, the three highlighted columns are automatically selected as Variables.
4. We want to remove the effect of GDP per capita, so we choose Col(S) as Controlling Variables. Select the Flag Significant Correlations check box.

5. Go to sheet PCorr1. It contains the partial correlation coefficients after excluding the effect of GDP per capita. We can see:

- Only Mobile phone subscribers and Health expenditures per capita are significantly related (The Partial Corr value is marked as red). But the real relationship is not as strong as the Pearson'r seemed to show previously. (Partial Corr $=0.87307$ v.s. Pearson's Corr $=0.99157$).
- The Partial correlation coefficient for Mobile phone subscribers and Total internet users decreased to be 0.26178 . They are not significant related.
- There is no evidence to show Total internet users and Health expenditures per capita are related (Partial Corr $=0.07615$), while previously, we obtained a Pearson's r $=0.96685$.

	Business: Mobile phone subscribers	total internet user	Health: Health expenditure per capita (current US\$)
Partial Correlations	Partial Correlations	Partial Correlations	Partial Correlations
Business: Mobile phone subscribers	1	0.26178	
total internet user	0.26178		0.87307
Health: Health expenditure per capita (current US\$)	0.87307	$\mathbf{1}$	0.07615

5.2.6.6 Conclusion

Why such different results? Looking at the Pearson'r value of GDP per capita between the other three indicators, we can see GDP per capita influenced the three indicators. Even though there is no relationship between Total internet users and Health expenditures per capita, Total internet users and Mobile phone subscribers, the "false relationship" is still shown by the Pearson's r because of the effect of GDP per capita. Partial Correlation Coefficients are useful for examining the true relationship between two factors by eliminating the effects of correlated control variables. The statistic is useful for experiments where various interrelated phenomena are to be studied.

5.3 Hypothesis Tests

5.3.1 Summary

Hypothesis tests are frequently used to measure the quality of sample parameters or to test whether estimations for two samples on a given parameter are equal .

With parametric methods,assumptions are made about the underlying distribution from where the sample populations are selected. Usually, it requires that the data are independently sampled from a normal distribution.

5.3.2 What you will learn

This tutorial will show you:

- How to carry out hypothesis tests for practical data with Origin
- How to interpret the generated results

5.3.3 Steps

5.3.3.1 Hypothesis Tests in Origin

Data Type	Goal	Method

One Sample	Compare the mean with a given value	One-Sample t-Test
	Compare the variance with a given value	One-Sample Test for Variance
Two Samples	Test whether the means are equal	Two-Sample t-Test
	Test whether the variance are equal	Two Sample Test for Variances
Paired Samples	Test whether the means are equal	Pair-Sample t-Test

5.3.3.2 One-Sample t-Test

Perform One-Sample t-Test using Raw data
Suppose a manufacturer produces high-quality screw nuts that must equal 21 millimeters in diameter. The quality control department randomly drew 120 nuts from the finished products, measured the diameters for each and stored the results in Diameters.dat file. They want to determine whether the mean diameter of the nuts is equal to 21 or not. Historically, the distribution of the measured diameters is known to be approximately normal, but the standard deviation of the population is unknown. Hence they may use the OneSample t-Test in Origin following the steps below:

1. Start with a new workbook and import the file \Samples \Statistics \diameter.dat.
2. Open the One-Sample t-Test dialog by using the menu item Statistics:Hypothesis Testing:OneSample t-Test.
3. Click the Input tab, set Input Data Form to Raw.
4. Click the arrow button to the right of Input and select $A(X)$:diameter.
5. Click the t-Test for Mean tab and set Test Mean to 21; Make sure that Alternate Hypothesis is set to Mean <> 21 (two-sided test), check Confidence Interval(s) and set Confidence Level(s) in \% to 95.

6. Note that by default the test procedure provides descriptive statistics of the variable and the hypothesis test results. Additionally, it is possible to produce a histogram of the data and a confidence interval for the mean.
7. Click the $\mathbf{O K}$ button to finish the analysis and generate results.

The Descriptive Statistics table shows the sample size, mean, standard deviation, and standard error for the variable. The sample mean, 21.00459 , is comparatively little bigger than the hypothesis mean 21, and the standard error of the mean(SEM) is 0.00156 .

	Descriotive Statistics	∇		
"diameter"	100	21.005	0.0156	0.00156

From the t-Test table, the t statistic (2.9437) and the associated p-value (0.00404) provide evidence that the average diameter of screw nuts is significantly different with 21 at the $\alpha=0.05$ level.

The confidence interval indicates that it is 95% confident that the true mean of the variable lies within the interval [21.0015, 21.00769].

| Confidence intervais for Mean v - |
| :--- |$|$| Conf. Levels in \% | Lower Limits | Upper Limits | |
| ---: | ---: | ---: | ---: |
| "diameter" | 95 | 21.0015 | 21.00769 |

Perform One-Sample t-Test using Summarized data

To perform a One-Sample t-Test using summarized data, we need to change the Input Data From in Input tab into Summarized data.

Assume we have measured 70 nuts this time, so the sample size will be 70 . After a further calculation, we have got 20.95 for the mean, and 0.218 for the standard deviation. So we enter the mean, standard deviation
and sample size into the Input Box below:</br>

Summarized Data: Mean, standard deviation and sample size prepared for sample[s].

Input Data Form	
Input	Summarized Data
	20.950 .21870

Enter space separated numbers in the order of Mean. SD. Sample Size.

Then, we set 21 as the Test Mean in t-Test for Mean tab, click OK to execute.
We get the summary table shown below, the results indicate that the population mean is NOT significantly different from the test mean in this study.

5.3.3.3 Pair-sample t-Test

Perform Pair-sample t-Test using Raw data

Suppose you want to compare abrasion resistance between two kinds of tires. You randomly draw from each type of tires respectively and group them into 8 pairs. Make sure each pair consists of two types of tires. Next, equip the paired tires on 8 planes to run the abrasion test and measure the abrasion data to do paired-sample t-test.

1. Start with a new workbook and import the file \Samples \Statistics \abrasion_raw.dat.
2. Open the Pair-sample t-Test dialog by using the menu item Statistics:Hypothesis Testing:Pairsample t-Test.
3. On the Input tab, set column tire A as 1st Data Range and column tire B as 2nd Data Range.
4. Click the \mathbf{t}-Test for Mean tab and enter 0 to be Test Mean.

5. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

From the t -Test table, the t statistic (2.83119) and the associated p -value (0.02536) indicate that the difference between the two means is significant, that is to say, the two types of tires have different abrasion resistance.

Perform Pair-sample t-Test using Summarized data

Perform Pair-Sample t-Test using Summarized data

To perform a Pair-Sample t-Test using summarized data, we need to change the Input Data From in Input tab into Summarized data.

Assume 16 samples has been tested this time, so the sample size will be 16. After a further calculation, we have got 305 for the mean paired difference, and 310 for the standard deviation for the difference between paired data points (please refer to Algorithms: Pair Sample T-Test). So we enter the mean difference, standard deviation and sample size into the Input Box below:

Since our data yielded a p-value of 0.0013 , which is less than our 0.05 a-level, we can reject the null hypothesis.

Test Statistics $\quad 1$				
	t Statistic	DF	Prob>\|t	
Summarized Data	3.93548	15	0.00132	
Null Hypothesis: mean 1-mean2 $=0$ Alternative Hypothesis: mean1-mean2 $\diamond 0$				

This study indicates the difference between the two means is significant, thus, the two types of tires have different abrasion resistance.

5.3.3.4 Two-Sample independent t-Test

Perform Two-Sample t-Test using Raw data

A physician is evaluating the effect of two kinds of soporifics. To test the effectiveness of these two medicines, 20 insomniacs patients are randomly selected. Half took medicine A and the other half took medicine B, The extended sleeping time were recorded after each patient took the medicine. The result is saved as the time_raw.dat file.
To determine whether the two medicine have different effect on patients, we could carry out a two-sample independent t-test with the following steps:

1. Start with a new workbook and import the file \Samples\Statistics\time_raw.dat.
2. Open the Two-Sample t-Test dialog by using the menu item Statistics:Hypothesis Testing:Two-

Sample t-Test.

3. On the Input tab, select Raw for the Input Data Form; set medicineA as 1st Data Range and medicine B as the 2nd Data Range.

4. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

The t-Test procedure automatically provides two tests of the mean difference. One is based on the assumption that the variances of two samples are equal and the other is not. In this example, both tests indicate that there is no significant evidence for a difference in cure effects between medicine A and medicine B. (p -values are 0.0738 and 0.074 , both greater than the significance level 0.05 .)

[^2]To perform a Two-Sample t-Test using summarized data, we need to change the Input Data From in Input tab into Summarized data.

Assume 50 patients has been tested this time, so the sample size will be 50 . After a further calculation, we have got 2.33 for the 1st mean, and 1.858 for the 1 st standard deviation, and 1.28 for the $2 n d$ mean, and 1.671 for the 2nd standard deviation. So we enter the mean, standard deviation and sample size into the Input Box below.

We can also check on the Confidence Intervals (Levels in 95\%) in t-Test for mean tab, to calculate the difference between test groups. Click OK to execute.

Since our data yielded a p-value of 0.0037 , which is less than our 0.05 a-level, we can reject the null hypothesis. this study indicates that the mean extended sleeping of two patients groups are not the same. In fact, we can conclude that 1st soporific has a stronger effect on patients.

The Confidence Intervals show that we can be 95\% confident that the mean time difference between two groups is $0.3487 \sim 1.7513$

Note that both equal variance and unequal variance assumptions are supported.To determine whether the two samples have equal variances, we may select from top menu Statistics:Hypothesis Testing:Two-Sample Test for Variance to use the two-sample test for variance for testing

1. Continue with a new workbook and import the file \Samples \Statistics \time_raw.dat.
2. Open the Two-Sample Test for Variance dialog by using the menu item Statistics:Hypothesis Testing:Two-Sample Test for Variance.
3. Select "Raw" for the Input Data Form; set column A and column B as the first and second data range respectively.
StatisticsVypothesis Testing: TwoSampleTestVar

| Dialog Theme |
| :--- | :--- |
| Description Perform two-sample test for variances |
| Results Log Output \square
 Recalculate Manual |

Indexed: factor variable and response data are stored in separate columns.

Raw: each column contains response data from a level of the factor variable.

Input Data Form

Input
1st Data Range
2nd Data Range

F-test for Variances Ratio
Plots

- Output

4. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

9 Descriptive Statistics -				
	N	Mean	SD	Variance
"medicineA"	10	2.35	1.97611	3.905
"medicineB"	10	0.75	1.78901	3.20056
$\square F$ Statistics $\quad-$				
F	Numer	. DF	Denom. DF	Prob $>\mathrm{F}$
1.2201		9	9	0.77181
Null Hypothesis: Variance1/Variance2 $=1$ Alternative Hypothesis: Variance1/Variance2 $\circ 1$				

According to result , P_vaule $=0.77181>0.05$, therefore , it fail to reject null hypothesis, so two population variances are not signification difference.

5.4 ANOVA

5.4.1 ANOVA

- One Way ANOVA
- One-Way Repeated Measures ANOVA
- Two Way ANOVA
- Two Way Repeated Measures ANOVA
- Two-Way Mixed-Design ANOVA
- Three-Way ANOVA

5.4.2 One Way ANOVA

5.4.2.1 Summary

Statistics has two modes of data input; indexed and raw. When a statistical analysis is performed, there is usually no need to use an entire data set; Origin provides several methods of data selection. For example, the interactive Regional Data Selector button can be used in the graphical selection of data, or the Column Browser dialog can be employed to make the selection.

In this tutorial, you will learn how to use the two methods of data input so that the Analysis of Variance (ANOVA) statistical test can be performed.

ANOVA is a parametric method for means comparison of several groups, and it is also an extension of two independent sample t-tests. ANOVA is more powerful than multiple t-tests since it controls the chance to commit type I error better when the number of groups is relatively large. For example, when comparing the means among 5 groups using a t-test, ten multiples of the t-test, each with a significance level of 0.05 , are performed, resulting in an overall chance to commit type I error of $1-(1-0.05)^{\wedge} 10=0.401$. Under the same circumstances, the chance to commit type I error in ANOVA is 0.05 .

ANOVA requires normality and equal variance. If these requirements are not met, non-parametric analysis should be used.

Minimum Origin Version Required: Origin 2016 SRO

5.4.2.2 What You Will Learn

This tutorial will show you how to:

- Use different input data modes in the statistical analysis dialog
- Do normality tests
- Perform one-way ANOVA

5.4.2.3 Steps

Origin can perform ANOVA from an indexed data mode, or from a raw data mode.
When an indexed data mode is used, the data needs to be organized in a factor column and a data column.

\#\# Book1 - nitrogen.txt		$\square \square \times$	
	A(x)	B(\%)	\wedge
Long Name	plant	nitrogen	
Comments	Factor	Data	
1	PLANT3	18.15473	
2	PLANT3	12.90409	
3	PLANT2	18.61197	
4	PLANT1	17.7111	
5	PLANT4	11.81661	
6	PLANT3	11.68327	
7	PLANT2	23.43165	
8	PLANT2	14.01454	v
1	gen/	〈 ${ }^{\text {l }}$	

When a raw data mode is used, the data needs to be organized with different levels in different columns.

\#\# Book1 - nitrogen_raw.txt				$\square \square$		
	$A(x)$	B(\%)	CO	D(\%)		\wedge
Long Name	Plant1	Plant2	Plant3	Plant4		
Comments	Level1	Level2	Level3	Level4		
1	17.7111	18.61197	18.15473	11.81661		
2	32.15046	23.43165	12.90409	2.39438		
3	17.70871	14.01454	11.68327	1.09914		
4	28.07729	12.17685	23.52293	16.00756		
5	7.83567	4.86902	16.00594	13.85077		
6	2.06008	18.93963	3.04056	9.22245		
7	22.81923	29.92086	14.29516	14.86523		v
1	_raw		<	IIII	\geqslant	

5.4.2.3.1 Indexed Data Mode

Nitrogen content, in milligrams, has been recorded for 4 kinds of plants. We are interested to know whether different plants have significantly different nitrogen content. As a result, we will use the index data mode in One-Way ANOVA analysis.

1. Start with a new workbook. From the Menu Bar, click Data: Import from File: Single ASCII..., browse to the Samples \Statistics folder and double click on nitrogen.txt. In the Import and Export:impASC dialog box, click the OK button.
2. Next, we perform a normality test on each group of data to determine whether it follows a normal distribution. Highlight the first column of the workbook and from the Menu Bar, select Worksheet: Sort

Worksheet: Ascending.
3. From the Menu Bar, select Statistics: Descriptive Statistics: Normality Test: Open Dialog. In the Normality Test dialog, in the Input tab, expand Input Data and Range 1. Press the triangle button at the right of Data Range and select $\mathbf{B}(\mathbf{Y})$: nitrogen, then press the triangle button at the right of Group and select $\mathbf{A}(\mathbf{X})$: plant. Click OK.

\% ${ }^{\text {nitrogen - nitrogen.txt * }}$		
	A(X)	B (Y)
Long Name	plant	nitrogen
Units		
Comments		
$F(\mathrm{x})=$		
Sparklines		Hidrawn
1	PLANT1	12.25362
2	PLANT1	18.62515
${ }^{1}$	PLANT1	19.41474
4	PLANT1	17.7111
5	PLANT1	6.22726
6	PLANT1	18.20339
7	PLANT1	22.81923
8	PLANT1	2.06008
-	PLANT1	32.15046
10	PLANT1	28.07729
11	PLANT1	17.70871
12	PLANT1	20.60228
13	PLANT1	25.23966

. With the nitrogen worksheet active, go to the Menu Bar and open Statistics: ANOVA: One-Way ANOVA.... In the ANOVAOneWay dialog box, in the Input tab, set Input Data to Indexed. Pressing the triangle button at the right of Factor, select $\mathbf{A}(\mathbf{X})$: plant and pressing the triangle button at the right of Data, select $\mathbf{B}(\mathbf{Y})$: nitrogen.

Indexed: factor variable and response data are stored in separate columns.

| Input Data | Indexed |
| :--- | :--- | :--- |
| Factor | [nitrogen]nitrogen!A"'plant" |
| Data | [nitrogen]nitrogen!B"nitrogen" |
| Descriptive Statistics | \boxed{V} |
| Significance Level | 0.05 |

6.
7. In theMeans Comparison tab, check the Tukey check box; In the Tests for Equal Variance tab, check the Levene check box; In Power Analysis tab, select Actual Power check box; In the Plots tab, check the Means Plot[SE as Error] and the Means Comparison Plot check boxes. Click OK.

Input Means Comparison Tests for Equal Variance ${ }^{2}$ Power Analysis Output Plots
Bar Chart
Box Charts
Means Plot [SD as Error) \square
Means Plot [SE as Error]
Means Comparison Plot $\quad \square$

Result Interpretations

- On the ANOVA1Way1 report sheet, you will see a Homogeneity of Variance Test node. If results are not visible, click to expand the node. Because the p -value is greater than 0.05 , the four groups are considered to have equal variance.

\square Levene's Test(Absoute Deviations) \quad					
	DF	Sum of Squares	Mean Square	F Value	ProbsF
Model	3	18.06843	6.02281	0.34578	0.79229
Error	76	1323.76846	17.41801		

At the 0.05 level, the population variances are not significantly different.

- The ANOVA table (Overall ANOVA) reports a p-value that is smaller than 0.05, hence at least two of the four groups have significantly different means.
F Overail ANOVA

	DF	Sum of Squares	Mean Square	F Value	Prob $=$ F
Model	3	1996.36652	665.45551	12.86214	$6.99338 \mathrm{E}-7$
Error	76	3932.05317	51.73754		
Total	79	5928.41969			

Null Hypothesis: The means of all levels are equal.
Atemative Hypothesis: The means of one or more levels are different.
At the 0.05 level, the population means are significantly different.

- Expanding the results of "Means Comparisons" reveals further information regarding relationships between groups.

- Tukey Test v-								
	MeanDiff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
PLANT2 PLANT1	2.26308	2.27459	1.40706	0.75274	0.05	0	-3.71181	8.23796
PLANT3 PLANT1	-2.46538	2.27459	1.53284	0.70039	0.05	0	-8.44027	3.5095
PLANT3 PLANT2	-4.72846	2.27459	2.93989	0.16935	0.05	0	-10.70334	1.24643
PLANT4 PLANT1	-10.93833	2.27459	6.80085	$4.38499 \mathrm{E}-5$	0.05	1	-16.91322	-4.96345
PLANT4 PLANT2	-13.20141	2.27459	8.20791	$8.24355 \mathrm{E}-7$	0.05	1	-19.1763	-7.22653
PLANT4 PLANT3	-8.47295	2.27459	5.26801	0.00207	0.05	1	-14.44784	-2.49807

- Here we see that the mean of PLANT4 differs significantly from the other three groups. Looking at the

Means Plot and Means Comparison Plot, we can see that PLANT4 has the smallest mean and is significantly different from the other three groups.

Means Comparison using Tukey Test

- In the "Powers" table, Actual Power=0.99976, that is, the chance of a Type II error occurring is almost equal to zero.

Powers	Alpha	Sample Size	Power
Actual Power	0.05	80	0.99976

5.4.2.3.2 Raw Data Mode

1. Start with a new workbook. From the Menu Bar, click Data: Import from File: Single ASCII..., and double click on nitrogen_raw.txt. In the Import and Export:impASC dialog box, click OK .
2. Highlight all columns, and from the Menu Bar, click Statistics: ANOVA : One-Way ANOVA. In the ANOVAOneWay dialog, in the Input tab, set Input Data to Raw, and click OK.
3. Repeat the examination of analysis results and you will see that we reach the same conclusions as we did when using Indexed data mode.

				- 回
	A(X)	B(Y)	$\mathrm{C}(\mathrm{Y})$	D(Y)
Long Name	Plant1	Plant2	Plant3	Plant4
Units				
Comments				
$F(x)=$				
Sparklines	$M N$	$\sqrt[N M]{N}$	WMW	$V_{m} N$
1	17.7111	18.61197	18.15473	11.81661
2	32.15046	23.43165	12.90409	2.39438
3	17.70871	14.01454	11.68327	1.09914
4	28.07729	12.17685	23.52293	16.00756
5	7.83567	4.86902	16.00594	13.85077
6	2.06008	18.93963	3.04056	9.22245
7	22.81923	29.92086	14.29516	14.86523
8	6.22726	22.32084	26.2977	8.1437
9	12.25362	20.46398	27.19654	0.89452
(1) ${ }^{\text {a }}$) nitro	gen_raw/			III

ANOVAOneWay				8 x	
Dialog Theme Description Perform One-W/ay ANOVA					
Recalculate Manual					
Input Means Comparison	Tests for Equal Va...	Power Analysis	Output	Plots	

Raw: each column contains response data from a level of the factor variable. \boxminus Input Data

\square Factor

■ Data

If the Level Name is set to Auto, it will follow the column long name of the selected data.

5.4.3 One-Way Repeated Measures ANOVA

5.4.3.1 Summary

One-way repeated measures ANOVA is similar to one-way ANOVA, but deals with a dependent variable subjected to repeated measurements. In this situation, the independence assumption of general one-way ANOVA is not tenable, since there is probably a correlation between levels of the repeated factor.

Similar to one-way ANOVA, one-way repeated measures ANOVA can be employed to test whether the means are equal or not. These means include the mean of different measurements and the mean of different subjects. The results will be shown in the table named Test of Within-Subjects Effect and Test of BetweenSubjects Effect respectively. Note that the repeated measures ANOVA in Origin requires balanced sample data, that is, equal sample size at each level.

5.4.3.2 What you will learn

This tutorial will show you how to:

- Input indexed data iton the statistical analysis dialog.
- Perform One-way Repeated Measures ANOVA.
- Interpret results of a One-way Repeated Measures ANOVA analysis.

5.4.3.3 Steps

Origin can perform One-Way Repeated Measures ANOVA in both indexed and raw data mode. For OneWay Repeated Measures ANOVA, if the indexed mode is used, data should be organized into three columns: Factor, data, and Subject. When the Raw data mode is used, the different levels should be in different columns.

5.4.3.3.1 Indexed data mode

The data contains measurements for 3 different doses on 20 subjects, and we are interested in whether different doses on subjects have different effects. To test this, we will perform a One-Way Repeated Measures ANOVA using the indexed data mode.

1. Click the Import Single ASCII button $\stackrel{\text { 12ß }}{\stackrel{1 \pi}{[} \mid}$ to import the file One Way_RM_ANOVA_indexed.dat in the \backslash Samples \backslash Statistics $\backslash A N O V A$ folder.
2. Select Statistics: ANOVA: One-Way Repeated Measures ANOVA to open the dialog. In the Input tab of this dialog, select Indexed from the Input Data drop-down list and set column \mathbf{B} (dose), $\mathbf{C (D a t a})$, and \mathbf{A} (Subject) as the Factor, Data, and Subject respectively.

3. Go to Means Comparison tab, select the check box after Bonferroni to enable the Bonferroni test.

4. Select the Means Plot(SE as Error) and Means comparison Plot check boxes in the Plots tab.

5. Click the $\mathbf{O K}$ button to perform the analysis.
5.4.3.3.2 Results Interpretation

Go to the worksheet ANOVAOneWayRM1, where the analysis results are listed.
You can refer to this help file for details of interpreting results of repeated measures ANOVA.

Origin prints out MANOVA automatically alongside repeated measures to detect repeated-measures effects. Note that the four different methods (Pillai's trace, Wilks' lambda, Hotelling's trace, and Roy's largest root) generate identical F statistics and probabilities, $\mathbf{P}=\mathbf{0 . 0 6 4 5 5}$, so the means under three levels condition are not statistically different. Compare with the following report in repeated measures ANOVA, we can see that the conclusion is conservative.

Sphericily *						
4	Mauchlys W	Approx. Chi-Square	DF Prob=Chisq	Greenhouse-Geisser Epsilon	Hupmh-Feldt Epsilon	Lower-bound Epsilon
dose	0.94397	1.61448	20.44609	0.94694	1	0.5

This table shows the results of the Mauchly's Test of Sphericity. From the test results we can see that Sphericity holds. We are interested in the value of Prob > ChiSq, which is the significance level of the Mauchly's Test, we can see from this example that the significance level (0.44609) is greater than 0.05 . Therefore, the assumption of Sphericity has not been violated.

- Tests of Within-Subjects Effects -

		Sum of Squares	DF	Mean Square	F	Prob $>\mathrm{F}$
dose	Sphericity Assumed	0.4473	2	0.22365	3.43018	0.03908
	Greenhouse-Geisser	0.4473	1.89389	0.23618	3.43018	0.04487
	Huynh-Feldt	0.4473	2	0.22365	3.43018	0.08908
	Lower-bound	0.4473	1	0.4473	3.43018	0.0422
Error(dose)	Sphericity Assumed	3.78162	58	0.0652	$P<0.0 .5$	
	Greenhouse-Geisser	3.78162	54.92273	0.06885		
	Huynh-Feldt	3.78162	58	0.0652		
	Lower-bound	3.78162	29	0.1304		

From this table we are able to get the F value for the factor in addition to its associated significance level and effect size. As our data follow the assumption of Sphericity, we can conclude that when using an ANOVA with repeated measures with Sphericity Assumed, the means under three levels condition are statistically different ($P=0.03908<0.05$). In other words, dose is a significant factor.

The results presented in the previous table showed that there is an overall significant difference among the means but we do not know where those differences came from. This table shows the results of the Bonferroni
test, which allows us to learn which specific means are different. In this case, the means of dose=10 and dose $=20$ have a significant difference ($\mathbf{P}=\mathbf{0 . 0 3 4 0 2} \boldsymbol{< 0 . 0 5}$ and Sig Flag =1).

From the two plots below, we can also easily come to the same conclusion.

Means Comparison using Bonferroni Test

5.4.4 Two Way ANOVA

5.4.4.1 Summary

In some cases, we want to examine the relationship between two factors (categorical variables) and a continuous outcome variable. The effects on the outcome of the change in one factor may depend on the level of the other factor, so we need to consider the interactions between two factors. Two way ANOVA is an appropriate method to analyze the main effects of and interactions between two factors.

Minimum Origin Version Required: Origin 2016 SR0

5.4.4.2 What you will learn

This tutorial will show you how to:

- Perform Two-way ANOVA
- Interpret results from Two-Way ANOVA
- Make the Interaction Plot

5.4.4.3 Steps

Researchers are interested in the effects of sex and dietary group on systolic blood pressure (SBP) The "dietary group" factor includes three groups: strict vegetarians (SV) who eat no animal products of any kind; lacto vegetarians (LV) who eat dairy products but no other animal products; and "normal" (NOR) subjects who eat a standard American diet. Sex and dietary group may be independent or they may interact with each other. One approach to solve this problem is to construct a two-way ANOVA model predicting mean SBP level.

5.4.4.3.1 Indexed data mode

Perform Two Way ANOVA

1. Start with a new workbook and import the file \Samples \backslash Statistics $\backslash S B P$ _Index.dat.
2. Open the Two-Way ANOVA dialog by choosing the menu item Statistics: ANOVA: Two-Way ANOVA, then in the Input tab, set the Input Data mode as Indexed.
3. Also in the Input tab, select column A, B and C for Factor A,Factor B and Data, respectively. Check the Interactions box.

4. In the Descriptive statistics tab, check all boxes.
5. In the Means Comparison tab, set Significance Level to 0.05 , and check the box beside Tukey to select this test as the means comparison method.

6. Click the OK button to perform Two-Way ANOVA.

Interpreting Results

T Overail ANOVA

| | DF | Sum of Squares | Mean Square | F Value | P Value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Sex | 1 | 1594.39725 | 1594.39725 | 17.64529 | $4.05551 \mathrm{E}-5$ |
| Dietary | 2 | 1137.86004 | 568.93002 | 6.29638 | 0.00224 |
| Interaction | 2 | 245.48621 | 122.7431 | 1.3584 | 0.2595 |
| Model | 5 | 2794.86329 | 558.97266 | 6.18618 | $2.40633 \mathrm{E}-5$ |
| Error | 194 | 17529.50212 | 90.35826 | -- | -- |
| Corrected Total | 199 | 20324.36541 | -- | -- | -- |

At the 0.05 level, the population means of Sex are significantly different. At the 0.05 level, the population means of Dietary are significantly different. At the 0.05 level, the interaction between Sex and Dietary is not significant.

From the "Overall ANOVA" table in the Two-Way ANOVA result sheet, we can see that Dietary and Sex are both significant factors, but the interaction between them is not significant. So we can say that the main effects of both Dietary groups and Sex are significant, yet the effect on the outcome of the change in Dietary doesn't depend on the level of Sex.

The Interaction Plot

To further detect interaction, we can make an "Interaction Plot" using the following steps.

1. Right-click on the title of the "Interaction" table and select Create Copy as a new sheet from the context menu.

2. Go to the new sheet and right-click on column B and select Set As Categorical from the fly-out menu.
3. Select the first three cells in column D and then press the Ctrl key and select the other cells in column D.

$\mathrm{A}(\mathrm{X} 1)$	$\mathrm{B}(\mathrm{X} 2)$	$\mathrm{C}(\mathrm{Y} 2)$	$\mathrm{D}(\mathrm{Y} 2)$	$\mathrm{E}(\mathrm{yEr} \pm)$	$\mathrm{F}(\mathrm{yEr} \pm)$	$\mathrm{G}(\mathrm{Y} 2)$	$\mathrm{H}(\mathrm{Y} 2)$	$\mathrm{I}(\mathrm{Y} 2)$
		N	Mean	SD	SEM	Variance	Missing	NonMissin
Male	SV	30	117.24744	10.63207	1.94114	113.04092	0	30
Male	LV	25	119.01081	8.49339	1.69868	72.13771	0	25
Male	Nor	45	120.76882	8.82486	1.31553	77.87808	0	45
Female	SV	25	110.93646	10.37779	2.07556	107.69851	0	25
Female	LV	30	110.85397	9.57768	1.74864	91.7319	0	30
Female	Nor	45	117.78078	9.35218	1.39414	87.4633	0	45

4. Click the button on the 2D Graphs toolbar to create a graph.
5. Right-click on the graph legend and select Properties from the context menu. In the Object Properties dialog box, edit the text as shown below. Click the OK button to close the dialog box and update the legend. We now have an Interaction Plot which can show the interaction between two factors.

[^3]

The data plots in the chart above suggest only a weak interaction between Sex and Dietary, so we should recalculate the effects of the two factors without interaction.

Recalculate

1. Click on the green lock in the ANOVA2Way1 result sheet, and select Change Parameters to open the dialog again.

2. In the Input tab in the open dialog, clear the interactions box and click the $\mathbf{O K}$ button.

We can see that the Dietary and Sex are significant factors from the "Overall ANOVA" table. The mean of Nor is significantly greater than that of $L V$ and SV for factor Dietary. The mean of Male is significantly greater than that of Female, from the "Dietary" table.
Q Overail ANOVA

	DF	Sum of Squares	Mean Square	F Value	P Value
Sex	1	1405.79986	1405.79986	15.50138	$1.14502 \mathrm{E}-4$
Dietary	2	1154.79872	577.39936	6.36683	0.00209
Model	3	2549.37708	849.79236	9.37043	$8.11226 \mathrm{E}-6$
Error	196	17774.98833	90.68872	--	--
Corrected Total	199	20324.36541	--	--	--

At the 0.05 level, the population means of Sex are significantly different.
At the 0.05 level, the population means of Dietary are significantly different.

Sig equals 1 indicates that the difference of the means is significant at the 0.05 level.
Sig equals 0 indicates that the difference of the means is not significant at the 0.05 level.

5.4.4.3.2 Raw Data Mode

1. Start with a new workbook and import the file \Samples \backslash Statistics $\backslash S B P _$Raw.dat
2. Highlight all columns and select menu item Statistics: ANOVA : Two-Way ANOVA to bring up the ANOVATwoWay dialog box. In the Input tab, choose Raw as the Input Data mode.
3. Also in the Input tab, set Number of levels of Factor A as 2 and type Sex, Male and Female for Name,Level1 Name and Level2 Name in Factor A branch ,respectively.
4. Also in the Input tab, set Number of levels of Factor B as 3, and type Dietary Group ,SV,LV and Nor for Name,Level1 Name, Level2 Name and Level3 Name in Factor A branch, respectively.

5. In the Means Comparison tab, set Significance Level to 0.05 , and check the box beside Tukey to use it as the means comparison method.
6. Click the OK button to perform Two-Way ANOVA.

5.4.5 Two Way Repeated Measures ANOVA

5.4.5.1 Summary

For Two-Way Repeated Measures ANOVA, "Two-way" means that there are two factors in the experiment, for example, different treatments and different conditions. "Repeated-measures" means that the same subject received more than one treatment and/or more than one condition. Similar to two-way ANOVA, two-way repeated measures ANOVA can be employed to test for significant differences between the factor level means within a factor and for interactions between factors. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures, and the data violates the ANOVA
assumption of independence. Two-Way Repeated Measures ANOVA designs can be two repeated measures factors, or one repeated measures factor and one non-repeated factor. If any repeated factor is present, then the repeated measures ANOVA should be used.

In the following example, the two factors are the repeated measures factors.
Minimum Origin Version Required: Origin 8.6 Pro SRO

5.4.5.2 What you will learn

This tutorial will show you how to:

- Input raw data in the statistical analysis dialog.
- Perform Two-Way Repeated Measures ANOVA.
- Interpret results of a Two-Way Repeated Measures ANOVA

5.4.5.3 Steps

Origin can perform Two Way Repeated Measures ANOVA in both indexed and raw data modes. For TwoWay repeated measures ANOVA, if the indexed mode is used, data should be organized into four columns: Factor A, Factor B, Data, and Subject. When the Raw data mode is used, the different factors and levels should be in different columns.

In this example, we are interested in whether different drugs and doses have different effects on subject. We will perform the Two-Way Repeated Measures ANOVA to determined whether the drug type and dosage have significant effect on a subject. If there is significant difference, we will perform pairwise comparison to determine of which level the effects are different.

5.4.5.3.1 Raw data mode

1. Click the Import Single ASCII button $\stackrel{\text { 123 }}{\substack{\text { \#2 }}}$ to import the file Two-Way_RM_ANOVA_raw.dat in the Samples \Statistics \ANOVA folder.
2. Select Statistics: ANOVA: Two-Way Repeated Measures ANOVA to open the dialog.
3. In Input tab, select Raw from the Input Data drop-down list.
4. In this example, there are two factors. Set 3 and 2 for Number of Levels in Factor A and Factor B dropdown list to specify levels of the factor. Set Name to drug and dose respectively.

Notes: Factor A and Factor B are set as repeated measures factor by default (The Repeated check box under Factor is checked). If one factor is a non-repeated measures factor, just uncheck the Repeated check box.
5. Now under the Data branch, there are three subgroups. In the drug Level1 subgroup, select column d1d1 as the dose Level1 input data range.
6. Similarly, select d1d2, d2d1, d2d2, d3d1, and d3d2 for the next 5 input data range.
7. Check the Interactions check box to calculate interaction effects.

| ANOVATwoWayRM | Q | X |
| :--- | :--- | :--- | :--- |
| Dialog Theme | | |
| \times
 Description Perform Two-Way Repeated Measures ANOVA
 Recalculate Manual
 Input Descriptive Statistics Means Comparison Output | | |

Raw: each column contains response data from a level of the factor
variable.

\square Factor A
Factor B

\square Data \ldots
drug Level1 dose Level1 dose Level2

\square drug Level2 dose Level1 dose Level2
drug Level3

8. In the Descriptive Statistics tab, select all check boxes to compute the mean, standard error, and 95\% confidence interval of all the levels of the factors as well as interactions.

9. In the Means Comparison tab, select the Bonferroni check box to enable the Bonferroni test.

10. Click the $\mathbf{O K}$ button to perform the analysis.

5.4.5.3.2 Results Interpretation

Go to the worksheet ANOVATwoWayRM1, where the analysis results are listed.
You can refer to this help file for details of interpreting results of repeated measures ANOVA.

ivariate	Tests					
		Value	F	Num df	DF	Prob>F
drug	Pillai's Trace	0.133	1.99423	2	26	0.1564
	Wilks' Lambda	0.867	1.99423	2	26	0.1564
	Hotelling's Trace	0.1534	1.99423	2	26	0.1564
	Roy's Largest Root	0.1534	1.99423	2	26	0.1564
dose	Pillai's Trace	0.19986	6.74428	1	27	0.01504
	Wilks' Lambda	0.80014	6.74428	1	27	0.01504
	Hotelling's Trace	0.24979	6.74428	1	27	0.01504
	Roy's Largest Root	0.24979	6.74428	1	27	0.01504
drug * dose	Pillai's Trace	0.27164	4.8482	2	26	0.01624
	Wilks' Lambda	0.72836	4.8482	2	26	0.01624
	Hotelling's Trace	0.37294	4.8482	2	26	0.01624
	Roy's Largest Root	0.37294	4.8482	2	26	0.01624

Origin uses a multivariate analysis to detect repeated-measures effects. In this example, four different methods (Pillai's trace, Wilks' lambda, Hotelling's trace, and Roy's largest root) generate identical F statistics and probabilities. For drugs, P _value $=0.1564$, so we can conclude that the effect of drugs did not reach conventional levels of statistical significance. Similarly, we can also conclude that dose and drugs* dose are significant.

\cdots							
	Mauchiy's W	Approx. Chi-Square		Prob>ChiSq	Greenhouse-Geisser Epsilon	Huynh-Felot Epsilon	Lower-bound Epsilon
drug	0.84441	4.39712	2	0.11096	0.86536	0.9193	0.5
dose	0	0	0	0	1	1	1
drug * dose	0.47007	19.62694	2	$5.47097 \mathrm{E}-5$	0.65362	0.6734	0.5

Worring No Sphericity test perfomed due to insufficient degyees of freedom.

This table shows the results of Mauchly's Test of Sphericity and evaluation of epsilon. From the column Prob>ChiSq, we can learn that the significance level of drugs is greater than 0.05 (P_value=0.11096), and the value of drugs*dose is smaller than 0.05 . For drugs*dose, the assumption of sphericity has been violated. Note that Greenhouse-Geisser Epilon=0.65362, which is smaller than 0.75 , so we will proceed with the test by using Greenhouse-Geisser correction.

		Sum of Squares	DF	Mean Square	F	Prob $>\mathrm{F}$
drug	Sphericity Assumed	0.06038	2	0.03019	2.88316	0.06461
	Greenhouse-Geisser	0.06038	1.73071	0.03489	2.88316	0.07313
	Huynh-Feldt	0.06038	1.8386	0.03284	2.88316	0.0696
	Lower-bound	0.06038	1	0.06038	2.88316	0.10101
Error(drug)	Sphericity Assumed	0.56546	54	0.01047		
	Greenhouse-Geisser	0.56546	46.72928	0.0121		
	Huynh-Feldt	0.56546	49.64207	0.01139		
	Lower-bound	0.56546	27	0.02094		
dose	Sphericity Assumed	0.03982	1	0.03982	6.74428	0.01504
	Greenhouse-Geisser	0.03982	1	0.03982	6.74428	0.01504
	Huynh-Feldt	0.03982	1	0.03982	6.74428	0.01504
	Lower-bound	0.03982	1	0.03982	6.74428	0.01504
Error(dose)	Sphericity Assumed	0.15942	27	0.0059		
	Greenhouse-Geisser	0.15942	27	0.0059		
	Huynh-Feldt	0.15942	27	0.0059		
	Lower-bound	0.15942	27	0.0059		
drug ${ }^{\text {a }}$ dose	Sphericity Assumed	0.13506	2	0.06753	4.84575	0.0116
	Greenhouse-Geisser	0.13506	1.30725	0.10332	4.84575	0.02564
	Huynh-Feldt	0.13506	1.3468	0.10028	4.84575	0.0245
	Lower-bound	0.13506	1	0.13506	4.84575	0.03644
Error(drug * dose)	Sphericity Assumed	0.75256	54	0.01394		
	Greenhouse-Geisser	0.75256	35.29564	0.02132		
	Huynh-Feldt	0.75256	36.36348	0.0207		
	Lower-bound	0.75256	27	0.02787		

From this table we are able to find out the F value for the factor, its associated significance level and the effect size. For drug, the P_value is 0.6461 in the prob>F column, so drugs have no significant effect on subjects, while dose have(P_value=0.01504). For interaction drugs*dose, we can still proceed with the test by using the Greenhouse-Geisser correction and conclude that interaction drugs*dose have significant effect (P _value $=0.02564$).

> Sig equals 1 indicates that the difference of the means is significant at the 0.05 level.
> Sig equals 0 indicates that the difference of the means is not significant at the 0.05 level.
> Sig equals -1 indicates that the difference of the means is not tested.

In general, Bonferroni tests are recommended to determine which specific means differed and determine whether or not the Sphericity assumption is violated. The Bonferroni correction relies on a general probability inequality and therefore isn't dependent on specific ANOVA assumptions. This table presents the results of the Bonferroni test, we can conclude that the means are not significant different ($\mathrm{P}>0.05$ and $\mathrm{Sig} \mathrm{Flag}=0$). Of course, we do not need to perform pairwise comparison because drugs have no significant effect.

[^4]Sig equals -1 indicates that the difference of the means is not tested.

In this table, we can conclude that means of different dose are not significantly different (P_value $=0.06714$ and Sig Flag = 0).

In this table, we can conclude that dose1 is significantly larger than dose2 within drug1, and drug1 is significantly larger than drug2 and drug3 within dose1.

5.4.6 Two-Way Mixed-Design ANOVA

5.4.6.1 Summary

The two-way mixed-design ANOVA is also known as two way split-plot design (SPANOVA). It is ANOVA with one repeated-measures factor and one between-groups factor.

Minimum Origin Version Required: OriginPro 2016 SR0

5.4.6.2 What you will learn

This tutorial will show you how to:

- Perform the two-way mixed design ANOVA.
- Interpret results of the two-way mixed design ANOVA

5.4.6.3 User Story

A researcher wants to know whether a treatment can help people lose weight. 48 participants(24 male) take part in the study. The researcher record their weights every three months during the treatment program.

5.4.6.4 Preparing Analysis Data

To preform two-way mixed-design ANOVA, the data can be arranged as below

	Between-Groups Factor	Repeated Measure Factor		
Subject	Gender	weight1	weight2	weight3
19	male	67.4	68.2	70.2
20	male	88.5	90.1	78.4
21	male	69	70.3	70.6
22	male	75.9	70.5	71.6
23	male	88	80.9	82.6
24	male	100.1	96.2	90.3
25	female	69.3	55.1	60.3
26	female	76.05	47.6	50.05
27	female	108.5	72.3	58.5
28	female	85.5	76.9	55.5
29	female	61.5	68.7	51.5
30	female	76.7	75.9	66.7
21	famala	กe?	cos	¢02

Notes: Data can also be arranged in index mode for two-way mixed-design ANOVA. Refer to the sample data, \Samples\Statistics\ANOVA\two-way rm ANOVA1_indexed.dat, for index mode of data of this tutorial.

5.4.6.5 Performing Two-Way Mixed-Design ANOVA

1. Open a new project or a new workbook. Import the data file \Samples\Statistics $\backslash A N O V A \backslash t w o$-way rm ANOVA1_raw.dat
2. Select Statistics: ANOVA: Two-Way Repeated Measures ANOVA... from Origin menu
3. In the opened dialog, choose the Input tab,

- Set Input Data as Raw

- Expand Factor A branch, change the Name as Weight and set Number of Levels = 3. Expand Factor B branch, change the Name as Gender and unselect Repeat check box
- In the Data branch, set column C, D and E to be Weight Level1, Weight Level2 and Weight Level3, respectively, and set column B as Gender
- Select Interactions check box

廌twowayrmANOVA - two-way rm ANOVA1_raw.dat *					- 回	Σ	
	A(X)	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{Y})$	D(Y)	E(Y)	*	
Input		Between-Groups Factor	Repeated Measure Factor				
Long Name	Subject	Gender ${ }^{\prime} \cdot$	weight1	weight2	weiğț̣		
7	7	male	- 97.7	95.7	67.7		
8	8	male	- 84	85.9	$84{ }^{\circ}$		
9	9	male	95, 3	89.1	69.3		
10	10	male		75.2	73		
11	11	male	107	$\bullet \cdot 102.1$	77		
12	12	male	81.85	76.2	65.85		
13	13	male	84	75.9	76.1		
14	14	male	96.5	80.6	$\bullet \bullet$ - 66.5		
15	15	male	93	81.2	73.		
16	16	male	77.7	75.6	57.7		
17	17	male	92	80.1	75.9		
18	18	male	103	82.3	85.3		
19	19	male	67.4	68.2	70.2		
20	20	male	88.5	90.1	78.4		
21	21	male	69	70.3	70.6		
22	22	male	75.9	70.5	71.6		
23	23	male	88	80.9	82.6		
24	24	male	100.1	96.2	90.3		
25	25	female	69.3	55.1	60.3		
26	26	female	76.05	47.6	50.05		
27	27	female	108.5	72.3	58.5		
28	28	female	85.5	76.9	55.5		
29	29	female	61.5	68.7	51.5		
30	30	female	76.7	75.9	66.7		
31	31	female	96.3	68.5	62.3		
4) ${ }^{\text {a }}$ two-way m ANOVA1_raw/			$\\| \cdot \square \mathrm{mI}$				

4. Choose the Descriptive Statistics tab. select all check boxes

Input	Descriptive Statistics	Means Comparison	Output
FactorA	\square		
FactorB	\square		
Interaction	\square		

5. Choose the Means Comparison tab, select Bonferroni check box.

Input	Descriptive Statistics	Means Comparison
Output Significance Level 0.05 Tukey \square Bonferroni \square Dunn-Sidak \square Fisher LSD \square Scheffe' \square W. Dunnett \square Holm-Bonferroni \square Holm-Sidak \square		

6. Click OK button to perform the analysis

5.4.6.6 Interpreting the Results

Go to the worksheet ANOVATwoWayRM1, where the analysis results are listed.
You can refer to this interpreting results help page for details of interpreting results of repeated measures ANOVA.

1. From the Mauchly's Test of Sphericity table, we can see Prob>ChiSq(0.01258) < 0.05. So the repeated measure variable, Weight, violates the Sphericity assumption. We should consider the Greenhouse-Geisser correction ect. While the Epsilon is larger than 0.75 , we will look at the Huynh and Feldt correction in step 2 below
[- Mauchly's Test of Sphericity

	Mauchly's W	Approx Chi-Square	DF	Prob>ChiSq	Greenhouse-Geisser Epsilon	Huynh-Feldt Epsilon	Lower-bound Epsilon
Weight	0.82327	8.75143	2	0.01258	0.84981	0.89821	

2. From the Tests of Within-Subject Effects table, we can see

- For Weight, the p_vaule is about 0 in the Prob>F column, It indicates that the weight is a significant effect, that is, the weights change over time.
- While the interaction, Weight*Gender, is not significant different(p_value $=0.14025$), we can conclude that there is not a significant interaction effect, Weight*Gender

		$\begin{array}{r} \hline \text { Sum of Squares } \\ 6328.11622 \end{array}$	DF	Less than $0.05 \quad 43$		Prob $=F$
Weight	Sphericity Assumed		2			$2.16215 \mathrm{E}-13$
	Greenhouse-Geisser	6328.11622	1.69962	3723.25578	-7343	$9.9634 \mathrm{E}-12$
	Huynh-Feldt	6328.11622	1.79641	3522.64301	40.71343	2.89727E-12
	Lower-bound	6328.11622	1	6328.11622	40.71343	7.76453E-8
Weight * Gender	Sphericity Assumed	318.3098	2	159.1549	2.04792	0.13484
	Greenhouse-Geisser	318.3098	1.69962	187.28303	2.04792	0.14282
	Huynh-Feldt	318.3098	1.79641	177.19204	2.04792	- 0.14025
	Lower-bound	318.3098	1	318.3098	200	0.15917
Error(Weight)	Sphericity Assumed	7149.81058	92	7 Larger than 0.05		
	Greenhouse-Geisser	7149.81058	78.18247			
	Huynh-Feldt	7149.81058	82.63493	86.52286		
	Lower-bound	7149.81058	46	155.43066		

3. We can further study how the weights change over time during the treatment. Expand the Weight branch. From the tables we can see

- From the Descriptive Statistics table we can see that the weights are decreasing
- In the Pairwise Comparison table, the $\mathbf{1}$ in the Sig Flag column indicates the pair of group is significant different. We can draw conclusion that the weights are significantly decreasing

Sig equals 1 indicates that the difference of the means is significant at the 0.05 level.
Sig equals 0 indicates that the difference of the means is not signiticant at the 0.05 level
Sig equals - 1 indicates that the difference of the means is not tested.
4. From the Tests for Between-Subjects Effects table, we can see Gender is a significant effect, that is, Female and Male can be significant different.
-T Tests of Between-Subjects Effects

	Sum of Squares	DF	Mean Square	F	Prob>F
Intercept	810060.00111	1	810060.00111	2961.43253	$2.07173 \mathrm{E}-43$
Gender	8857.94694	1	8857.94694	32.38305	$8.40281 \mathrm{E}-7$
Error	12582.68074	46	273.53654		

5. Look at the Gender branch to see the details.

- There are only two levels for Gender and we already know they are significant different, so we don't need to look at the Pairwise Comparison table
- From the Descriptive Statistics table we can see that average weight of men is more than women.

Gender -				
- Descriptive Statistics -				
	Mean	Std. Error	95\% LCL	95\% UCL
male	82.84583	1.94913	78.92243	86.76923
female	67.15972	1.94913	63.23632	71.08312
\pm Painwise Comparison -		\square		

Notes: As there is no serious violation of sphericity assumption, we can ignore the Multivariate Tests table. See more details from the interpreting results help page.

5.4.7 Three-Way ANOVA

5.4.7.1 Summary

Three-way ANOVA tests for main effects, and interaction effects between all combinations of three factors, on a dependent variable.

Minimum Origin Version Required: OriginPro 2016 SR0

5.4.7.2 What you will learn

1. How to carry out three-way ANOVA for practical data with Origin
2. How to interpret the generated results

5.4.7.3 User Story

We have some public data from the World Bank. It includes three factors: Region(Asia/Europe/Africa, etc.), Developing Index (Developing/Developed Country) and Year (2000/2005/2010). We want to understand how these three factors affect the number of internet users and whether there are any significant differences between the groups.

5.4.7.4 Performing Three-Way ANOVA

1. Choose menu Help: Learning Center to open Learning Center dialog. Select Analysis Sample in the left side and then choose Statistics - ANOVA from the Samples in drop-down list in the right side.
2. Double-click on third item in the list box to open the folder Three Way ANOVA.
3. Click on worksheet Sheet1 containing the source data.
4. Click Statistics: ANOVA: Three-Way ANOVA
5. In the Input tab of the opened dialog, set Input Data as Indexed. Then expand the Input Data branch, select column C,D, B and E for Factor A,Factor B, Factor C and Data, respectively

Input	Model	Descriptive Statistics	Means Comparison	Power Analysis	Mean Plot	Output
Indexed: factor variable and response data are stored in separate columns.						
\square Input Data			Indexed			
Factor A			[Book2]Sheet1!C'D	eveloping Index"		츤
Factor B			[Book2]Sheet1!D'Y			츤
Factor C			[Book2]Sheet1!B'R	gion"		\#
Data			[Book2]Sheet1!E'iin	ernet user [\% of To	tal) ${ }^{\prime}$	\pm
Homogeneity Tests[Levene's Test] \square						
Significance Level			0.05			

6. In the Model tab, make sure all boxes are selected. This determines that a full factorial model will be used for the three-way ANOVA.

Input	Model	Descriptive Statistics	Means Comparison	Power Analysis	Mean Plot	Output
Data $=A+B+C+A^{x} B+A^{x} C+B^{x} C+A^{x} B^{x} C$						
Effect $\mathrm{A}^{\mathbf{x}} \mathrm{B}$						
Effect $\mathrm{A}^{\boldsymbol{x}} \mathrm{C}$		V				
Effect B ${ }^{\text {x }}$ C		V				
Effect $\mathbf{A}^{\mathbf{x}} \mathrm{B}^{\mathbf{x}} \mathrm{C}$						

7. Click OK to apply all setting and close the dialog.
8. Go to sheet ANOVA3Way1. The Overall ANOVA table includes ANOVA test results for the main effects and the interactions. If the \mathbf{P} Value is less than 0.05 , this means the levels in the corresponding factor are significantly different. Note the conclusions in the footnotes beneath the table.

	- Overall ANOVA -					
		DF	Sum of Squares	Mean Square	F Value	P Value
	Developing Index	1	23652.65024	23652.65024	132.61578	0
Main Effects	Year	2	15248.13748	7624.06874	42.74666	0
	Region	5	15055.32285	3011.06457	16.88245	$1.77636 \mathrm{E}-15$
Two-way Interaction	Developing Index*Year	2	511.16006	255.58003	1.43299	0.23954
	Developing Index*Region	5	9230.53132	1846.10626	10.35076	1.78556E-9
	Year*Region	10	5342.29117	534.22912	2.99532	0.0011
Three-wav Interaction	Developing Index*Year*Region	10	896.73603	89.6736	0.50278	0.88834
	Model	35	241745.07507	6907.00214	38.72621	0
	Error	516	92031.03363	178.35472	0	0
	Corrected Total	551	333776.1087	0	0	0

At the 0.05 level, the population means of Developing Index are significantly different.
At the 0.05 level, the population means of Year are significantly different.
At the 0.05 level, the population means of Region are significantly different.
At the 0.05 level, the population means of Developing Index ${ }^{\star}$ Year are not significantly different.
At the 0.05 level, the population means of Developing Index*Region are significantly different.
At the 0.05 level, the population means of Year*Region are significantly different.
At the 0.05 level, the population means of Developing Index ${ }^{*}$ Year*Region are not significantly different.

From the Overall ANOVA table above we can see the two-way interaction of factors Developing
Index*Year is not significant (p-value $=0.23954$). The three-way interaction of factors
Region*Developing Index*Year, is not significant. (p-value $=0.88834$).

5.4.7.5 Examining Significant Interactions

In the following, we are going to further examine factors showing a significant interaction.

1. Click the green lock in the sheet ANOVA3Way1 and choose Change Parameters from the context menu

2. In the Model tab, clear the Effect A*B and Effect A*B*C check boxes, where interactions between factors could not detected.

Input	Model	Descriptive Statistics	Means Comparison	Power Analysis	Mean Plot
\begin{tabular}{\|l	l	l	l	}	
\hline					
\end{tabular}	Output				
Data $=\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{A}^{\mathbf{x}} \mathbf{B}+\mathbf{A}^{\mathbf{x}} \mathbf{C}+\mathbf{B}^{\mathbf{x}} \mathbf{C}+\mathbf{A}^{\mathbf{x}} \mathbf{B}^{\mathbf{x}} \mathbf{C}$					
Effect $\mathbf{A}^{\mathbf{x}} \mathbf{B}$	\square				
Effect $\mathbf{A}^{\mathbf{x}} \mathbf{C}$	\square				
Effect $\mathbf{B}^{\mathbf{x}} \mathbf{C}$	\square				
Effect $\mathbf{A}^{\mathbf{x}} \mathbf{B} \mathbf{X} \mathbf{C}$	\square				

3. In the Means Comparison tab, select the Bonferroni check box. Bonferroni is the most commonly used post-hoc test. It controls the overall Type I error.
4. In the Mean Plot tab, select all available check boxes. (Effect $\mathbf{A * B}$ and Effect $\mathbf{A *} \mathbf{B} * \mathbf{C}$ are disabled because they are not included in the model.)

Input	Model	Descriptive Statistics	Means Comparison	Power Analysis	Mean Plot	Output
Factor A		V				
Factor B		V				
Factor C		V				
Effect $\mathrm{A}^{\text {x }}$ B		\square				
Effect $\mathrm{A}^{\text {x }}$ C		V				
Effect B ${ }^{\text {P }}$ C		V				
Effect $\mathbf{A}^{\mathbf{x}} \mathbf{B}^{\mathbf{x}} \mathbf{C}$						

5. Click OK to apply all setting and close the dialog.

5.4.7.6 Interpreting Results

The results in the sheet ANOVA3Way1 are updated using the new calculation parameters.

5.4.7.6.1 Overall ANOVA

O\|
 Overall ANOVA DF Sum of Squares Mean Square F Value Developing Index 1 24445.97236 24445.97236 138.04613 P Value Year 2 44473.73843 22236.86921 125.57135 0 Region 5 15019.51175 3003.90235 16.963 $1.44329 \mathrm{E}-15$ Developing Index*Region 5 9809.01069 1961.80214 11.07827 $3.65762 \mathrm{E}-10$ Year*Region 10 20038.12871 2003.81287 11.31551 0 Model 23 240274.94891 10446.73691 58.99261 0 Error 528 93501.15979 177.08553 0 0 Corrected Total 551 333776.1087 0 0 0

At the 0.05 level, the population means of Developing Index are significantly different. At the 0.05 level, the population means of Year are significantly different. At the 0.05 level, the population means of Region are significantly different. At the 0.05 level, the population means of Developing Index*Region are significantly different. At the 0.05 level, the population means of Year*Region are significantly different.

From the table we can see all remaining effects are significantly different. We can use the Means
Comparisons results and Means Plots to further detect differences between each group.

5.4.7.6.2 Means Comparison and Means Plot of the Three Main Effects

Expanding the branch ANOVA: Means Comparison: Bonferroni Test, you can see the means comparison table for each effect. It is useful, along with the Means Plot at the bottom of the result sheet, for pairwise comparisons between members of a group.

Comparison between Developing and Developed Country

From the result above we can see the number of internet users of developing countries is much fewer than the developed countries.

[^5]T Year

	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
20002005	-10.83912	1.60085	-6.77087	$1.02556 \mathrm{E}-10$	0.05	1	-14.68377	-6.99448
20002010	-26.34647	1.6363	-16.10126	$2.87479 \mathrm{E}-47$	0.05	1	-30.27626	-22.41668
20052010	-15.50735	1.5908	-9.74813	$2.80003 \mathrm{E}-20$	0.05	1	-19.32787	-11.68682

From the result above we can see the number of internet users greatly increased between 2000 and 2010.

Comparison between Regions

\rightarrow								
	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
Asia Europe	-5.46197	3.9887	-1.36936	1	0.05	0	-17.22311	6.29917
Asia Africa	29.83188	5.38213	5.54277	$7.06154 \mathrm{E}-7$	0.05	1	13.96204	45.70172
Asia The Americas	-4.9414	4.44103	-1.11267	1	0.05	0	-18.0363	8.15349
Asia Oceania	-0.65636	4.96954	-0.13208	1	0.05	0	-15.30964	13.99693
Asia Middle East	8.50447	5.46795	1.55533	1	0.05	0	-7.61842	24.62736
Europe Africa	35.29385	3.96669	8.89755	1.3668E-16	0.05	1	23.59758	46.99011
Europe The Americas	0.52057	2.54757	0.20434	1	0.05	0	-6.99124	8.03237
Europe Oceania	4.80561	3.38581	1.41934	1	0.05	0	-5.17785	14.78908
Europe Middle East	13.96644	4.08238	3.42115	0.01008	0.05	1	1.92906	26.00382
Africa The Americas	-34.77328	4.42128	-7.86499	$3.14391 \mathrm{E}-13$	0.05	1	-47.80994	-21.73662
Africa Oceania	-30.48824	4.9519	-6.15688	$2.20497 \mathrm{E}-8$	0.05	1	-45.0895	-15.88697
Africa Middle East	-21.32741	5.45192	-3.91191	0.00155	0.05	1	-37.40304	-5.25178
The Americas Oceania	4.28504	3.90855	1.09633	1	0.05	0	-7.23977	15.80986
The Americas Middle East	13.44587	4.52536	2.97123	0.04652	0.05	1	0.10232	26.78943
Oceania Middle East	9.16083	5.04504	1.81581	1	0.05	0	-5.71508	24.03674

The results above tell us:

- Internet users in Africa are significantly fewer than other continents.
- Internet users in the Middle East are significantly fewer than Europe and the Americas.
- There is no significant difference between other pairs of continents.

5.4.7.6.3Comparing Same Level Between Different Groups

We can compare the sample level between different groups with Mean Comparison results of the interactions. In the following we will show how to use a data filter to quickly view the results we are interested in.

1. In the sheet ANOVA3Way1, expand the branch ANOVA: Means Comparison: Bonferroni Test.
2. Click the triangle button next to Interactions and choose Create Copy as New Sheet from the context menu.

3. Go to the generated sheet Interactions. Now we are going to compare developing and developed countries in different regions by applying a data filter in the results.
4. Highlight column C, click the Add/Remove Data Filter button ${ }^{\nabla}$ to add a data filter to the column.
5. Click the Filter icon ${ }^{\mathbf{T}}$ on the column header, choose Custom Filter.
6. Select the Advanced check box in the bottom-right corner of the open dialog. Add following script in the Condition box.

7. From the results below we can see:
8.

- The internet users in the developed and developing countries are not significantly different in Africa and Middle East.
- The internet users in the developed countries are significant higher than the developing countries on the following four continents.

1. Asia
2. Europe
3. The Americas
4. Oceania

O

	A(M)	B(\%)	1 F cm	D(1)	E(M)	F(M)	G()	Hoter?	(1)	JM)	K(M)	LM	men	N(M)
Lono Name	Developing index	Year	Repion	Developing index	Year	Region	Meandit	SEM	tvalue	Prod	Alpha	Sig	LCL	UCL
Filter			$\begin{gathered} \cos (\mathrm{c} \mid \mathrm{s}==\cos (\mathrm{f}) \\ 5 \end{gathered}$											
6	Developing Country	-	Asia	Developed Country	-	Asia	-4292764	7.63444	-5.6229	201079E-6	0.05	1	-68.79032	-17.06497
17	Developing Country	-	Europe	Developed Countr	-	Europe	-224491	231388	-9.70192	0	0.05	1	-30.29769	-14.61051
27	Developing Country	-	Afica	Developed Country	-	Africa	-325806	758844	-0.42935	1	0.05	0	-28.98493	22.4488
35	Developing Countr	-	The Americas	Developed Country	-	The Americas	-4660039	453941	-10.26573	0	0.05	1	-61.97825	-31.22253
44	Devoloping Country	-	Oceania	Developed Country	-	Oceania	-5564037	635642	-875342	0	0.05	1	-77.17358	-34 10716
51	Developing Country	- 2000	Middle East	Developed Country	- 2005	Middle East	-16.00325	783002	-212045	1	0.05	0	-43. 12847	992197
72		2000	Asia	-	2005	Asia	-8.27003	325534	-2.54064	1	005	0	-2004478	350353
		2000	Ask		2010	Asla	2184207	327085	culuas	was				1097082
									1 in the Sig column means the pair of levels are signicart diflerent, while 0 means no signfcant different					

5.5 Nonparametric Tests

5.5.1 Nonparametric Tests

- Non-parametric Statistics Overview

5.5.2 Non-parametric Statistics Overview

5.5.2.1 Summary

Nonparametric tests are used when you don't know whether your data are normally distributed, or when you have confirmed that your data are not normally distributed.

5.5.2.2 What you will learn

This tutorial will show you:

- An introduction on non-parametric tests in Origin
- How to run the non-parametric tests for different practical situations
- How to calculate correlation coefficient in non-parametric statistics

5.5.2.3 Introduction: Nonparametric Tests in Origin

Nonparametric tests do not require the assumption of normality. They are commonly used in the following situations:

- Small sample size.
- Categorical/Binary/Ordinal data.
- Normal distribution cannot be assumed.

		Nonparametric	Parametric
		Data from any distribution	Data from normal distribution
		Small Samples	Large Samples
One Sample		Wilcoxon Signed Rank Test	One Sample T-Test
Two Samples	Independent Samples	- Mann-Whitney test - Kolmogorov-Smirnov test	Two Sample T-Test
	Paired Samples	- Wilcoxon signed rank Test - Sign Test	Paired Sample T-Test
Multiple Samples	Independent Samples	- Kruskal-Wallis ANOVA - Mood's Median Test	One Way ANOVA
	Related Samples	Friedman ANOVA	One Way Repeated Measure ANOVA

5.5.2.4 Examples

5.5.2.4.1 One Sample Independent Tests

The One-Sample Wilcoxon Signed Rank test is designed to examine the population median relative to a specified value. You may choose a one- or two-tailed test. The Wilcoxon signed rank test hypotheses are H0: median = hypothesized median versus H1: median $=$ hypothesized median.
In this example, a quality engineer in a production shop is interested in whether median (or average) of the weight of product is equal to 166 . So select 10 product at random and measured their weight . The data measured as following:
151.5152 .4153 .2156 .3179 .1180 .2160 .5180 .8149 .2188 .0

The engineer perform Normality Test to determine if the distribution of the data is normal distribution

1. Open a new worksheet and input the above data in col(A). Select Statistics: Descriptive Statistics: Normality Test... to open the Normality Test dialog.
2. Select $A(X)$ as Data range.

3. Click the $\mathbf{O K}$ button to generate results.

B: At the 0.05 level, the data was not significantly drawn from a normally distributed population.

According to result, P -value $=0.03814$,the distribution of the data is not normal distribution at the 0.05 level. So, perform One-Sample Wilcoxon Signed Rank test:

1. Select Statistics: Nonparametric Tests: One-sample Wilcoxon Signed Rank Test... to open the dialog.
2. Set column A as Data Range.
3. Input $\mathbf{1 6 6}$ in Test Median text box.

4. Click the OK button to generate results
Descriotive Statistics

	N	Min	Q1	Median	Q3	Max
A	10	149.2	152.175	158.4	180.35	188

Test Statistics

	\mathbf{W}	Z	Extact Prob $=\|\mathrm{W}\|$	Asymp. Prob $>\|\boldsymbol{W}\|$
A	28	0	1	1

Null Hypothesis: Median = 166
Atemative Hypothesis: Median <> 166
A: At the 0.05 level, the population median is NOT significantly different from the test median (166).

According to the result, it fails to reject null hypothesis at the 0.05 level and concludes that the median is equal to 166.

5.5.2.4.2 Two Sample Independent Tests

Origin provides two tests for non-parametric statistics of two sample independent system: the Mann-Whitney Test and Two Sample Kolmogorov-Smirnov Test.

This following example shows the practical use of Mann-Whitney Test. The abrasions(in mg) are measured for two types of tires(A and B), 8 experiments were carried out for each tire type. The data is indexed and stored in abrasion_indexed.dat file.

1. Import the abrasion_indexed.dat file from \Samples\Statistics \}
2. Select Statistics: Nonparametric Tests: Mann-Whitney Test to open the dialog.
3. Keep Input Data Form as Index
4. Set column A as Group Range, set column B as Data Range.
5. Select the Exact \mathbf{P} Value check box.

Statistics \backslash Nonparametric Tests: mwtest	8
Dialog Theme	
Description Preform Mann-Whitney test	

Results Log Output	\square	
Recalculate	Manual \quad	
Input Data Form	Indexed -	
\square Input		
Group Range	[abrasionindex]abrasion_indexed!A' 'tire"	치
Data Range	asionindex]abrasion_indexed!B"abrasion"	此
\square Mann-Whitney Test		
Null Hypothesis	$F(x)=G(u)$	
Alternate Hypothesis	(0) $F(x)\langle>G(y)$	
	-F(x)>G(u)	
	- $F(x)<G(y)$	
Significance Level	0.05	
Exact P Value	V	
Output Results	[<inpul>]<new>	\#
	OK	Cancel

6. Click the $\mathbf{O K}$ button to generate results, which should be in the MannWhitney1 sheet

\checkmark					
	U	Z	Exact Prob>\|U		Asymp. Prob $>\|\mathrm{U}\|$
	34.5	0.2102	0.82191	0.83351	
	Null Hypothesis: $\mathrm{F}(x)=\mathrm{G}(\mathrm{y})$ Atemative Hypothesis: $F(x)<>G(y)$				

- U: The \mathbf{U} statistic can be simply calculated from the rank of two groups. It is the number of times a score in the 2 nd group is larger than a score in the 1st group.
- Z: The approximate Normal test statistic. It provides an excellent approximation as the sample size grows.
- Exact Prob: The exact p-value, only available when Exact \mathbf{P} Value is selected in the dialog. However, it could be very CPU-time consuming for large sample size.
- Asymp.Prob: The asymptotic p -value calculated from the approximate Normal test statistic, \mathbf{Z}

5.5.2.4.3 Non-parametric Measures of Correlation

Correlation coefficient is used as a measure of relationship between two variables.It is possible to calculate the correlation coefficient for non-parametric statistics.

Origin provides two non-parametric methods to measure the correlations between variables:

- Spearman: common substitution of Pearson correlation coefficient,Spearman's coefficient can be used when both dependent (variable and independent variable are ordinal numeric, or when one variable is a ordinal numeric and the other is a continuous variable. However, it can also be appropriate to use Spearman's correlation when both variables are continuous.
- Kendall: Used with ordinal variables for assessing agreement among raters

The following example shows how to calculate correlation coefficient for non-parametric situations.

1. Import the abrasion_raw.dat file from Samples \backslash Statistics;
2. Highlight Column A and column B. Select Statistics:Descriptive Statistics:Correlation Coefficient to open the corrcoef dialog;
3. Check Spearman and uncheck Pearson;

4. Click the $\mathbf{O K}$ button to generate the results, in the CorrCoef $\mathbf{1}$ sheet.

From the value of Spearman Corr., it can be concluded that the abrasion between tire A and tire B are strongly related.

| Spearman Correlations |
| :--- | $\operatorname{\nabla }$ -

5.5.2.4.4 Paired Sample wilcoxon Signed Rank Tests

We will compare the two medians of tire A and tire B in above example.

1. Continue with the abrasion_raw.dat file from Samples \backslash Statistics;
2. Select Statistics: Nonparametric Tests: Paired Sample wilcoxon Signed Rank Tests to open the dialog;
3. Selcet Column A as 1st Range Data and column B as 2nd range Data;

4. Click the $\mathbf{O K}$ button to generate the results.

- Descriptive Statistics						
	N	Min	Q1 M	Median	Q3	Max
"tireA"	8	4870	4980	5760	07330	8650
"tireB"	8	4900	4950	5420	-6687.5	7930
Ranks -						
,				N	Mean Rank	Sum Rank
"tireB"-"tireA"		Positive Ranks		2	1.5	3
		Negative Ranks		S 6	5.5	33

- Test Statistics $\quad-$

	W	Z	Exact Prob $>\|W\|$	Asymp. Prob $>\|W\|$
33	2.0329	0.03906	0.04206	

We can conclude that two medians are significantly different. Obviously, median of group A is larger than that of group B.

5.5.2.4.5 Multiple Independent Samples Test

In this example, the gas mileage of four car makers are measured. Several experiments are carried out for each car makers. The results are listed in the sample data table.

GMC/mpg	Infinity/mpg	Saab/mpg	Kia/mpg
26.1	32.2	24.5	28.4
28.4	34.3	23.5	34.2
24.3	29.5	26.4	29.5
26.2	35.6	29.9	32.2
27.8	32.5		
30.6	30.2		
28.1			

To evaluate whether the gas mileage of the four car makers are equal, and which one is the most efficient, Kruskal-Wallis ANOVA is chosen as the nonparametric test method.

1. Create a new workbook in Origin, copy the sample data and paste into it;
2. Select Statistics:Nonparametric Tests:Kruskal-Wallis ANOVA to open the kwanova dialog;
3. Specify Raw as Input Data Form;
4. Click the triangle button next to Input, and select All Columns in the context menu;

5. Click the OK button to generate results, the results are stored in a new worksheet KWANOVA1.

From the p-value we can conclude that gas mileage of the four car makers are significant different.

5.5.2.4.6 Multiple Related Samples Test

Ophthalmologists are investigating whether laser He-Ne therapy works for children. They have data from 2 groups, 6-10 Years Old and 11-16 Years Old. Each data set contains study of 5 persons' naked-eye eyesight difference after 3 period of therapy. The results are stored in the eyesight.dat.

Due to the small sample size, non-parametric statistics would be needed in analysis, following the steps below:

1. Import the eyesight.dat file from \Samples \Statistics\;
2. Select Statistics:Nonparametric Tests:Friedman ANOVA to open the friedman dialog;
3. Select Column A as Data Range, Column C as Factor Range, and Column D as Subject Range;

4. Click the $\mathbf{O K}$ button to generate results.

The p -value of $\mathcal{X}_{f t o l 0}$ is 0.0067379 , which is less than 0.05 . The populations are significantly different, indicating that the therapy are effective for the age group 6-10.

In a similar way, choose column B as Data Range and the rest setting of Input are the same with Step 3 previously.

Check the result, we can see that p -value of $\mathcal{X}_{1} t o l 6$ is 0.02599 , less than 0.05 or 0.10 . So we can also conclude that eyesight of $11-16$ years old kids is better after 3 period of therapy.

And we can see that $\mathcal{X}_{\text {ctol0 }}>\mathcal{X}_{11 t o 16}$, that means, laser He-Ne therapy works better on 6-10 years old kids. The earlier children are to be involved in therapy, the more their eyesight can be improved.

5.6 Survival Analysis

5.6.1 Survival Analysis

- Kaplan-Meier Estimator
- COX Model Estimator
- Weibull Fit

5.6.2 Kaplan-Meier Estimator

5.6.2.1 Summary

Survival analysis is the study of the time until a certain event, such as a death or failure in treatment. It also called event history analysis in social science, or reliability analysis in engineering.

Survival function, $S(t)$, can describes the survival rate at time t.And $S(t)=1-F(f)$, where $F(t)$ is the cumulative distribution function of the failure times. While The hazard function $\mathrm{h}(\mathrm{t})$ (also known as the failure rate, hazard rate, or force of mortality) is the ratio of the probability density function $\mathrm{P}(\mathrm{t})$ of $\mathrm{F}(\mathrm{t})$ to the survival function $\mathrm{S}(\mathrm{t})$.

The Kaplan-Meier also called product-limit estimator provides an estimate of $\mathrm{S}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ from a sample of failure times which may be progressively right-censored.

5.6.2.2 What you will learn

This tutorial will show you how to:

- Perform Kaplan-Meier Estimator
- How to interpret the results

5.6.2.3 Steps

5.6.2.3.1 Running Kaplan-Meier Estimator

Scientist is looking for a better medicine for cancer resistance. After exposing some rats to a carcinogen DMBA, they apply different medicine to different groups of rats and record their survival status for first 60 hours. In the 1st group, 15 rats survived after being exposed, on which Medicine 1 is applied. Note that on the 30th hours, 1 rat is dead but not for carcinoma. In the 2nd group, 15 rats survived with drug 2 applied. Note that on the 14th hour, the 15th hour and the 25th hour, 1 rat die but not because of carcinoma. And the records of two groups rats are sorted in the file /Samples/Statistics/SurvivedRats.dat. Note that in Status, $0=$ dead but not because of carcinoma, $1=$ dead because of carcinoma, $2=$ alive .

2. Analyze the dataset using the Kaplan-Meier Estimate tool. Use the menu item Statistics: Survival

Analysis: Kaplan-Meier Estimator to open the dialog.
3. Set column A, B and \mathbf{C} as Time Range, Censor Range and Grouping Range respectively in the Input tab.

4. Set 0 and 2 as Censored Value(s)

5. In the Survival Table tab, select the Event and censor values Summary , Survival Estimates, Quartile Estimates and Mean Estimates check boxes.

Input	Survival Tables	Survival Plots
	Equality Test	Output
Event and Censor Values Summary		
Survival Estimates	\square	
Quartile Estimates	\square	
Mean Estimate	\square	
Confidence Level in \% for Quartile/Mean Estimate	95	

6. Select Survival ,One Minus survival and Hazard check box in the Survival Plots tab.

7. Select the Log-Rank, Breslow and Tarone-Ware check box in the Equality Test tab.

8. Click the OK button.

5.6.2.3.2 Interpreting the Results

Go to worksheet KaplanMeier1 for the analysis report :

1. From the "summary of event and censored values" table, we can see that Censored=3 and Percent Censored $=0.2$ for drug 1 group and Censored=9 and Percent Censored=0.6 for drug 2 group.
T Summary of Event and Censored Vadues -

	Total	Events	Censored	Percent Censored
drug1	15	12	3	0.2
drug2	15	6	9	0.6
Censored Value(s): 0.2				

2. "Kaplan-Meier Survival Estimates " tables display a descriptive procedure for examining the distribution of time-to-event variables. We also can compare the distribution by levels of a factor
variable. Quartile Estimates and Means Estimates table Provides the estimates and confidence interval of quartile and mean.

Survival Analysis of Time (drug2) \quad -						
\square Kaplan-Meier Survival Estimates -						
	Time	Status	Cumulative Survival	Standard Error	Cumulative Event	Number Remaining
	14	+	--	-	0	14
	15	+	--	-	0	13
	17		0.92308	0.07391	1	12
	23		0.84615	0.10007	2	11
	25	+	--	--	2	10
	28		-	-	3	9
	28		0.67692	0.13366	4	8
	36		0.59231	0.14122	5	7
	60		0.50769	0.14418	6	6
	60	+	-	-	6	5
	60	+	--	--	6	4
	60	+	--	-	6	3
	60	+	--	--	6	2
	60	+	-	-	6	1
	60	+	--	-	6	0

> Observations with status as + are censored ones.

Quartile Estimates	\bullet			
	Percent Failures	Estimate	95% LCL	95% UCL
25	28	23	60	
50	-	-	-	
	75	-	--	-

Mean Estimate			
Estimate	Std.Error		
$45 \% \mathrm{LCL}$	95% UCL		
46.4	5.26463	36.08152	56.71848

3. The survival curves give a visual representation of the life tables. A plot of the Kaplan-Meier estimate of the survival function is a series of horizontal steps of declining magnitude. In the plot, the survival curve declines more rapidly, the survival rate is smaller.This Survival function plot shows proportion of individuals surviving at each hour for drug 1 group and drug2 group and the survival curve of drug1 always declines more rapidly, so we can conclude that drug 2 is one better medicine for cancer resistance.

4. Form one minus survival function, we can get the same conclusion as Survival function plot.

5. Hazard rate is the instantaneous probability of the given event occurring at any point in time.It can be plotted against time on the X axis, forming a graph of the hazard rate over time. And hazard function is the equation that describe this plotted line.From the graph, we can get the hazard rate of drug1 group is greater than drug 2 group. So we can conclude that drug 2 is one better medicine for cancer resistance.

6. For overall tests of the equality of survival times across groups, Origin provides three methods:

- Log rank: Tests equality of survival functions by weighting all time points the same.
- Breslow: Tests equality of survival functions by weighting all time points by the number of cases at risk at each time point.
- Tarone-Ware: Tests equality of survival functions by weighting all time points by the square root of the number of cases at risk at each time point.

Test of Equality over Groups	Cl\|			
	Chi-Square	df	Prob>Chi-Square	Conclusion at level (5\%)
Log Rank	4.73554	1	0.02955	There is significant difference
Breslow	4.91804	1	0.02658	There is significant difference
Tarone-Ware	4.89582	1	0.02692	There is significant difference

Since the significance values of the tests are all smaller than 0.05 , there is statistically significant difference between two treatments(drug1 and drug2) in survival time.

5.6.3 COX Model Estimator

5.6.3.1 Summary

The Cox Model Estimation ,also called the proportional hazard model is a classical semi-parameter method in survival analysis. A Cox model provides an estimate of the effect on survival for variables and the hazard of
death for an individual．Using Cox regression analysis，we will obtain an equation for the hazard as a function of several variables．A positive regression coefficient for an explanatory variable means that the hazard is higher with higher values of that variable．while for negative regression coefficient for an explanatory variable， the hazard is lower with higher values of that variable．

The proportional hazards assumption：Observations should be independent，and the hazard ratio should be constant across time；that is，the proportionality of hazards from one case to another should not vary over time．

5．6．3．2 What you will learn

This tutorial will show you how to：
－Perform COX Model Estimator
－How to interpreting the results

5．6．3．3 Perform COX Model Estimator

1．Click the Import Single ASCII button $\stackrel{\substack{18, \\ \hline ⿻ 弓 ⿰ 丿 丨 二 ⿴}}{ }$ to import phm＿Cox．dat located in the \Samples \Statistics subfolder．

2．Select Statistics：Survival Analysis：Cox Model Estimator to open the dialog．
3．Put the $\mathbf{A}(\mathbf{X})$ ：month column into Time Range．Similarly，put the $\mathbf{B}(\mathbf{Y})$ ：status column into Censor Range．
4．Click the interactive data selection button and choose the Charlson and tKt＿v column into the Covariate Range edit box．
5．Select $\mathbf{0}$ as the censoring value form censoring value（s）drop－down list．
6．check Survival and Hazard box in Survival Plots group．
7．Click the OK button to perform the Cox Model Estimator analysis．

5.6.3.4 Interpreting the Results

Go to worksheet CoxPHM1 for the analysis report.

1. From the "Summary of event and censored values" table, we can see that censored =112 and percent Censored $=0.8$.
1 Summary of Event and Censored Values

Total	Events	Censored	Percent Censored
140	28	112	0.8
Censored value(s): 0			

2. The following table displays the result of test whether the model is significant or not. Note that the null hypothesis is $\beta 1=\beta 2=0$. In this example, $\mathbf{P r}>\mathbf{C h i S q}=4 \mathrm{E}(-4)<0.05$, therefore we reject the null hypothesis; that is, either $\beta 1$ or $\beta 2$, or both, $\neq 0$.

3. In the "Analysis of parameter Estimates" table, the coefficient estimate of variable charlson is 0.2876 and $\mathbf{P r}>\mathbf{C h i S q}=5 \mathrm{E}-4<0.05$, so $\beta 1=0.287$ and charlson is a significant variable. The Hazard ratio can be interpreted as the predicted change in the hazard for a unit increase in the predictor. For variable charlson, Hazard ratio=1.333, meaning that the hazard becomes 1.333 times when charlson increments one unit. Similarly, tKt_v is a significant variable .The coefficient estimates of tKt_v $\beta 2=-0.837$ and hazard ratio=0.433. We know the hazard
function: $\mathrm{h}(\mathrm{t}, \mathrm{x})=\mathrm{hO}(\mathrm{t}) * \exp (0.2876 *$ charlson-0.837*tKt_v).
Analysis of parameter estimates

	DF	Estimate	Standard Error	Chi-Square	Pr $>$ ChiSq	Hazard Ratio
"charlson"	1	0.2876	0.0827	12.0856	$5 \mathrm{E}-4$	1.3333
"tKt_v"	1	-0.837	0.3445	5.9032	0.0151	0.433

4. The Survival function plot shows the proportion of individuals surviving at each hour and is a visual display of the model-predicted. The horizontal axis shows the time to event. The vertical axis shows the probability of survival.

5. The Hazard function plot displays the instantaneous probability of the given event occurring at any point in time.

5.6.4 Weibull Fit

5.6.4.1 Summary

Weibull fit is a kind of parameter method to analyze the relationship between the survival function and failure time. After analysis, we can get parameter estimates, which can determine survival function and hazard function of Weibull distribution .

Weibull distribution:
$f(x)=\frac{c}{\sigma}\left(\frac{x-\theta}{\sigma}\right)^{c-1} \exp \left(-\left(\frac{x-\theta}{\sigma}\right)^{c}\right){ }_{\text {where } x>\theta, \text { for } c, \sigma>0}$
Survival function:
$S(x)=\exp \left(-\left(\frac{x-\theta}{\sigma}\right)^{c}\right)$
Hazard function:
$h(x)=\frac{c}{\sigma}\left(\frac{x-\theta}{\sigma}\right)^{c-1}$
where c is the shape parameter, σ is the scale parameter, and θ is the location parameter. In Origin, Weibull fit only discusses c and σ, and assumes $\theta=0$.

If $\mathrm{c}>1$ the hazard increases, if $\mathrm{c}=1$ the hazard is constant(exponential model), if $\mathrm{c}<1$ the hazard decreases.

Minimum Origin Version Required: OriginPro 9.1 SR0

5.6.4.2 What you will learn

This tutorial will show you how to:

- Perform Weibull Fit
- How to explain analysis report

5.6.4.3 Perform Weibull Fit

1. Click the Import Single ASCII button 曲 to import weibull fit.dat located in the \Samples \Statistics subfolder.
2. Select Statistics: Survival Analysis: weibull fit to open the dialog.
3. Put the $\mathbf{A}(\mathbf{X})$ column into Time Range. Similarly, put the $\mathbf{B}(\mathbf{Y})$ column into Censor Range.
4. Select $\mathbf{0}$ as the censoring value form censoring value(s) drop-down list.
5. Expand Plots branch and check Survival Plot and Hazard Plot.

6. Click the $\mathbf{O K}$ button to perform the Weibull fit analysis.

盈1 1 ت WeiBuil (4/20/2017 17:08:02)

5.6.4.4 Interpreting the Result

Go to worksheet WeibullFit1 for the analysis report.

- From the "Summary of Event and Censored Values" table, we can see that censored $=19$ and percent Censored $=0.2111$.
Summary of Event and Censored Vadues

Total	Events	Censored	Percent Censored
90	71	19	0.21111
Censored value(s): 0			

- From the "Analysis of parameter estimates", we can get all parameter estimates for Weibull distribution. Intercept $=\theta=4.1959$, $(\theta$ is the intercept of the small extreme distribution, $\theta=\ln$ (Weibull Scale))
Weibull Scale $=\sigma=66.4153$,
Weibull Shape=c=2.0204,
Scale $=0.495$ (scale $=1 / c$).
Analysis of parameter estimates

| | DF | Estimate | Standard Error | 95% LCL | 95% UCL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Intercept | 1 | 4.1959 | 0.0588 | 4.0806 | 4.3112 |
| Scale | 1 | 0.495 | 0.0481 | 0.4091 | 0.5988 |
| Weibull Scale | 1 | 66.4153 | 3.9077 | 59.1815 | 74.5333 |
| Weibull Shape | 1 | 2.0204 | 0.1963 | 1.67 | 2.4443 |

'Log-Likelihood=-87.087474880717
$c>1$,so we can conclude that the hazard increases as time.

- Furthermore, we can get the survival function and hazard function:

5.7 Multivariate Analysis

5.7.1 Multivariate Analysis

- Principal Component Analysis
- Cluster Analysis
- Discriminant Analysis
- Partial Least Squares

5.7.2 Principal Component Analysis

5.7.2.1 Summary

Principal Component Analysis is useful for reducing and interpreting large multivariate data sets with underlying linear structures, and for discovering previously unsuspected relationships.

We will start with data measuring protein consumption in twenty-five European countries for nine food groups. Using Principal Component Analysis, we will examine the relationship between protein sources and these European countries.

5.7.2.2 Selecting Principal Methods

To determine the number of principal components to be retained, we should first run Principal Component Analysis and then proceed based on its result:

1. Open a new project or a new workbook. Import the data file \samples \backslash Statistics \backslash Protein Consumption in Europe.dat
2. Select the entire worksheet and then select Statistics: Multivariate Analysis: Principal Component Analysis.
3. Accept the default settings in the open dialog box and click OK.
4. Select sheet PCA Report.
5. In the Eigenvalues of the Correlation Matrix table, we can see that the first four principal components explain 86% of the variance and the remaining components each contribute 5% or less. We will keep four main components.

Eigenvalues of the Correlation Matrix			
Eigenvalue Percentage of Variance Cumulative 1 4.00644 44.52% 44.52% 2 1.635 18.17% 62.68% 3 1.12792 12.53% 75.22% 4 0.95466 10.61% 85.82% 5 0.46384 5.15% 90.98% 6 0.32513 3.61% 94.59% 7 0.27161 3.02% 97.61% 8 0.11629 1.29% 98.90% 9 0.09911 1.10% 100.00%			

6. A scree plot can be a useful visual aid for determining the appropriate number of principal components. The number of components depends on the "elbow" point at which the remaining eigenvalues are relatively small and all about the same size. This point is not very evident in the scree plot, but we can still say the fourth point is our "elbow" point.

7. Click the lock icon 臮in the results tree and select Change Parameters in the context menu. In the Settings tab, set Number of Components to Extract to 4. Do not close the dialog; in the next steps, we will retrieve component diagrams.

5.7.2.3 Request Principal Component Plots

In the Plots tab of the dialog, users can choose whether they want to create a scree plot or a component diagram.

- Scree Plot

The scree plot is a useful visual aid for determining an appropriate number of principal components.

- Component Plot

Component plots show the component score of each observation or component loading of each variable for a pair of principal components. In the Select Principal Components to Plot group, users can specify which pair of components to plot. The component plots include:

- Loading Plot

The loading plot is a plot of the relationship between the original variables and the subspace dimension. It is used to interpret relationships between variables.

- Score Plot

The score plot is a projection of data onto subspace. It is used to interpret relationships between observations.

- BiPlot

The biplot shows both the loadings and the scores for two selected components in parallel.

1. In the dialog that was opened in the preceding steps, select the Plots tab. Make sure Scree Plot, Loading Plot, and Biplot are selected.
2. The first two components are usually responsible for the bulk of the variance. This is why we are going to plot the component plot in the space of the first two principal components. In the Select

Principal Components to Plot group, set Principal Component for X Axis to 1, and set Principal Component for Y Axis to 2. Click OK.

5.7.2.4 Interpreting The Results

1. In the Correlation Matrix, we can see that the variables are highly correlated. Many values are greater than 0.3. Principal Component Analysis is an appropriate tool for removing the collinearity.

\checkmark									
	Red Meat	White Meat	Eggs	Milk	Fish	Cereals	Starch	Nuts	Fruits \& Vegetables
Red Meat	1	0.153	0.58561	0.50293	0.06096	-0.49988	0.13543	-0.34945	-0.07422
White Meat	0.153	1	0.62041	0.28148	-0.23401	-0.4138	0.31377	-0.63496	-0.06132
Eggs	0.58561	0.62041	1	0.57553	0.06557	-0.71244	0.45223	-0.55978	-0.04552
Milk	0.50293	0.28148	0.57553	1	0.13788	-0.59274	0.22241	-0.62109	-0.40836
Fish	0.06096	-0.23401	0.06557	0.13788	1	-0.52423	0.40385	-0.14715	0.26614
Cereals	-0.49988	-0.4138	-0.71244	-0.59274	-0.52423	1	-0.53326	0.651	0.04655
Starch	0.13543	0.31377	0.45223	0.22241	0.40385	-0.53326	1	-0.47431	0.08441
Nuts	-0.34945	-0.63496	-0.55978	-0.62109	-0.14715	0.651	-0.47431	1	0.37497
Fruits \& Vegetables	-0.07422	-0.06132	-0.04552	-0.40836	0.26614	0.04655	0.08441	0.37497	1

2. The main component variables are defined as linear combinations of the original variables. The

Extracted Eigenvectors table provides coefficients for equations.

Extracted Eigenvectors -1	Ors -	Coefficients of PC 2		
	Coefficients of PC1		Coefficients of PC3	Coefficients of PC4
Red Meat	0.30261	-0.05625	-0.29758	0.64648
White Meat	0.31056	-0.23685	0.6239	-0.03699
Eggs	0.42668	-0.03534	0.18153	0.31316
Milk	0.37773	-0.18459	-0.38566	-0.00332
Fish	0.13565	0.64682	-0.32127	-0.21596
Cereals	-0.43774	-0.23349	0.09592	-0.0062
Starch	0.29725	0.35283	0.24298	-0.33668
Nuts	-0.42033	0.14331	-0.05439	0.33029
Fruits \& Vegetables	-0.11042	0.53619	0.40756	0.46206

$P C 1=0.30261 *$ RedMeat $+0.31056 *$ WhiteMeat $+0.42668 *$ Eggs $+0.37773 *$ Milk $+0.13565 *$ Fish $-0.43774 *$ Cereals $+0.29725 *$ Starch $-0.42033 *$ Nuts 0.11042 * FruitsVegetables

PC2 $=-0.05625 *$ RedMeat $-0.23685 *$ WhiteMeat $-0.03534 *$ Eggs 0.18459 Milk $+0.64682 *$ Fish $-0.23349 *$ Cereals $+0.35283 *$ Starch $+0.14331 *$ Nuts $+0.53619 *$ FruitsVegetables
$P C 3=-0.29758 *$ RedMeat $+0.6239 *$ WhiteMeat $+0.18153 *$ Eggs $-0.38566 *$ Milk $-0.32127 *$ Fish $+0.09592 *$ Cereals $+0.24298 *$ Starch $-0.05439 *$ Nuts + $0.40756 *$ FruitsVegetables

PC4 $=0.64648 *$ RedMeat $-0.03699 *$ WhiteMeat +0.31316 Eggs $-0.00332 *$ Milk $-0.21596 *$ Fish $-0.0062 *$ Cereals $-0.33668 *$ Starch $+0.33029 *$ Nuts + $0.46206 *$ FruitsVegetables
3. The Loading Plot reveals the relationships between variables in the space of the first two components. In the loading plot, we can see that Red Meat, Eggs, Milk, and White Meat have similar heavy loadings for principal component 1. Fish, fruit, and vegetables, however, have similar heavy loadings for principal component 2.

4. The biplot shows both the loadings and the score for two selected components in parallel. It can reveal the projection of an observation on the subspace with the score points. It can also find the ratio of observations and variables in the subspace of the first two components. (Note: Double-click the graph to open and customize.)
5. Use the Data Reader tool $\boldsymbol{B \exists}_{\text {to open the Data Info window and examine the plot in greater detail. }}$ We can see that Spain and Portugal's protein sources differ from those of other European countries. Spain and Portugal rely on fruits and vegetables, while eastern European countries such as Albania, Bulgaria, Yugoslavia, and Romania prefer cereals and nuts.

To display country information in the Data Info window, as in the image above:

1. Right-click the Data Info window and select Preferences....
2. In the Rows tab, move Country from the left panel to the right. Click OK.

To create an arbitrary 3D loading plot, such as PC1-PC2-PC4 or PC1-PC3-PC5 loading plot:

1. Click the lock icon 賉in the results tree and select Change Parameters in the context menu. In the Settings tab, set Number of Components to Extract as needed. For example, if you want to do a PC1-PC2-PC4 loading plot, Number of Components to Extract should be set as 4. Click OK to close the dialog.
2. The Extracted Eigenvectors table now has 4 columns. To duplicate the sheet PCA Plot Data1, select the sheet PCA Plot Data1 tab and right click to select Duplicate. Then rename the new sheet as sheet PCA Plot Data2.
3. Right click on the Workbook title bar and select Properties... from the context menu to open the dialog. In the Window Properties dialig, uncheck Spreadsheet Cell Notation box. Click OK to close the dialog.
4. Suppose you want to plot a PC1-PC2-PC4 loading plot. Activate the sheet PCA Plot Data2, highlight CoI (E) and right click to insert a column ahead of Col (E). Insert a column ahead of $\mathbf{C o l} \mathbf{(G)}$. Highlight two new columns and right click to select Set as: Z.
5. Rename the long name of Col (H1) and Col (I1) as Principal Component 4. Set the all the Eigenvalue of $\mathbf{C o l} \mathbf{(H 1) a s} \mathbf{0}$.
6. Go to sheet PCA1, copy the Coefficents of PC4 in the Extracted Eigenvectors table and paste it into Col (II) of sheet PCA Plot Data2.
7. Highlight Col (C) to Col (I1) and select Plot>3D: Vector: 3D Vector XYZ XYZ.
8. You can also customize the Plot by changing vector color and adding label. Double click to enter Plot Detail dialog and then go to Original level. Select 3D Vector tab, change Color as Blue and Width as 4; Go to Label tab and customize Label From: $\operatorname{Col}(G)$, Position: Right, Size: 20 and Attach to: Arrow Head. Click OK to close the dialog. The 3D loading plot will be created as follow.

5.7.3 Cluster Analysis

5.7.3.1 Summary

We will perform cluster analysis for the mean temperatures of US cities over a 3-year-period.
The starting point is a hierarchical cluster analysis with randomly selected data in order to find the best method for clustering. K-means analysis, a quick cluster method, is then performed on the entire original dataset.

Minimum Origin Version Required: OriginPro 8.6 SR0

5.7.3.2 Hierarchical Cluster Analysis

1. Start with a new project or a new workbook. Import the data file \Samples \Graphing\US Mean Temperature.dat.
2. Highlight Column D through Column O.
3. Select Statistics: Multivariate Analysis: Hierarchical Cluster Analysis.
4. Select Input tab, click the triangle button next to Variables, and then click Select Columns... in the context menu.

5. In the lower panel of the Column Browser dialog, click the ... button. Set the data range from $\mathbf{1}$ to 100. Click OK.

6. In the dialog, go to Settings tab, make sure Cluster is set to Observations, and Number of

Clusters is 1. Select Furthest Neighbor for Cluster Method and then click OK.

7. Go to the Cluster 1 sheet. Based on the resulting dendrogram, we choose to cluster data into 5 groups.

8. Click the lock icon in the dendrogram or the result tree, and then click Change Parameters in the context menu.
9. Set Number of Clusters to $\mathbf{5}$ in the Settings tab and then select the Cluster Center check box in the Quantities tab. Click OK.

10. In the resulting dendrogram, we can clearly see how observations are clustered. (Note, you can double-click to open and customize the dendrogram.)

11. Due to the large number of observations, tick labels overlap in this dendrogram. Use the Scale In

tool to select an area to magnify.
EDendrogram(IUSMeanTempera)"Cluster Report"... - 1

Note that beginning with Origin 2019b you will find, on the Plot tab of the hcluster dialog, a radio button for displaying Similarity on the Y axis of your Dendrogram (Distance is still default).

5.7.3.3 Analyzing Original Data with K-Means Cluster

1. Right-click on Cluster Center and select Create Copy as New Sheet in the context menu. We are going to use the newly created Cluster Center as the Initial Cluster Centers in our k-means cluster analysis.

\#\#\# USMeanTempera - US Mean Temperature.dat

囬 1 T Hierarchical Cluster Analysis (11/7/2011 16:21:30)
\pm Notes -
\pm input Data -
\pm Descriotive Statistics

Center

User Comments...	il	
Copy Table	714	56
Create Copy As New Sheet	675	59
Create Trarssposed Copy As New Sheet	053	53
Expand	238	6
Collapse	714	76
Reset All Graphs		

US Mean Temperatur Reset All Graphs
>
Arrange Plots of Same Type in One Graph
Copy Format
Paste Format

View

2. Go back to the worksheet with the source data (US Mean Temperature), and highlight col(D) through col(O). Select Statistics: Multivariate Analysis: K-Means Cluster Analysis.
3. Select the Specify Initial Cluster Centers check box in the Options tab. Click the interactive button星 next to Initial Cluster Centers. The dialog will "roll up".
4. Go to Cluster Center and hightlight $\operatorname{Col}(\mathrm{D})$ through $\operatorname{Col}(\mathrm{O})$. Click the button on the rolled-up dialog to restore the dialog.
5. In the Plot tab, select Group Graph. Click the interactive button next to \mathbf{X} Range. The dialog will "roll up". Go back to the source worksheet US Mean Temperature, and highlight Col(B):Longtitude. Click the button in the rolled up dialog to restore.
6. Click the triangle button next to \mathbf{Y} Range, and then select $\mathbf{C}(\mathbf{Y})$, Latitude. Click $\mathbf{O K}$.

7. Activate the worksheet K-Means Plot Data1. Observe that data has been clustered into 5 groups corresponding to the latitudes of the cities.

User can also select the output destination of Cluster Membership column, such as next to input data, for further operation if needed

5.7.4 Discriminant Analysis

5.7.4.1 Summary

The Iris flower data set, or Fisher's Iris dataset, is a multivariate dataset introduced by Sir Ronald Aylmer Fisher in 1936. This dataset is often used for illustrative purposes in many classification systems. The dataset consists of fifty samples from each of three species of Irises (iris setosa, iris virginica, and iris versicolor). Four characteristics, the length and width of sepal and petal, are measured in centimeters for each sample. We can use discriminant analysis to identify the species based on these four characteristics.

We will use a random sample of 120 rows of data to create a discriminant analysis model, and then use the remaining 30 rows to verify the accuracy of the model.

Minimum Origin Version Required: OriginPro 8.6 SR0

5.7.4.2 Discriminant Analysis

1. Open a new project or a new workbook. Import the data file \Samples \backslash Statistics \backslash Fisher's Iris Data.dat
2. Highlight columns A through D. and then select Statistics: Multivariate Analysis: Discriminant

Analysis to open the Discriminant Analysis dialog, Input Data tab. Columns A ~ D are automatically added as Training Data.
3. Click the triangle button next to Group for Training Data and select $\mathbf{E}(\mathbf{Y})$:Species in the context menu

4. Click the Quantities tab and select the Discriminant Function Coefficients check box. Expand the Canonical Discriminant Analysis branch and select the Canonical Coefficients check box. Accept all other default settings and click OK

5.7.4.3 Interpreting Results

Click on the Discriminant Analysis Report tab.

5.7.4.3.1 Canonical Discriminant Analysis

The Canonical Discriminant Analysis branch is used to create the discriminant functions for the model.

1. Using the Unstandardized Canonical Coefficient table we can construct the canonical discriminant functions.
TUnstandardized Canonical Coefficients

	Canonical Variable 1	Canonical Variable 2	
Constant		-2.10511	
Sepal Length		-0.82938	
Sepal Width		-1.53447	
Petal Length		2.20121	
Petal Width		2.81046	

$D 1=-2.10511-0.82938 * S L-1.53447 * S W+2.20121 * P L+2.81046 * P W$
$D 2=-6.66147+0.0241 * S L+2.16452 * S W-0.93192 * P L+2.83919 * P W$
where SL $=$ Sepal Length, SW $=$ Sepal Width, PL $=$ Petal Length, PW $=$ Petal Width
2. The Eigenvalues table reveals the importance of the above canonical discriminant functions. The first function can explain 99.12% of the variance, and the second can explain the remaining 0.88%.
Eigenvalues

	Eigenvalue	Percentage of Variance	Cumulative	Canonical Correlation
1	32.19193	99.12%	99.12%	0.98482
2	0.28539	0.88%	100.00%	0.4712

3. The Wilk's Lambda Test table shows that the discriminant functions significantly explain the membership of the group. We can see that both values in the Sig column are smaller than 0.05. Both values should therefore be included in the discriminant analysis.
Wiks' Lambda Test

1 to 2	0.02344	546.1153	8	$8.87078 \mathrm{E}-113$
2 to 2	0.77797	36.52966	3	$5.78605 \mathrm{E}-8$
At the 0.05 level, the dimensionality is significantly 2.				

5.7.4.3.2 Classification

1. The Classification Summary for Training Data table can be used to evaluate the discriminant model. From the table we can see that the classification in the groups setosa is 100% correct. For versicolor, only two observations are mistakenly classified as virginica, and for virginica, only one is mistakenly classified. The error rate is only 2.00%. This model is good.

2．You can further switch to the Training Result1 sheet to see which observation is mistakenly classified．In the sheet we can see the post probabilities calculated from the discriminant model and which group the observation is assigned to．

\＃Fisher＇SIrisD－Fisher＇s Iris Data．dat＊				$\square \square$	
	A（Y）哈	B （Y）曷	C （Y）色	D（Y）易	＊
Long Name	Allocated to Group	Post Probabilities			
Units					
Comments	Classification				
$F(x)=$					
UserParam1		setosa	versicolor	virginica	
79	versicolor	$3.77353 \mathrm{E}-23$	0.99252	0.00748	
80	versicolor	$9.55534 \mathrm{E}-12$	1	$1.91062 \mathrm{E}-8$	
81	versicolor	$1.02211 \mathrm{E}-17$	1	$3.00775 \mathrm{E}-6$	
82	versicolor	$9.64807 \mathrm{E}-16$	1	3．2667E－7	
83	versicolor	$1.6164 \mathrm{E}-16$	1	$3.77844 \mathrm{E}-6$	
84	virginica＊	$4.24195 \mathrm{E}-32$	0.14339	0.85661	\＃
85	versicolor	$1.72451 \mathrm{E}-24$	0.96356	0.03644	
86	versicolor	$1.34475 \mathrm{E}-20$	0.99404	0.00596	
87	versicolor	$3.30487 \mathrm{E}-21$	0.99822	0.00178	
88	versicolor	$2.03457 \mathrm{E}-23$	0.99946	$5.4431 \mathrm{E}-4$	
89	versicolor	$5.80699 \mathrm{E}-18$	0.99995	5．1371E－5	
90	versicolor	$5.98119 \mathrm{E}-21$	0.99982	1．81687E－4	
91	versicolor	$5.87861 \mathrm{E}-23$	0.99939	$6.1442 \mathrm{E}-4$	
92	versicolor	$5.39901 \mathrm{E}-22$	0.99809	0.00191	
93	versicolor	$3.55951 \mathrm{E}-18$	0.99999	1．12857E－5	
94	versicolor	$2.10415 \mathrm{E}-14$	1	1．13502E－7	$\stackrel{+}{+}$

－For the 84 －th observation，we can see the post probabilities（virginica） 0.85661 is the maximum value．i．e．the 84 －th observation will be assigned to the group virginica（at 85.7% probability）．
－But in source data，the 84－th observation is in group versicolor．So this observation is mistakenly classified by the model．

5．7．4．4 Model Validation

Model validation can be used to ensure the stability of the discriminant analysis classifiers
There are two methods to do the model validation
－Cross－validation：
In cross－validation，each training data is treated as the test data，exclude it from training data to judge which group it should be classified as，and then verify whether the classification is correct or not．

－Subset Validation：

Usually we will randomly divide the set of observations into subsets，the first of which is used for the estimation of discriminant model（training set）and the second is for testing the reliability of the results （test set）．

5．7．4．4．1 Preparing Data for Analysis

We are going to sort the data in random order, and then use the first 120 rows of data as training data and the last 30 as test data.

1. Go back to sheet Fisher's Iris Data
2. Add a new column and fill the column with Normal Random Numbers.
3. Select the newly added column. Right-click and select Sort Worksheet: Ascending from the shortcut menu.

Notes: Origin will generate different random data each time, and different data will result in different results.

In order to get the same results as shown in this tutorial, you could open the Tutorial Data.opj under the Samples folder, browse in the Project Explorer and navigate to the Discriminant Analysis (Pro Only) subfolder, then use the data from column (F) in the Fisher's Iris Data worksheet, which is a previously generated dataset of random numbers.

5.7.4.4.2 Run Discriminant Analysis

1. Select columns A through D.
2. Select Statistics: Multivariate Analysis: Discriminant Analysis to open the Discriminant Analysis dialog.
3. To set the first 120 rows of columns A through D as Training Data, click the triangle button
\square next to Training Data, and then select Select Columns in the context menu.

4. In the Column Browser dialog, click the ... button in the lower panel. Set data range from $\mathbf{1}$ to $\mathbf{1 2 0}$. Click OK.

5. To set first 120 rows of $\operatorname{Col}(\mathrm{E})$ as Group for Training Data, click the triangle button next to Group for Training Data and select $\mathbf{E (Y) : ~ S p e c i e s ~ i n ~ t h e ~ c o n t e x t ~ m e n u . ~ T h e n ~ c l i c k ~ t h e ~ G r o u p ~ f o r ~ T r a i n i n g ~ D a t a ~}$ triangle button again, select Select Columns in the context menu, and set range from $\mathbf{1}$ to $\mathbf{1 2 0}$ with column browser. Click OK.
6. Select Predict Membership of Test Data check box. Click the Test Data interactive button The dialog will "roll up". Select columns A through D in the worksheet. Click the button in the rolled up dialog to restore the dialog. Then click the triangle button to open Column Browser by selecting Select Columns in the context menu. Click ... button in lower panel, and set range from 121 through 150.

7. Click the Settings tab and select the Cross Validation check box. Click OK.

5.7.4.4.3 Cross-validation

Go to sheet Discriminant Analysis Report1. The Cross-validation Summary for Training Data table provides prediction error rate by classifying each case while leaving it out from the model calculations. However, this method is still more "optimistic" than subset validation.

5.7.4.4.4Subset Validation

1. The Classification Summary for Test Data provide information that how the test data are classified.
T Classification Summary for Test Data

	setosa	virginica	versicolor	Total
Count	6	12	12	30
Percent	20.00%	40.00%	40.00%	100.00%

2. On the worksheet Fisher's Iris Data, copy the last 30 rows (121 through 150) of Col(E): Species.
3. On the worksheet Test Result, add one column, Col(E), to the worksheet. Paste the copied values in the new column.
4. Add a new column, $\mathbf{C o l}(\mathbf{F})$ to the worksheet, right click on it and select Set Column Values in the context menu. In the opened dialog, type $\mathbf{C o m p a r e}(\mathbf{C o l}(\mathbf{A}), \mathbf{C o l}(\mathbf{E}))$ in the pop-up dialog and click OK.

5. None of 30 values is 0 , it means the error rate the testing data is 0 . Our discriminant model is pretty good.

5.7.4.5 Adjusting Prior Probabilities

Discriminant analysis assumes that prior probabilities of group membership are identifiable. If group population size is unequal, prior probabilities may differ. We can use Proportional to group size for the Prior Probabilities option in this case.

1. Go to sheet Discrim2, Prior row of the Error Rate table under Classification Summary for

Training Data branch indicate the prior probabilities for membership in groups. It is assumed that a case is equally likely to be one of the three groups. Adjusting the prior probabilities according to the group size can improve the overall classification rate.

Error rate for classification of training data is 2.63%.
2. Click on the 畄button and select Change Parameter from the context menu. Select Proportional to group size for Prior Probabilities radio box. Click OK button.

3. We can see the classification error rate is 2.50%, it is better than 2.63%, error rate with equal prior probabilities.

Prior Probabilities $=$ Poportional to group
T Error Rate

	setosa	virginica	versicolor	Total
Prior	0.36667	0.31667	0.31667	
Rate	0.00%	2.63%	5.26%	2.50%

Prior Probabilities $=$ Equal

5.7.5 Partial Least Squares

5.7.5.1 Summary

Partial least squares (PLS) is a method for constructing predictive models when there are many highly collinear factors.

This tutorial will start with the spectral data of some samples to determine the amounts of three compounds present. The data includes:

- Data of the spectra emission intensities at different wavelength (v1-v43)
- Amount of the three compounds in the sample (comp1, comp2, comp3)

This tutorial will establish a model to predict the amount of the three compounds from v1-v43
Minimum Origin Version Required: OriginPro 2016 SR0

5.7.5.2 Partial Least Squares Reqression

1. Start with a new project or a new workbook. Import the data file:
\Samples\Statistics \MixtureSpectra.dat
2. Highlight Column("v1") through Column("v43").
3. Select Statistics: Multivariate Analysis: Partial Least Squares. This opens the pls dialog box to the Input Data tab.
4. The highlighted columns are automatically added as independent variables. Click the triangle button
\square next to Independent Variables, and click Select Columns... in the context menu.
5. Ensure the lower panel is expanded by clicking the button with two arrows in the bottom right of the Column Browser dialog.
6. In the lower panel click the ... button. A Range dialog box will open. Clear the Entire Column(s) box and set the data range from $\mathbf{1}$ to $\mathbf{2 0}$. Click $\mathbf{O K}$, then click $\mathbf{O K}$ to close the Column Browser.

7. Click the interactive button 易 $_{\text {to the right of Dependent Variables. Return to the worksheet, select }}$ column("comp1") and drag to column("comp3"). Click the interactive button again to restore the dialog box.

Input	Settings	Quantities	Plots	Output		
Independent Variables]]Mixtur	SpectralB" v 1 ' 71$]$ AR ${ }^{\prime \prime} \mathrm{v} 43^{\prime \prime}[20]$	k	-
Dependent Variables			istureSp	ectr)MixtureSpectual45:47	$\underline{\underline{1}}$	-
Observation Labels			optional>		$\underline{\underline{1}}$	-
Predict Responses						

8. Since v1 to v43 are absorbance, there is no need to standardize them. Click on the Settings tab, set Method to SVD and clear the Scale Variables check box.
9. Select the Cross Validation check box. It helps find the optimal number of factors in the model.

Input	Settings	Quantities	Plots	Output	
Method			(${ }^{\text {S }} \mathrm{VD}$		\checkmark Auto
				/old's Iteration	
Scale Variables			\square		
Maximum Number of Factors			15		
Cross Validation			-		

10. Click the Plots tab and expand the Component Plot branch. Select the following check boxes and click the OK button.

- Variable Importance Plot
- X Loadings Plot
- Y Loadings Plot
- X Scores Plot
- Y Scores Plot
- Diagnostics Plots

5.7.5.3 Developing the Model

In the workbook, select the tab for the PLS1 sheet:

1. The Cross Validation table shows the optimum number of factors to extract. PRESS is the predicted residual sum of squares of the model. The model with minimum Root Mean PRESS has the optimal number of factors:

2. The Diagnostics Plots are residual plots of Y and X, which can be used to judge the quality of the model. Overall we can say that the fitted model is good because:

- Layer 1 - The Predicted values-Actual values graph indicates that the model fits well for the first component.
- Layer 2 - In the Predicted values-Residual graph, residuals are randomly distributed around zero. This indicates that there is no drift in the process.
- Layer 4 - The P-P plot of residual can be used to check whether the variance is normally distributed. The result falls almost in a line, which means the variance is normally distributed.

3. A summary of importance of $\mathrm{v} 1 \sim \mathrm{v} 43$ is given by the VIP plot. If the variable has small regression coefficients and low VIP values, we can consider excluding it in the model. For example

- VIP values of $\mathrm{v} 41 \sim \mathrm{v} 43$ in the plot below are low:

- Coefficients of $\mathrm{v} 41 \sim \mathrm{v} 43$ are also small in the three coefficients below:

4. However, as in step 2, it appears that the model fits well so it is also acceptable to keep these less important variables.

5.7.5.4 Interpreting the Results

1. The Variance Explained table shows the proportion of variance explained by each factor. In the example, Factor 1 explains 71.36% variance for the X effect and 75.6% variance for the Y effect. Factor 2 explains 23.99\% variance for the X effect and 22.14% for the Y effect. The Variance
Explained Plot indicates that more attention should be paid to the first two factors as these two explained more than 95\% variance for X and Y effects.

2. The Loading Plot reveals the relationships between X and Y variables in the space of the first two factors.

- From the Y loading plot we can see that the three compounds have different loading on Factor 1 and Factor 2.

- From the X loading plot it is apparent that v26 ~ v38 have similar heavy loadings for Factor 2 , and v17, v18, v19,v23 and v24 have similar light loadings for factor 1 and factor 2.

Notes: To examine the plot in detail, you can double-click to open the graph containing the loading plot

5.7.5.5 Using the Model to Predict

After the model is established, we can predict the amounts of the three compounds in new samples from their spectra emission intensities at different wavelengths:

1. Click the green lock on the PLS1 sheet and select Change Parameter from the context menu.
2. In the dialog that opens, click on the Input tab and select the Predict Responses check box.
3. Click the interactive button 笪 $_{\text {to }}$ the right of Independent Variables for Prediction. Return to the workbook, select the MixtureSpectra sheet. Select column("v1") to column("v43"). Click the interactive button again to restore the dialog box.
4. Click the triangle button next to Independent Variables for Prediction, and then click Select Columns... in the context menu.
5. In the lower panel of the Column Browser dialog, click the ... button. Deselect the Entire

Column(s) box and set the data range from 21 to 25. Click OK to close the Range dialog and Column Browser dialog..

6. Click the $\mathbf{O K}$ button to apply the settings and close the dialog.
7. The PLSResults1 sheet will now contain the predicted amounts of the three compounds in the five new samples:

肳 MixtureSpectr－MixtureSpectra．dat＊				－回	$\Sigma 3$
畾奋	$\mathrm{A}(\mathrm{X} 1)$ 昷，	B（Y1）是	C（Y1通	D（Y1通	－
Long Name	Observations	comp1	comp2	comp3	Ir ${ }_{\text {I }}$
Units					
Comments	Predicted Responses for Test Data				
$F(x)=$					
1	21	0.03112	0.60104	0.35266	In＇
2	22	0.45822	0.22111	0.2981	v1
3	23	0.23019	0.43717	0.30898	v2
4	24	0.33108	0.23231	0.40731	v3
5	25	0.37709	0.38007	0.21355	v4
6					v5
7					v6
8					v7
9					v8
10					v9－
－MistureSpectra $A^{\text {P }}$		A PLSRe	ults 1｜	III	10

5．8 Power and Sample Size

5．8．1 Summary

Power and sample size analysis is useful in design of experiments．Insufficient data translates into a lack of power to reject a false null hypothesis and collecting too much data is a waste of time and resources． Therefore，it is essential to determine the sample size requirements prior to conducting an experiment．The power of the experiment can be computed for a given sample size，and required sample sizes can be computed for given power values．

5．8．2 What you will learn

This tutorial will show you how to calculate sample size or estimate power value to design experiments，using some practical examples．

5．8．3（PSS）One－Sample t－Test

Background：

A sociologist wants to determine whether the average infant mortality rate in the United States is equal to 8. In experiment design，the difference of rate cannot vary more than 0.5 ．And it is already known that the standard deviation should be 2.1 from pilot studies．

Question：

What would the sample size be，in order to estimate the average infant mortality rate at a confidence level of $95 \%(\alpha=0.05)$ for power values of $0.7,0.8$ and 0.9 ？

Steps in Origin：

1．Activate an empty worksheet，select Statistics：Power and Sample Size：（PSS）One－sample t－test；
2．In the PSS＿tTest1 dialog box，choose the following settings and click OK．

Origin Output:

A result sheet will be generated, listing the calculated sample size for hypothetical powers.

Sample Size(s) for Hypothetical Power(s)		
Alpha	Power	Sample Size
0.05	0.7	111
0.05	0.8	141
0.05	0.9	188
Null Mean = 8; Atemate Mean = 8.5; $\quad \mathrm{SD}=2.1 ;$	2-Sided Test	

Result Interpretation:

According to results, when designing his experiment the sociologist should conduct a survey of 111 samples for a power value of $0.7 ; 141$ samples for power value of 0.8 ; and 188 samples for power value of 0.9 .

5.8.4 (PSS)Two-Sample t-Test

Background:

A doctor's office participates in two local insurance plans, Healthwise and Medcare. The purpose is to compare the mean time (in days) until reimbursement of claims for the two plans. Historical data shows that for the Healthwise plan, the average time is 32 days and the standard deviation is 7.5 days. For the Medcare plan, the average reimbursement time is 42 days and the standard deviation is 3.5 days.

Question:

If 10 claims from each plan were selected and the corresponding reimbursement times were recorded, what is the power to detect the difference in mean reimbursement times between the 2 plans by 5% or more?

Steps in Origin:

1. Compute the pooled standard deviation as:

$$
\sqrt{\left((5-1)^{*} 7.5^{\wedge} 2+(5-1)^{*} 3.5^{\wedge} 2\right) /(5+5-2)}=5.85235
$$

*Note that this value will be used as the standard deviation later for the power calculation.
2. Sample size of 1 st group and 2 nd group should be 10 (20 samples total).
3. Activate an empty worksheet and select Statistics: Power and Sample Size: (PSS) Two-Sample tTest,
4. In the PSS_tTest2 dialog box, choose the following settings and click OK.

Origin Output:

A result sheet will be generated, showing the calculated power.
T- Power(s) for Hypothetical Sample Size(s)

Alpha	Sample Size	Power
0.05	10	0.95054
Group 1 Mean $=32$; Group2 Mean $=42 ; \quad S D=5.85235 ;$	2 -Sided Test	

Interpretation of Results:

We can conclude that the doctor's office has a $0.95054: 1$ (or 95%) chance of detecting a difference if it collects 10 claims for each plan. The chance that you will fail to reject the null hypothesis and incorrectly conclude that the two means are not different is $4.946 \%(1-0.95054)$.

5.8.5 (PSS)Paired-Sample t-Test

Background:

Two machines of the same type are used to measure the depth of an amorphous silicon (a-Si) thin film. To determine if there is a difference in the two machines measurements, an engineer plans a study to compare the depth measurements made by the two machines.

In a previous study on depth of the a-Si thin film, the standard deviation of the difference was found to be $2 \mu \mathrm{~m}$. In addition, it is known that the difference in measurement by the two machines should not exceed $0.5 \mu \mathrm{~m}$, and the average depth measured by Machine $\# 1$ is $5000 \mu \mathrm{~m}$.

Question:

How many samples must be taken at a confidence level of 99% to obtain power values of $0.8,0.9$ and 0.95 ?

Steps in Origin:

From the information above, it is concluded that the mean of the 1st group is $5000 \mu \mathrm{~m}$ and the mean of the 2nd group is $5000.5 \mu \mathrm{~m}$.

1. Activate an empty worksheet and select Statistics: Power and Sample Size: (PSS) Paired t-Test
2. In the PSS_tTestPair dialog box, set controls as in the following image and click OK.

Origin Output:

A result sheet will be generated, listing the required sample size at different power values.

- Sample Size(s) for Hypothetical Power(s)

	Alpha	Power
0.01	0.8	Sample Size
0.01	0.9	191
0.01	0.95	242

Group1 Mean $=5000 ;$ Group2 Mean $=5000.5 ; \quad S D=2 ; 2$-Sided Test

Interpretation of Results:

We conclude that the engineer has an 80% chance of detecting a difference if 191 thin film samples are measured; a 90% chance if 242 thin film samples are measured; and a 95% chance if 289 thin film samples are measured by each machine.

5.8.6 (PSS)One-Way ANOVA

Background:

Researchers are interested in whether different plants have different nitrogen contents. They planned to record nitrogen contents in milligrams for 4 species of plants (80 observations per species). Previous research suggests that the square root of MSE (Mean Squared Error) is 60 and the CSS (corrected sum of squares) of the means is 400 .

Question:

Is the plan feasible? (i.e. will the calculated power be acceptable?)

Steps in Origin:

1. The sample size for each group is 80 .
2. Activate an empty worksheet and select Statistics: Power and Sample Size: (PSS)One Way ANOVA
3. In the PSS_ANOVA1 dialog box, choose the following settings and click OK.

Origin Output:

A result sheet is generated, and the power value is calculated from the known condition.

- Power(s) for Hypothetical Sample S

Alpha	Sample Size	Power
0.05	80	0.6993
\# Treatments $=4 ;$ css of Means $=400 ; \mathrm{sD}=60$		

Interpretation of Results:

It appears that the original research plan is deficient. There is only a 69% chance of detecting a difference from each group. To get more reliable results, researchers must collect more samples per species of plant.

5.9 ROC curve

5.9.1 Summary

The Receiver Operating Characteristic (ROC) analysis curve is mainly used for diagnostic studies in Clinical Chemistry, Pharmacology, and Physiology. It has been widely accepted as the standard method used for describing and comparing the accuracy of diagnostic tests.

Please refer to the Origin help file for details on how to use the ROC curve.

5.9.2 What you will learn

This tutorial will show you how to:

- Carry out ROC curve analysis.
- Interpret the analysis of results.

5.9.3 Steps

In this example, we perform a study to determine whether serum sodium can help to diagnose Rocky Mountain Spotted Fever (RMSF).

The data is retrieved from people with or without RMSF, the sodium level for each person is measured by 2 screening techniques. ROC curve analysis is carried out for data from both methods, used to check the relationship between serum sodium and RMSF, and helped to judge which diagnostic method is better.
 \Samples\Statistics folder.
2. Select Statistics: ROC Curve... to open the ROC curve dialog.
3. Under the Input Data branch, select column B(Method1) and \mathbf{C} (Method2) for Data, and column A(Sickness) for State, respectively.
4. Set RMSF as Positive State Value and select the Positive v.s. Low button for Test Direction under the Computation Control branch.
5. Accept all other default settings and click the OK button to carry out the analysis.

\square Output
(Dataset Identifier
T Report Tables
田 Plot Data
\square Optional Report Tables
Notes
Input Data
Masked Data
Missing Data

Results Interpretation: Go to worksheet ROC Curve1, where the analysis results are listed.

From the table, we can see that the Asymptotic Prob of both methods are much smaller than 0.05 , hence we can conclude that both methods are effective.

In ROC analysis, the closer the area is to 1.0 , the better the test is, while the closer the area is to 0.5 , the worse the test is. In this analysis, the area of method 1 and method 2 are 0.88862 and 0.79407 , respectively. Both these results are much larger than 0.5 . However, the area of method 1 is closer to 1.0 , so we can conclude that method 1 is better than method 2 .

In addition, we can examine the shape of ROC curve, which is also included in the report sheet. Since method 1 appears to have greater sensitivity then method 2 , we can roughly conclude that method 1 is better than method 2.

6 Graphing

6.1 Graphing

6.1.1 Plotting

- 3D Bar with Labels
- Creating a Graph
- Basic 2D Plotting
- Basic 3D Plotting
- Plot from User Defined Graph Template
- Adding a Data Plot to Existing Graph
- Smart Peak Labels with Leader Line
- Error Bars with Fill Area
- Mark out a segment of plot with different plot style
- Overview of Customization
- Plotting Overlapping Data and Setting Transparency
- \quad Plotting using Plot Setup

6.1.2 Axis

- Multiple Axis Breaks
- User-Defined Arbitrary Tick Positions
- Plot and Customize Date Time Data on Graph

6.1.3 Compare Graphs Dynamically by Changing Data Filters

6.1.4 Layers

- Merging and Arranging Graphs
- Multiple Layers with Linked Axis
- Multi Layer Graph Customization

6.1.5 Graph Template and Theme

- Copy and Apply a Plot Format to Another Plot

6.1.6 Line Symbol

- Complicated Fill Area
- Fill Partial Area between Function Curves
- Line Graph with Recession Bars
- Scatter Plot of Decay and Recovery Curves
- Micro-Raman spectroscopy of complex nanostructured mineral systems
- Multi-line-plot with Special Position Annotation Line
- Scatter Central Plot
- Line Graph with Masked Data
- Symbol Plot with Color Transparency
- Symbol Plot with Size and Colormap from Other Columns

6.1.7 Column Bar Pie

- 2D Pie Chart of a Population Study
- Bar Graph of African Population
- Bar and Scatter Plot with Error Bar
- Column Graph with Error Bars
- Stack Column With Labels
- Clustered-Stacked Column Chart
- Grouped Column with Error Bars and Data Labels
- Grouped Stacked Column
- Stack Column Plot with Different Positive and Negative Y Scale
- Variable Column Width
- Stack Column and Bar Charts of Rechargeable Battery Statistics

6.1.8 Multi-Axis Multi-Panel

- Double Y
- 3Ys Y-YY
- Stack Lines by Y Offsets
- Vertical 2 Panel Line
- Multiple Axis Plot
- Energy-Level Structure of the Er3+ Ion in A YAG Crystal
- Create an 8 layer multi-panel plot template
- Panel Graph with Inset Plots of High-resolution Electron Energy-loss Spectra

6.1.9 Contour

- XYZ Contour
- Contour Plots and Color Mapping
- Ternary Contour
- Combining Line and Contour Plots
- Contour Graph with XY Data Points and Z Labels
- Contour Plot with Vector Overlay
- Create Heatmap with Virtual Matrix and Colormap Bar Plot

6.1.10Statistics

- Box Plot
- Grouped Box Chart with Color Indexed Data Points
- I Shaped Box Plot
- Marginal Distribution Curve
- Overlapping Box Chart
- Two-Level Grouped Box Chart
- Unbalanced Grouped Box Chart
- Grouped Box Plot
- Notched Boxes with Variable Width Control
- Simple Dot Chart
- Multi-Data Dot Chart
- Add multiple fitted curves in a Histogram
- Weibull Probability Plot
- Q-Q Plot
- Scatter Matrix
- Histogram with Distribution Curve overlay

6.1.11Polar

- Polar Contour
- Polar Plot with Error Bar
- Polar Crop
- Polar Graph with Custom Radial Axes
- Polar Graph with Multiple Layers
- Polar Graph with Columns and Stack Columns
- Polar Graph with Custom Angular Scale

6.1.123D Graphs

- 3D Pie Chart
- 3D Vector
- 3D Scatter Plot with Line Projections of Core Drilling Locations
- 3D Bar and Symbol
- Surface with Missing Values
- Creating Intersecting Surface Plots from Worksheets
- Intersecting Color Surfaces
- Surface with Symbols and Droplines
- Colormap from Second Matrix
- Color Map Surface Graph
- Parametric Surface with Colormap from Data
- Stacked 3D Surface Plots
- Multiple Surfaces in Same Layer
- 3D Scatter with Colormap
- 3D Scatter with Droplines
- Surface With Transparent Plane
- 3D Bar on Flatten Surface
- 3D Bar with Labels
- 3D Surface with Point Label
- Transparent Parametric Surfaces combined with Scatter Plot
- Convert Data from Spherical Coordinate to XYZ and Make a 3D Plot
- Flattened Colormap Surfaces with Increasing Z Offset
- 3D Ternary Colormap Surface with Contour Lines Projection

6.1.13Plot Functions with Parameters Defined in a Worksheet

6.1.14Wind Rose

6.1.152D Function Plot

6.1.162D Vector

6.1.17Piper Diagram

6.1.18Waterfall

- 2D Waterfall
- 3D Waterfall

6.1.19Open-High-Low-Close Stock Chart

6.2 Plotting

6.2.1 Plotting

- 3D Bar with Labels
- Creating a Graph
- Basic 2D Plotting
- Basic 3D Plotting
- Plot from User Defined Graph Template
- Adding a Data Plot to Existing Graph
- Smart Peak Labels with Leader Line
- Error Bars with Fill Area
- Mark out a segment of plot with different plot style
- Overview of Customization
- Plotting Overlapping Data and Setting Transparency
- Plotting using Plot Setup

6.2.2 3D Bar with Labels

6.2.2.1 Summary

This tutorial will show you how to create the following graph:

Minimum Origin Version Required: 2015 SRO

6.2.2.2 What You will learn

This tutorial will demonstrate how to:

- Create and customize a flat Color Fill surface.
- Use Plot Setup to add a 3D bar plot to the original graph.
- Add and customize labels on the 3D bars.

6.2.2.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

6.2.2.3.1 Creating a Flat Color Fill Surface from a Matrix

Open Tutorial Data.opj and browse to the folder 3D Bar with Labels.

1. Activate the Matrix MBook1B.
2. From the Origin menu select Plot > 3D: 3D Color Fill Surface to create a 3D plot that will have Speed Mode turned on:

3. On the Origin menu, click Format: Layer.
4. On the Size/Speed tab, clear Matrix data, maximum points per dimension. This turns off Speed Mode allowing for full display of the dataset. Click Apply.

I Plot Details - Layer Properties

5. Expand Layer1 and select the plot under it.
6. To flatten the plot of the US, click on the Surface tab and enable the Flat option.

Graph1 4. Layer1 [MBook1B]MSheet1!_1(Z) [1*:230615*]	Surface Fill ${ }^{\text {a }}$ Colormap /		
	Display		
		,	percent of

7. On the Fill tab, click the Contour fill from matrix radio button to set the colors according to the matrix information. Deselect the Fill back surface check box as well.
8. Next click the Colormap/Contours tab to set the matrix colors and click Level....
9. In the Set levels dialog that opens, select the \#Major Levels radio button and set it to $\mathbf{2}$. Set the Total \# of Levels to $\mathbf{2}$ and click OK to close the dialog.

10. Click on each color level under the Fill... heading to open the Fill dialog and choose the color. Set the three colors to Black, Gray and a customized blue with an RGB of $\mathbf{0}, \mathbf{6 4}, \mathbf{1 2 8}$ as shown below:

Surface	Fill	Colormap / Contours	Mesh	E
Click column header or cell to edit				
Level... Fill... <0 0 0.5 >1 				

11. On the Mesh tab, clear the Enable box and click OK to close the dialog box.
12. The graph will resemble the image below:

6.2.2.3.2 Adding and Customizing 3D bars and labels
13. With the graph active select Graph: Plot Setup on the Origin menu. This opens the Plot Setup dialog box.
14. In the upper-left corner set Available Data to Worksheets in Folder. This will make the data in Book2B available for plotting on the same graph.
15. Select Book2B, set Plot Type to 3D - Bars. In the middle panel set X, Y and Z as columns A1, G1 and D, respectively. Click Add to add the plot to the current layer:

Click OK to exit the dialog box.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\star}$ and expand Available Data panel by clicking人 again.

Please refer to Plotting using Plot Setup for more information.
4. To customize the 3-D bars, double-click on them to open the Plot Details dialog box. On the Pattern tab, set the border color to Wine and the fill color to Red. On the Outline tab set the Width (in \%) to 10. Click Apply
5. Next, select the Label tab and check the Enable box.
6. Set the Label Form as $\operatorname{Col}(\mathbf{B}): " C i t y "$ so that labels display the city name located in $\operatorname{Col}(B)$ of the worksheet.
7. Set the Position in \mathbf{Z} as Top Outside with an Offset of $\mathbf{1 0}$ and set the Orientation in the $\mathbf{Y Z}$ plane. Set the other controls as shown below and click OK to close dialog.

8. At this point the labels will not show as the axes scale is too small for them to be in the graph range.

Double-click the vertical axis (Z Axis) and go to the Scale tab, set From to 0 and, To to 8000000. Click
OK to exit.

```
I-I Z Axis - Layer 1
```

\checkmark Use Only One Axis For Each Direction

9. Double-click on the graph again and in the Plot Details dialog box, select the Graph1 option in the left panel. On the Display tab set the Color to LT Gray. Click OK to close dialog.
10. Double-click the Z axis title and change it to Population (Million).
11. The final graph should resemble the one shown below:

12. Since this is a 3D OpenGL Graph, use the Rotate Tool button on the Tools toolbar or hold down the

R key and use the mouse, to rotate. You can also click the graph and select the
 button to enter
rotation mode as shown below, or use the controls in the 3D Rotation toolbar:

6.2.3 Creating a Graph

6.2.3.1 Summary

Origin provides templates library. You can create and modify templates by your own and add to the collection. Creating a graph in Origin is as simple as selecting the desired data and then selecting a template from a menu or from the graphing toolbars. The Plot Setup dialog offers more flexibility in creating plots, such as plotting data from multiple books or sheets.

Starting with Origin 2016, a more powerful "cloneable" template has been added. These templates are designed for "smart plotting", meaning you can clone a graph with a complicated layer hierarchy or with source data that cannot be specified by simple selection. See this tutorial on plotting from user-defined graph templates to learn how to save and use both standard and cloneable templates.

This tutorial will show you how to:

- Select data in a worksheet and quickly create a plot
- Change X / Y input of the data plot with context menu
- Add data to or remove it from an existing graph
- Use Plot Setup to plot data from multiple sheets
- Plot groups of plots by label

Minimum Origin Version Required: Origin 2016 SR0

6.2.3.2 Create a Plot Quickly by Selecting Data

 S15-125-03.dat, S21-235-07.dat and S32-014-04.dat from \Samples \Import and Export \and click Add File(s) to add three files to the lower panel.
2. Make sure Show Options Dialog is checked, click the File Name column header to sort the files, click OK.
3. In the Import and Export: impASC dialog Change Import Options: Import Mode to Start New Sheets. Expand the (Re)Naming Worksheet and Workbook node and change settings so that only the sheet gets renamed.

4. Click OK. The imported results should appear as below:

	4	0.04	39.6		100.6
	5	0.05	40.5		101.7
	6	0.06	File name as worksheet name $39.3<115.4$		101.3
	7	0.07			100.4
	8	0.08			101.1
	9	0.09			101
1	- 515-125-03	A S21	A 532-014-04 $\square^{\text {a }}$		-

5. Make the third worksheet, S32-014-4, active. To create a three layer graph, highlight the three Y columns, Delta Temperature, Magnetic Field, and Position, and then select Plot > Basic 2D: 3Ys YYY. Note: There is no need to highlight the Time column, as Origin will automatically plot the Y columns against the associated X column in the worksheet.

6.2.3.3 Change X / Y Data of the Plot

Use the same worksheet from the previous example.

1. Highlight column B and click the Line button to generate a line plot.

2. Right click on the data plot and point to the Change \mathbf{Y} context menu, then select column C (Magnetic Field) in the fly-out.

3. You may see a reminder message about rescaling the graph to show all data. Choose Yes and click OK so that the updated plot will be auto-rescaled.

Reminder Message

A significant portion of the new data lie outside the current axes limits. Would you like to rescale the axes to show all the data?
(-) Yes
Yes, and do the same in the future, no need to ask again.
ONoNo, and don't bother me with this again.

$$
\mathrm{OK}
$$

4. The plot will update as shown below:

With this context menu, you can change the X or Y data of the current plot to be another column in current sheet. This column will be any column other than the current X or Y data column from the same worksheet, regardless of column designation.

You are also allowed to use the Change Worksheet context menu to change the current X and Y data to be the columns with same column index in another worksheet of current workbook, regardless of column designation and column short name.

Note: You can also use the Layer Contents or Plot Setup dialog to change the input data.
6.2.3.4 Add Data to an Existing Graph and Update Legend

6.2.3.4.1 By Drag and Drop

1. Go back to the book with the three sheets of data from the above example.
2. Highlight the Delta Temperature column (Column B) from the first sheet and then select Plot > Basic 2D: Line to create a line plot.
3. Go back to the workbook. For each of the remaining two sheets, select the Delta Temperature
column and position the cursor at the edge of the column until you see the cursor change to

4. Then you can drag-and-drop the column into the graph page. Another curve will be added to the current layer.

5. After adding the other curves, double-click on the layer icon $\mathbf{1}$ to open the Layer Contents dialog. You need make sure that the Double click to open Plot Setup option doesn't been selected in the Context menu(expanded by right-clicking on Layer icon) firstly.

6. In the Layer Contents dialog, hold Ctrl key to select the three items listed in the right panel, then click Group button to group the three plots.

You can also use the Plot Setup dialog which can be opened by selecting Plot Setup... from the context menu above to do the same setting,

Please refer to Plotting using Plot Setup for more information.
7. Click Ok button to close the dialog. Grouping the plots allows for quick creation of presentation-ready graphs, because each selection in the group is assigned a differentiating set of plot attributes (line color = black, red, green; symbol shape = square, circle, triangle; etc...).
8. Select Graph: Legend: Update Legend... to open the legendupdate X-Function dialog. Set the Auto Legend Translation Mode to Custom. Enter @WS for Legend Custom Format.

9. Click OK and the legend will now contain the worksheet name for each data plot.

10.

The default plot type of the drag and drop plot is Current, which is the same as the current active plot. However you could change the default option. To do this, click Preference: Options and go to the Graph tab, and change the setting of Drag and drop plot drop-down menu.

6.2.3.4.2 By Layer Contents Dialog

The Layer Contents dialog box is useful primarily for adding or removing data plots from the graph layer. Starting with Origin 2016, you can switch layers without closing the dialog box, making it easier to add plots to, or remove plots from, a multi-layer graph. To demonstrate, we will return to the 3 -layer graph that we created in the first exercise in this tutorial:

In the first exercise, we plotted data from sheet S32-014-04. In this exercise, we will swap the data from sheet S32-014-04 with data from sheet S21-235-07.

1. Right-click on the layer $\mathbf{1}$ icon in the upper-left corner of the graph window and choose Layer Contents.
2. In the dialog box that opens, click the drop-down list in the upper-left corner and select Worksheets in Folder.
3. Right-click on the left-panel headings, clear Book Name and select Sheet (if not already displaying) so that you can see which worksheets contain which workbook datasets, then click on the Sheet heading to sort datasets by sheet name.

4. In the right-hand panel of Layer Contents, select Delta Temperature from sheet S32-014-04 and click the Remove Plot button $\boldsymbol{\leftarrow}$ to remove the plot from graph layer 1.

5. In the left-hand panel, select Delta Temperature from sheet S21-235-07 and click the Add Plot button
 , then click Apply to add the new plot to layer 1. You have now swapped one dataset for another.
6. Click the Layer(1) button at the top of the dialog and choose Switch Layer > 2. Layer 2.
7. Repeat the process of removing the existing Magnetic Field dataset from layer 2 and replacing it with the Magnetic Field dataset from sheet S21-235-07, then click Apply.
8. Click the Layer (2) button and choose Switch Layer > 3.Layer 3 and repeat the process of swapping the Position dataset in sheet S32-014-04 with the Position dataset in sheet S21-235-07, then click Apply and close the dialog box.

6.2.3.5 Create a Plot using Plot Setup

The Plot Setup dialog box is useful for a variety of plotting tasks, including creating graphs, modifying the plot type, adding plots to or removing plots from the graph, grouping or ungrouping plots, and editing the plot range.

1. Return to your workbook and ensure that no data are selected. It doesn't matter which worksheet is active; what is important is that no columns are highlighted.
2. Select Plot > Basic 2D: 4 Panel from the menu. When no data are selected, Origin opens the Plot Setup dialog, allowing you to choose the data you wish to plot.
3. Expand the top panel by clicking the $\left.\hat{\wedge}\right|_{\text {button. Hold down Ctrl key to highlight the three worksheets. }}$ Alternatively, you can just click and drag your selection so that all three worksheets are highlighted.

Plot Setup: Select Data to Create New Plot

Available Data:	Long Hame	Sheet	Cols	Rows	File Hame	File Date
Current Workbook	\#\# Book1	S15-125-03	4	1020	S15-125-03. dat	10/28/2016
\square Include Shortcuts	\#\#. Book1	S21-235-07	4	720	S15-125-03. dat	10/28/2016
	\#\# Booki	S32-014-04	4	870	S15-125-03. dat	10/28/2016
Right-click on various panels to bring up context menus.						

4. In the middle panel, common columns in all three sheets are displayed. In this case, all three sheets have similar data with matching column names. Click the button $\left.\leftrightarrows\right|_{\text {at top-right of this panel to show the }}$ available plot columns listed with similar column long name. This mode is easier because you don't have to check the X and Y designation check boxes.

X	Y	yEr	L	Column	Long Name	Comments
\square	\square	\square	\square	〈autoX	From/Step=	
\square	\square	\square	\square	A	Time	
\square	\square	\square	\square	B	Delta Temperature	
\square	\square	\square	\square	C	Magnetic Field	
\square	\square	\square	\square	D	Position	

\leftrightarrows

Column	Long Name	Comments	Sampling Interval
$\mathrm{B}(\mathrm{Y})$	Delta Temperature		
$\mathrm{C}\left[Y^{\prime}\right]$	Magnetic Field		
$\mathrm{D}(\mathrm{Y}]$	Position		

5. Open the bottom panel of the dialog, the Plot List, if it is not already visible. Layer $\mathbf{1}$ is highlighted. Select Delta Temperature in the middle panel, and then click the Add button. Since you already selected the three worksheets in Step 3, this will add all Delta Temperature columns from the selected worksheets to
layer 1.

6. Repeat these steps to add all Magnetic Field columns and all Position columns into Layer 2 and Layer 3, respectively.

Note that in each layer, the three data plots are automatically grouped.
7. Click the OK button to create the graph.

8. You'll note that the default legend that is created for each layer is not particularly helpful. The Origin graph legend object is highly customizable, so before we go further, we will modify the default legend. Right-click on any of the legend objects and select Legend: Update Legend from the shortcut menu.
9. In the dialog box that opens, do the same settings at step 8 of the section By Drag and Drop. Note that the Legend Custom Format syntax @WS is LabTalk Substitution Notation for the name of the worksheet containing the data for each line plot.
10. We have one extra (empty) layer on the graph page. To delete that layer, click on it once to select it then press the Delete key on the keyboard. Take care not to delete the graph window as we will use it in the next section of this tutorial.

In the graph above, the legend for each layer is same with each other. You can delete two of them. Or do settings below in the Legend Update dialog, to just show one legend for whole graph window.

Once the settings are applied, you can press Ctrl + double-click on the legend text to do further in-place edits; or you can right-click on the legend box to select Properties... from context menu and do further advanced editing in the Text Object dialog.

6.2.3.6 Plot Grouped Data As

When your data includes a column of categorical data, or multiple columns characterizing some sort of nested sub-grouping of data, just as the data below

易	$A(X)$	B(Y)	C(Y)	D(Y)	E(V)
Long Name	name	age	gender	height.	weight
Units		Years		cm	kg
Comments		Categorical Data		Data to plot	
$F(x)=$					
1	Kate	12	F	146	42.2
2	Lose	12	F	150	55.4
3	Jane	12	F	136	33.2
4	Sophia	12	F	163	65
5	Grace	12	F	128	28.7
6	Tom	12	M	148	38
7	James	12	M	150	58
8	Sun	12	M	126	35.9
9	Barb	13	F	148	50.6
10	Alice	13	F	150	47.9
11	Susan	13	F	138	30.1
12	John	13	M	180	44.5
13	Joe	13	M	155	46.9
14	Mive	13		143	42.6
15	David	13	M	146	35.2
16	Judy	14	F	150	36.8
17	Kitty	14	F	153	40.7
18	Leslle	14	F	160	64.1
19	Carol	14	F	155	37.7
20	Patty	14	F	153	38.5
21	Fred	14	M	155	42.2
22	Alfred	14	M	158	44
23	Henry	14	1 M	160	53.6
24	Lewis	14	M	158	41.3
25	Edward	14	M	168	49.8

then you might want to plot your data as:

6.2.3.6.1 Trellis Plot

Beginning with Origin 2017, you have introduced the Trellis Plot which has one layer but with $M X N$ panels.

1. New a workbook. Click the button $\left.\stackrel{\text { 1az }}{\text { 雷 }}\right|_{\text {to import the file <Origin program }}$ folder>/\Samples\Statistics\2010.dat into the active worksheet.
2. Highlight $\operatorname{col}(\mathrm{H}) \sim \operatorname{col}(\mathrm{J})$ to select Plot> Categorical : Trellis Plot menu. The dialog plot group will pop up. Select col("City") as horizontal group variable and col("Gender") as vertical group variable for the
panels.

3. Click OK button to plot the graph. Double-click on the X axis to open the Axis dialog, set From and To for horizontal axis to -10 and 90 in the Scale tab. You will get the graph as below:

4. Just as you can see, this trellis plot has only one layer but with six panels($\mathbf{2 \times 3} \mathbf{~) : 2}$ rows represent the variable "Gender", Female and Male; three columns represent the variable "City", A, B, and C.

6.2.3.6.2 Grouped Box Plot

Besides the trellis plot, you can also plot these kind of data as a grouped box/column plot.

1. Active the source worksheet above again. Highlight col("Salary") to select Plot > Categorical : Grouped Box Charts - Indexed Data menu to open the dialog plot gdoxindexed. Select col("Gender") and col("City") as Group Columns.

2. Click OK button to plot the graph.

3. Just as you can see, the data col("Salary") has been plotted as a grouped box charts: Two groups by "Gender", Female and Male; within these two groups, three subgroups by "City" , A, B, and C.

6.2.3.7 Plot Graphs by Label

Origin offers a plotting option, Multiple Panels by Label, that allows you to create a multilayer graph, each layer of which contains multiple plots, identified by the same label.

1. Open the file Samples \Graphing\Automobile Data.ogw (Hint: Make sure that your Open files filter is set to Workbooks(*.ogw)).

\#\# Book2 - Automobile Data			Group Identifier		$\square \square$			
	A(X1)	日(V1)	c/1)	D(V1)	E(V1)	$F(\times 2)$	G(V2)	\wedge
Lona Name	Year	Mean	相inimum	Median	Maximum	Year	Mean	M
Quantity	Power	Power	Power	Power	Power	0~60 mbh	0~60 mph	
1	1992	125.46	94	126	165	1992	13.35	
2	1993	122.32	100	112	165	1993	13.52	
3	1994	103.57	52	108	169	1994	14.86	
4	1995	92.19	57	91	139	1995	15.57	
5	1996	78.96	62	73	121	1996	15.73	
6	1997	73.48	62	73	102	1997	15.86	
7	1998	68.42	39	69	84	1998	15.70	
8	1999	69.96	55	69	91	1999	16.75	
9	2000	60.72	33	62	85	2000	16.16	
10	2001	63.10	44	64	84	2001	16.59	
11	2002	52.24	36	51	66	2002	15.57	
12	2003	51.27	38	50	70	2003	17.32	
13	2004	49.88	38	50.5	66	2004	16.00	\checkmark
1 Data						+ ${ }^{1}$		-

2. Click on top left corner of the worksheet to select the entire sheet. Select Plot > Basic 2D: Multiple Panels by Label to open the plotbylabel dialog.
3. Set the dialog options as following, and click the $\mathbf{O K}$ button to create the graph.

The graph should look like this:

6.2.4 Basic 2D Plotting

6.2.4.1 Summary

Origin's 2D plots are highly customizable. You can easily modify plot attributes, arrange layers, and select different datasets for each layer. This tutorial will teach you the basic plotting skills.

Minimum Origin Version Required: Origin 2015 SR0

6.2.4.2 What you will learn

This tutorial will show you how to:

- Perform simple row statistics
- Create a graph and save as a template
- Plot into your template
- Use the Plot Setup dialog

6.2.4.3 Steps

6.2.4.3.1 Simple row statistics

1. Start with an empty worksheet, select Data: Import from File: Single ASCII... to open the Import Single ASCII dialog, browse to the \Samples \Curve Fitting subfolder of the Origin program folder, and import the file Dose Response - No Inhibitor.dat.
2. Highlight columns 2 through 4 and select Statistics: Descriptive Statistics: Statistics on Rows. Make sure to check the Mean and Standard Deviation check boxes on the Quantities tab to output these results.

Input	Quantities	Computation Control
Moments	Output	
N total	\square	
N missing	\square	
Mean	\square	
Standard Deviation	\square	
SE of mean	\square	
Lower $95 \% \mathrm{Cl}$ of Mean	\square	
Upper $95 \% \mathrm{Cl}$ of Mean	\square	
Variance	\square	

3. After you click the OK button, two new columns, Mean(Y) and SD(yErr) are added to the source worksheet. Here, yErr means that this is an error column and the data in this column can be used to plot
error bars.

Note: To simplify plotting, each column in an Origin worksheet has a plotting designation. To change a column's plotting designation, select the column and click on the Column menu. Alternatively, right-click on the column and choose Set As from the shortcut menu.

6.2.4.3.2 Create a graph and save as a template

1. Highlight the Mean (Y) and $\operatorname{SD}(y E r-)$ columns and select Plot > Basic 2D: Line+Symbol to create the plot:

2. Change the X scale to Log. To do this, double-click on the \mathbf{X} axis to bring up the Axis dialog. On the Scale tab, change the axis Type to Log10:

Click the OK button to close the dialog.
3. Select Graph: Rescale to Show All from the menu, which will rescale the X and Y axes of the graph. :

4. To edit the curve, double-click on any plot symbol to bring up the Plot Details dialog. Alternatively, rightclick inside the graph and choose Plot Details from the shortcut menu. On the Line tab of right panel, select B-Spline as the connecting line type to get a smoother curve.

Click the OK button to close the dialog.
5. When all modifications have been made and the graph looks the way you want it, you can use this graph to create a template, to be used in the future with similar data. Select File: Save Template as to open the Save Template dialog. In the Category drop-down list, select UserDefined; and then type a proper Template Name. In this example, we use MyTemplate. Click OK to save the template.

6.2.4.3.3 Plot into graph template with the Plot Setup dialog

1. Click the New Workbook 囲 button and import the file \Samples \Curve Fitting\Dose Response Inhibitor.dat as above. Perform Statistics on Rows, calculating the Mean and SD of this worksheet as you did above, following the same steps.
2. Select Plot: Templates: Template Library: MyTemplate
3. In the Plot Setup dialog, you can choose which columns are to be plotted. (There are three panels in Plot Setup dialog, click the $\left.\vee\right|_{\text {or }}$ त $\left.\right|_{\text {button to expand/collapse them.) To finish creating the plot from your }}$ template, please follow the steps a-e outlined on the picture below.

And then you will have:

6.2.5 Basic 3D Plotting

6.2.5.1 Summary

In Origin, Contour plots and 3D plots, such as Color Map Surface plots, can be created directly from XYZ data.
But, if you want to plot a smoother 3D surface, you are strongly advised to use one of Origin's built-in gridding routines to convert the XYZ data into a matrix.

Minimum Origin Version Required: Origin 9.0 SR1

6.2.5.2 What you will learn

This tutorial will show you how to:

- Create a 3D graph from XYZ data
- Use the Layer Contents dialog to add/remove a data plot
- Convert XYZ data into a Matrix
- Use the Plot Details dialog to customize a graph

6.2.5.3 Create a 3D Surface and Scatter Plot

1. Import the file \Samples \Matrix Conversion and Gridding \XYZ Random Gaussian.dat.
2. Highlight column C and right click. Select Set As: \mathbf{Z} from the fly-out menu.
3. Select Plot > 3D : 3D ColorMap Surface to create a 3D Colormap Surface plot (Graph1 by default).

4. Right click the layer icon on the left-top of the graph to open the Layer Contents dialog. In this dialog, click on the \mathbf{A} button and select 3D Scatter/Trajectory/Vector from the fly-out menu.

| $3 D$ |
| :--- | :--- |
| $3 D-$ Scatter/Trajectory/Vector |
| $3 D$ - Bars |
| V <auto> |

5. Select column C from the left panel and click on the Add Plot \square button to add the 3D scatter plot to the graph. Click OK to close the dialog.

6. Double-click on the scatter plot of Graph1 to open the Plot Details dialog. In the Symbol tab, set Shape to Ball, Size to $\mathbf{1 2}$ and Color to Map: Col(C)(expand Color Chooser to do settings in the By Points subtab as shown below).

II Plot Details - Plot Properties

- V Layer

V $\times Y Z$ Random Gaussian.dat $\mathrm{V} Y Z$ Random Gaus
4. . KYZ Random Gaussian. datMYZ Random Gaus

\square XY Projection
ZXProjectionYZ Projection

7. In the Drop Lines tab, uncheck the Parallel to \mathbf{Z} Axis checkbox.

8. In the Colormap tab, click on the column header Fill... to open the dialog. In the Fill dialog, choose Load Palette, click on Select Palette, and select Rainbow from the list.

9. Select Layer1 from the left panel of the Plot Details dialog. In the Lighting tab, select Directional as

Mode and do the settings under Light Color just as the image below showing. Click OK to close the dialog.

The graph should look as below:

Press the "S" key while hovering on a 3D openGL graph. The cursor will change modes. Drag with your mouse or use arrow keys to change lighting source direction.

6.2.5.4 Smooth the 3D surface plot

If you want to create a 3D surface that is smoother than the surface plot above(created from XYZ data), you can firstly convert the XYZ data into a matrix using the XYZ Gridding tool. And then, use the result Matrix data to create the 3D surface.

1. Activate the workbook XYZ Random Gaussian again.
2. Select Worksheet: Convert to Matrix: XYZ Gridding to open the dialog. Expand the Gridding Settings branch, select Random (Thin Plate Spline) from the Gridding Method and Parameters drop-down list, and set both the Columns and Rows to 30 . Click OK to convert the XYZ data into a matrix.

3. Activate the matrix, and select Plot > 3D: 3D Colormap Surface to create another 3D graph, says Graph2.
4. Go back to Graph1, right-click on any white space in Layer frame to select Copy Format: All Style Formats in the context menu.

5. Switch to Graph2 again, right-click on the Layer frame, select Paste Format in the context menu.
6. Select Format: Plot... from main menu to open the Plot Details dialog. Go to Colormap/Contours tab, clear Enable Contours check box:

Graph2 should look as below:

6.2.6 Plot from User Defined Graph Template

6.2.6.1 Summary

In this tutorial, we will show you how to save a graph as an user-defined template and plot new data into the saved custom template. There are two types of graph templates available in Origin: standard template and cloneable template. Cloneable template can be easily used to clone a graph from a new workbook/worksheet, in spite of the complexity of data composition in target graph, but with one prerequisite that new data should share same data structure with the data in target graph. In comparison, standard template has more freedom over data source but lacks of the ability to duplicate a graph with complicated layer hierarchy or data structure.

This tutorial will show you how to:

- Create and save a graph as standard template
- Plot new data into a standard template
- Save a graph as cloneable template
- Plot data with same data structure into a cloneable template

6.2.6.2 Standard Template

6.2.6.2.1 Create and Save a Standard Graph Template

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder Custom Axis Scale to Show Different Scale Range.
2. Highlight column B Exothermic Energy and C Energy-SD, click scatter button :" on 2D Graphs toolbar to make a scatter plot with Y error bar.
3. Next we want to customize the symbol to be solid circle with blue color, to do so double-click on any data point on the graph to bring up Plot Details - Plot Properties dialog.
4. Make sure first plot under Layer1 branch is selected on the left panel. Go to Symbol tab. Select solid circle from the down-sided triangle button under Preview and set Symbol Color to be Blue in the Single tab of Color Chooser. Click OK.

5. To save it as standard template, right click on Graph1 window title bar and select Save Template As... to open dialog.
6. Input BlueCircle as Template Name and add some descriptions Blue solid circle in Template Description edit box.
7. If you want preset the long name of newly created graphs to be the first plot's long name, click the more options button next to Preset Graph Long Name edit box and select @LL: Long Name. \%(1,@LL) will show as Preset Graph Long Name.
8. Make sure Mark as Cloneable Template box is unchecked, click OK button to save it as standard template.

6.2.6.2.2 Plot New Data into Standard Template

1. Go back to workbook, highlight columns Temperature and Temperature-SD and go to menu Plot: Templates: User: BlueCircle (UserDefined) to make the graph. The graph window long name is Temperature.

6.2.6.3 Cloneable Template

6.2.6.3.1 Save Graph as a Cloneable Template

1. Press F11 key or select Help: Learning Center to open the Learning Center dialog. Select Graph Sample in the left-side panel, and seach for Raman.
2. Double-click on the graph that is returned to open the Raman Spectrum subfolder.
3. Graph Raman Spectrum is plotted from data in different worksheets of workbook Peak1 also with data labeling. It's hard to plot new data like this with one click using standard graph template. So let's save this graph as a cloneable template and clone this graph using data in workbook Peak2.

4. To do so, right click on graph Raman Spectrum window title bar and select Save Template As... to open Utilities \File: template_saveas dialog.
5. Input MyPeakTemplate as Template Name. Now we want to use Raman Spectrum + Workbook Long Name as graph Long Name. To do so, click more options button next to Preset Graph Long Name edit box and select @WL: Book Long Name to insert the right part first. Then input Raman Spectrum in front of added \%(1, @WL).
6. Make sure Mark as Cloneable Template box is checked, expand this node and match up the columns and worksheets by setting Match Column by and Match Sheet by to Index.
7. Click OK button to exit the dialog and save the template.

6.2.6.3.2 Clone a Graph Using Cloneable Template

1. Activate workbook with title Peak2, click template library button ${ }^{\text {颸 }}$ to bring up the dialog.

2. Click to select the cloneable template (indicated by Dolly icon) MyPeakTemplate and click Plot button to clone the graph.

3. Alternatively you can activate workbook Peak2 and go to menu Plot: Templates: User:

MyPeakTemplate (UserDefined) to directly clone the graph.

6.2.7 Adding a Data Plot to Existing Graph

6.2.7.1 Summary

The Plot Setup dialog can be used to add/reorder/arrange data plots in an exiting graph. This dialog provides flexibility in selecting the source data sheet and in specifying how data are to be plotted.

6.2.7.2 What you will learn

This tutorial will show you how to:

- Use the Plot Setup dialog to add data to a graph layer
- Use the Plot Setup dialog to group data plots in the layer
- Use the Legend Update dialog to modify the graph legend

6.2.7.3 Steps

6.2.7.3.1 Choosing the Data Source

1. Click the New Project button on the Standard toolbar, to begin with a new project.
2. Click the Import Wizard button on the Standard toolbar. The Import Wizard opens. (Note that if this is the first time that you have started the Import Wizard, you will experience a slight delay as Origin compiles the necessary files.)
3. Verify that the ASCII radio button is selected in the Data Type group.
4. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Import and Export folder.
5. Press CTRL and select files S15-125-03.dat, S21-235-07.dat, and S32-014-04.dat, then click Add Files.
6. Click OK.
7. Leave the Import Filters for current Data Type as Data Folder: VarsFromFileNameAndHeader. (This filter has the settings to use when importing the file.)
8. Set the Import Mode as Start New Sheets.
9. Click the Finish button. The three data files import into the workbook, each as a new sheet. You will have a book with three sheets: Trial Run 1, Trial Run 2, and Trial Run 3.

6.2.7.3.2 Plotting the Data

1. Select the Trial Run $\mathbf{1}$ sheet.
2. Highlight the $D(Y)$ column.
3. Click the Line button on the 2D Graphs toolbar. A new graph is created.

6.2.7.3.3 Adding Data to the Graph using Plot Setup

1. Right-click on the layer 1 icon in the upper-left hand corner of the graph and choose Plot Setup.
2.

There are three panels in the Plot Setup dialog. Expand the Plot Type panel by clicking $\hat{\wedge}$ then expand the Available Data panel by clicking the second ล ${ }^{\text {button. }}$

Please refer to Plotting using Plot Setup for more information.
3. Select Layer $\mathbf{1}$ in the Plot List.
4. Select Trial Run $\mathbf{2}$ from the Available Data list (the top-most of the three panels).
5. Select Time as X and Position as Y.
6. Click Add.
7. Repeat steps 2-5, but add Trial Run 3 to Available Data, and again set Time as X and Position as Y , then Add the plot to Layer 1.
8. Highlight all three plots under Layer 1, then right-click and choose Group.
9. Click OK. You should now have a graph with three differently-colored line plots.

For information on "grouping" plots, see Grouping Data Plots in the OriginLab User Guide.

6.2.7.3.4 Updating the Graph Legend

The existing graph legend uses the names of the imported data plots. We will modify the legend to show the sheet name.

1. Right-click on the legend object and choose Legend: Update Legend.
2. From Auto Legend Translation Mode, choose Custom.
3. For Legend Custom Format(@D, @LU etc), click the arrow to the right and choose @WS: Sheet Display Name and click OK. The graph legend now reads Trial Run 1, etc.

For more information on customizing the default legend, see these topics:

- Graph Legends
- Legend Text Customization

6.2.8 Smart Peak Labels with Leader Line

6.2.8.1 Summary

For the line/symbol plot in 2D Cartesian coordinate system, Origin supports smart labels which can be auto repositioned to avoid overlapping. Leader lines (both straight lines and oblique lines) can be added to connect the data points and their labels.

Minimum Origin Version Required: Origin 2016 SRO

6.2.8.2 What you will learn

This tutorial will show you how to:

- Add smart labels with leader lines
- Add a special data point and customzie its label
6.2.8.3 Steps to Add Smart labels

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the Smart Peak Labels with Leader Line folder in the Project Explorer.
2. There are two sheets in A100527IR workbook. 100-52-7-IR is an IR absorbance data and Peak_Centers1 are peak center result found by Origin's Peak Analyzer tool.
3. Highlight $\operatorname{Col}(B)$ in sheet $100-52-7-I R$ to plot a line graph by selecting Plot > Basic 2D : Line menu.
4. Double click on layer 1 icon to open the Layer Contents dialog. Select col(pcy) in left panel. Click the dropdown list next to \mathbf{A} button in the middle and select Scatter as plot type. Click -> button to add the data into the graph.

5. In the Plot Details dialog, select second plot in the left panel, go to Symbol tab, do following settings:

6. Go to Label tab, check the Enable check box, do settings as below:

7. Click on the Apply button, you will see the some labels are overlapped.

8. Go back to Label tab, check the Auto Reposition to Avoid Overlapping check box, select Y for the Reposition Direction drop-down box and set the Leader Lines group as below. Also set Vertical Offset to be $\mathbf{1 7 0}$ so the leader lines are more obvious.

9. Click OK button to close the dialog. You will see the labels are repositioned smartly.

6.2.8.4 Steps to Customize a Single Point and its Label

1. The highest peak's label can't be seen. Double-click on the Y axis to open the Axis dialog, go to Vertical icon in Scale tab, change From and To to -0.05 and 0.8 , then click OK to apply the setting.

2. Press CTRL key down and double click the highest peak's label $\mathbf{1 7 3 0}$ to open Plot Details dialog. A node 18 shows on left panel. It's the row indexing of the special point.
3. Go to Label tab of this point and customize the further.

4. Go to Symbol tab to change the symbol shape and size.

6.2.8.5 More Customization Steps

The following steps can further customize the graph to be exactly the same as the image in Summary.

1. Double click X axis to open Axis dialog. set From and To for X axis to be 400 and 3500 .
2. To show top and right frames around the graph, select Grids tab in Axis dialog. Check Opposite check box under the Additional Lines branch for both Horizontal and Vertical.
3. To change the layer size, select Format: Layer... from main menu to open the Plot Details dialog.

On Size/Speed tab, change the layer size in the Layer Area group as below:

4. Select legend and press Delete key to delete the legend.

6.2.9 Error Bars with Fill Area

6.2.9.1 Summary

This graph displays three datasets with error bars. The error bars have been set to draw as lines with fill areas. Transparency has been set for all three curves so that data in overlapping regions can be clearly seen.

Minimum Origin Version Required: Origin 8.5.1 SRO

6.2.9.2 What you will learn

- Plot the error bar with fill area
- Set transparency for error bar
- Set and save custom color

6.2.9.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Line and Symbol)

1. Open Tutorial Data.opj and browse to the Error Bars with Fill Area folder in Project Explorer (PE).
2. Highlight all columns in the worksheet. In the main menu, select Plot > Basic 2D : Line.

3. Double-click on the plot to open the Plot Details dialog. Select the first plot node under Layer1 in the left panel. In the right panel activate the Group tab. Choose Independent in Edit Mode.

4. On the Line tab set Width as 3. To set a custom color click on the button right to Color and select Custom from the drop list.

Right-click on the Custom button to bring up Color dialog. Click on Define Custom Colors to expand the right panel. For further use save the custom color in the Custom colors: palette:

1. Select an blank box under the Custom colors: palette.
2. Set Red, Green, Blue as 155, 187, $\mathbf{8 9}$ respectively in the right panel.
3. Click Add to Custom Colors to save this color to the Custom colors palette.

Click OK to close the dialog. Set Transparency as $\mathbf{5 0}$
5. Repeat the step 3 for the other two plots. Except, set the colors of the second plot and the third plot as RGB(192, 80, 77), $\operatorname{RGB}(79,129,189)$ respectively.
6. In the left panel, select the first of the three error plots. On the Error Bar tab, set Connect as Straight, then the Fill Area Under Curve option will show up in Style section. Check the box before it and the Pattern tab should now be available.

Graph10

\square Layer1[Power 250W] Meca! 'Crank Angle' (X), "Pedal F
[Power 250W] Meca! 'Crank Angle' (X), "Pedal F[Power 250W] Meca! ''Crank Angle' $[X]$, 'Pedal F
[Power 250w]Meca! "Crank Angle" (X), "Pedal F
7 [Power Z5uw]Meca! "Lrank Angle" $\ \mathrm{X}$], "Pedal f
[Power 250W] Meca! 'Crank Angle' '(X), 'Pedal F

Dataset Name: [Book1E]Meca!P9'Error"

Fill Area Under Curve

Set Color as Automatic.

7. On the Pattern tab, change the fill color to the custom color saved before to match the line color, and set Transparency to 50.

8. Repeat the last two steps for the other two error plots. Click OK to complete the graph.

6.2.10Mark out a segment of plot with different plot style

6.2.10.1 Summary

In Origin, you can mark out a segment of plot with different plot style, such as a segment of dashed in a solid line plot.

Minimum Origin Version Required: Origin 8.0 SR6

6.2.10.2 What you will learn

- Use the Plot Setup dialog to create a graph
- Mark out the special segment of a plot

6.2.10.3 Steps

1. Start with an empty worksheet. Select Data: Import from File: Single ASCII... from the Origin menu to open the Import Single ASCII dialog. Browse to the \Samples\Graphing subfolder of the Origin program folder, and import the file AXES.DAT .
2. Click the button on the Standard toolbar to create a new graph window and then select Graph: Plot Setup from the main menu to bring up the Plot Setup dialog.
3. Show all of the three panels of the Plot Setup dialog. Select the AXES worksheet in the top panel. Then go to the middle panel to select \mathbf{A} as X and \mathbf{B} as Y . After that, click Add to add this data plot to the
bottom panel. Repeat this step three times. Three data plots should be listed in the bottom panel.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\star}$ 人 and expand Available Data panel by clicking ㅅ ${ }^{\text {again. }}$

Please refer to Plotting using Plot Setup for more information.
4. In the lower panel, click in the Range column that corresponds to the first data plot. The \ldots button should be activated. Then click this button to open the Range dialog box.

Plot	Range	Show	Plot Type	Legend
-1: Layer 1	\checkmark Rescale	\checkmark		
[AXES.DAT]AXES! A(X), B(Y)	$\left[1^{*}: 40^{*}\right] 1<X<40,-1.08804<Y<1.582$	1	Line	B
Wh [AXES.DAT]AXES! $\mathrm{A}(\mathrm{X})$, B(Y)	$\left[1^{*}: 40 \times\right] 1<X<40,-1.08804<Y<1.58261$	\checkmark	Line	B
- Wh [AXES.DAT]AXES! $A(X), B(Y)$	$\left[1^{*}: 40 \times\right] 1<X<40,-1.08804<Y<1.58261$	\checkmark	Line	B

5. Clear the Auto check boxes (if they are selected) and then set From to $\mathbf{1}$ and $\mathbf{T o}$ to $\mathbf{2 0}$. Click $\mathbf{O K}$ to close the dialog.

6. Similarly, set the ranges for other two data plots to " 20 to 30 " and " 30 to 40 " respectively.

Plot	Range		Show	Plot Type	Legend
- L Layer 1	\checkmark Resc	cale	\checkmark		
he [AXES.DAT $]$ XXES! $A(X), B(Y)$	[1:20]	$<X<20,-0.96201<Y<0.3638$	V	Line	B
We [AXES. DATjAXES! A (X), B(Y)	[20:30]	$20<X<30,-0.96201<Y<1.35909$	V	Line	B
W* [AXES.DAT]AXES! A (X), B(Y)	[30:40]	$30<X<40,-1.08804<Y<1.58261$	V	Line	B

7. Click the OK button to close the Plot Setup dialog. You should get a graph like this:

8. Double-click on the curve in the graph window to open the Plot Details dialog. Select the second data plot from the left panel. In the right panel, change the Style to Short Dash, and then click the Ok
button.

9. Finally, we get the plot with a range marked out.

6.2.11Overview of Customization

6.2.11.1 Summary

Editing your Origin graph is very easy. Any graph element can be selected and with its associated dialog, the properties can be modified. In fact, you can customize your graph right down to a single data point.

This tutorial will show you how to:

- Resize a Layer
- Add a Layer Title
- Customize and Save a Template
- Customize Axes
- Apply a Graph Theme
- Change Plotting Order in a Layer
- Customize a Point
- Customize a Grouped Plot
- Create a Color-mapped Waterfall Plot

6.2.11.2 Re-sizing Layer

1. Open Customizing Graphs.OPJ from the \Samples\Graphing folder and select the Resize Graph and Customize Symbol folder from the Project Explorer window.
2. Make Graph2 active and right-click inside the layer, above the data points to select Add/Modify Layer Title from the context menu that opens. Add a title, as shown in the graph below:

3. The layer can easily be resized graphically by dragging the sizing handles. To resize it, single click inside the layer, but not on a data point. The layer will become selected as seen below, and then you can drag
one of the 8 anchor points to resize the layer. Note: If you hold the CTRL key down while dragging, the aspect ratio will be maintained.

4. You can also use the Plot Details dialog by specifying exact numbers to dictate the layer size more precisely. Double-click inside the layer to open the Plot Details dialog. On the Size/Speed tab, set the layer area to the values shown in the image below:

Note: Check the Link Axis Length to Scale with X: \mathbf{Y} Ratio check box to set the length ratio of X and Y axes (the Width and Height of the layer frame) to maintain the aspect ratio of the actual X and Y scales when the layer size is changed. You can set your own ratio value in the following box.

6.2.11.3 Customize Data Plot and Axes

In this section, we will show you how to change the color of a data plot, and customize the axes.

1. Click on one of the data points of Graph2 to select the entire data plot, and change the color of the data points to red by using the Line/Border Color button in the Style toolbar.
2. Next use the Axis dialog to customize the axes. Double-click on the X-axis to open the dialog and set the controls as follows:

- Select the Horizontal icon in the Scale tab, select the Type under Major Ticks as By Counts and input 5 as the Count.
- Select the Vertical icon in the Scale tab, set the From as 0, To as 16, Type for Major Ticks as By Counts and enter 11 for Counts.
- Go to the Line and Ticks tab and select both Top and Right page with CTRL button pressing down. Check the Show Line and Ticks box to show the line and ticks for the top X and the right Y axis. Click OK to apply the settings and close the dialog. The graph should appear as shown below:

6.2.11.4 Save and Reuse a Template

In this section, we will show you how to save the graph above as a template and reuse it.

1. In the menu, select File: Save Template As (alternatively, right-click on the graph window title bar and choose Save Template As from the context menu) and rename the template as MyGraphTemplate.

Then click the OK button to save it.

2. Create a new workbook and import the data file \Samples\Curve Fitting\Sensor2.dat, by using Data: Import from File: Single ASCII. Highlight column B and select Plot: Templates: User: Template library. Then select MyGraphTemplate and click the Plot button to create a graph.

The graph should look like:

Note, you can also use the batch plotting tool to create multiple graphs at once from different worksheets/workbooks with same data structure. You can learn how this tool work from this tutorial.

6.2.11.5 Changing graph using theme

Origin stores the properties of a graph in a theme file. In this section we will show you how to customize a graph by using a theme.

1. With Graph3 active, select Preferences: Theme Organizer to open a dialog. Select the Times New Roman Font theme and click Apply Now. Select Ticks All In and click Apply Now, then click the Close
button to close the dialog. The graph should resemble the following graph:

2. The next step is to copy the formatting of the current graph and paste it to Graph2. Right-click to the right of the layer, anywhere on an empty white or grey space and select Copy Format: All Style Formats. Activate Graph2, right-click in a similar spot and select Paste Format. Graph2 should look like the image below:

6.2.11.6 Plotting Order

You can reorder the data plots either by the the Layer Contents dialog, Object Manager or the Plot Setup dialog.

Open Customizing Graphs.OPJ from the \Samples\Graphing folder and select the Plotting Order folder from the Project Explorer window.

6.2.11.6.1 By Layer Contents Dialog

1. Activate Graph 1 window. Double-click on the Layer 1 icon on the top left corner of the graph to open the Layer Content dialog.

2. Click the \ggg button to hide the left panel. In the right panel, select the Gauss Fit Count line plot. Click the downward pointing arrow button to move the line plot down in the plotting order.

3. Click the Apply button. The Gauss Fit Count line plot is now on top of the column plot. Click the Close button to close the dialog.

6.2.11.6.2 By Object Manager

1. Activate Graph 1 again. Expand the Object Manager, which should be docked to the right edge of Origin workspace by default, by moving your mouse over to the Object Manager bar.
2. Right-click on the Gauss Fit Count line to select Move Up from context menu to move this plot upward.

3. Then, you will see the red line will be back of the histogram plot.

6.2.11.6.3 By Plot Setup Dialog

1. Use the same data as the previous example. In the Plotting Order folder activate Graph 1. Select Graph: Plot Setup from the main menu to open the Plot Setup dialog (You can also right-click on layer 1 and select Plot Setup...).

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\star}$ and expand Available Data panel by clicking人 again.

Please refer to Plotting using Plot Setup for more information.
2. In the Plot List panel, drag the line plot and drop it beneath Column/Bar Plot Type.

3. Click the OK button and you will see that the red curve is now drawn on top. Notice the legend reflects the new plotting order as well.

6.2.11.7 Customize points

In this section, we will show you how to customize a single data point.

1. We will continue to work in the Plotting Order folder. Make sure Graph 1 is active. Note that if you click to select one of the columns, all columns are selected. Click again to select just that one column. Change the color to green using the Fill Color button on the Style toolbar.
2. You can also use the Plot Details dialog to customize single columns separately from the rest. Hold down the CTRL key while double-clicking on the columns to open the Plot Details dialog. The settings in this dialog will edit the properties of just that single data point. Note that the index number for that selected data point is highlighted in the left panel of the Plot Details dialog. Set the Gradient Fill group as follows, to fill the column with a yellow to red color gradient.

Your graph should resemble the following image:

3. You can customize a pie chart segment in the same way. In the Edit Single Data Point folder, activate the pie graph. Hold down the CTRL key and double-click on one of the slices to open the Plot Details dialog. Under the Pattern tab, set the Fill Pattern to Dense, and set Pattern Color to Red.
(Alternatively, you could have clicked once and then clicked again on a slice to select just that one point,
and then used the Style toolbar to customize that point.) The graph should appear as the image below:

4. You can customize a single data point and label it. Go back to the Resize Graph and Customize Symbol folder. Hold down the CTRL key and double-click on one of the scatter points to open the Plot Details dialog. Under the Symbol tab, click the triangular Preview button to open the symbol gallery, and select Sphere for the symbol type. Increase the Size to 18, and click the OK button to close the dialog.
5. Use the annotation tool to add the X and Y values that correspond to the customized data point. Select the Annotation button from the Tools toolbar (Hint: The Data Reader, Annotation and Data Cursor tools are grouped. If you don't see the Annotation tool, click the arrow to the lower-right of whichever tool is visible on the toolbar).

Move the annotation cursor to the customized data point and double-click on it. Origin will automatically add a text object. Hit the ESC key or click on the Pointer button to exit annotation mode. Single-click and drag to position the text object. A line will automatically be drawn connecting the point and the label.

Right-click on the text object and select the Properties... to open the Annotation-Text dialog. Then you can customize the text label format in the this dialog. In the Text tab enter
$\mathbf{\%}(\mathbf{1}, @ \mathbf{L L})=\mathbf{(Y , . 2)} \mathbf{\%}(\mathbf{1}, @ \mathbf{L U})$ in the edit box. And the button to the right of the edit box provides
some frequently used notations and example syntax.

Beginning with Origin 2017, you can drag annotation labels from point to point. Click the Pointer button, press the ALT key and use the cross-hairs to drag the label to another data point.

6.2.11.8 Group plots

So far, we have been customizing data points in a single data plot. In this section, we will show you how to customize a grouped data plot.

1. Select the Grouped Data folder. Book3 will be active. Highlight the entire worksheet and click the line button on the 2D Graphs toolbar to create a line graph.
2. Double-click on the \mathbf{X}-axis to open the Axes dialog box. Set From as $\mathbf{0 . 5}$ and $\mathbf{T o}$ as 3.0. Select Fixed from the Rescale drop-down list (you will need to scroll up in the list). This prevents the From and To values from changing while rescaling. Click OK to apply these settings.
3. Double-click on a blank place above the line plots, to open the Plot Details dialog. On the Stack tab, select Auto in the Offset group. Click OK to close the dialog.
4. Select Graph: Rescale to Show AII. The Y scale of the graph automatically rescales, while the X scale doesn't change because the option was set to Fixed. Resize the layer and drag the legend to the desired spot.

5. Click on one of the data plots to select the entire group, and then use the Line/Border Color button . on the Style toolbar to change the colors. Click on By Plots tab, select Q03 Rainbow7 from the

Increment List as below.

6. Then select the first increment list. The graph should look like this:

7. Though these data plots have been grouped, you can also customize each of them individually by clicking on the data plot twice. For example, clicking the yellow data plot twice (click once, pause and click again) and then clicking the Line/Border Color button on the Style toolbar will change the color to another color, such as Olive.
8. You can also customize the graph by double-clicking on one of the data plots to open the Plot Details dialog. Under the Group tab, you can click the browse button...

	Increment	Details	
Line Color	By One		
Line Style	None		

...to open the Increment Editor dialog. In this dialog, customize the graph as shown in the following image. Note that you can also drag the index of a row and move it to change the order of the color list.

9. Right-click on the inner position of this dialog and select Save Increment List to save it as MyPalette for future use. Right-click to get the context menu and select the Load Increment List option. You will
find that MyPalette appears as the first entry in the fly-out menu, as the following image shows:

In the following section, we will show you how to use Palettes to set colors for a group of data plots.

1. Activate Book3 and highlight all the columns. Select Plot: 3D: Waterfall: Waterfall to create a graph. Double-click on the X-axis to open the Axis dialog, and set From as $\mathbf{0 . 5}$ and To as $\mathbf{3}$ in Scale tab. Select \mathbf{Y} icon from the Selection list, and set the From, To, and Increment of Major ticks option to -10, 100
and 20, respectively in the Scale tab.

2. Click on one of the data plots and use the Line/Border Color button on the Style toolbar to change the colors. You can select the Rainbow palette $\square \square$ under Palettes list in the By Plots tab. The graph should resemble the image below:

3. You can double-click on one of the plots to get the color list, as the following image shows:

You can find that the Increment has been set to Binned, so colors are picked from the 256 available in the Rainbow palette.
4. We will change the palette to Reef by clicking on the browse button to open the Increment Editor dialog. Then right-click on the inner portion of this dialog and select Load Palette : Reef,then click OK. The color list in the Plot Details dialog should be set as shown below:

	Increment	Subgroup	Details	
Line Color	Binned	∇	None	∇

Click on Ok button to close the Plot Details dialog. The graph should appear as shown below:

6.2.12Plotting Overlapping Data and Setting Transparency

6.2.12.1 Summary

In this tutorial, we will show you how to create overlapping column plots, and then set transparency to make the overlapping parts visible.

6.2.12.2 What you will learn

This tutorial will show you how to:

- Customize the grouped column plots
- Set Transparency

6.2.12.3 Steps

1. Select Help:Learning Center menu to open Learning Center dialog. Select Graph Sample item in the left panel and then select Column and Bar for Samples in drop-down list.
2. Double-click on the last thumbnail to open the folder Overlapped Bars.
3. Highlight all columns in the worksheet [Counts]Sheet1 (The source data Counts.dat can also be imported from the folder <Origin Installation Directory> \Samples \Graphing
), and then from the menu, select Plot>Basic 2D: Column to create a column graph.

4. Double-click on the plot to open the Plot Details dialog. In the dialog, choose the Group tab. Click on the color bar under Details and click in the Fill Color row. Then click on the button that appears to open the Increment Editor dialog. In this dialog, you can set the first three colors to be some specific colors such
as Royal Blue, Orange, and Dark Cyan. Click OK to close the dialog.

5. Select the Pattern tab in Plot Details, and set the Transparency control to 51%.

6. Select the Spacing tab, and set Gas Between Bars to zero and Overlap to 100.

Group	Pattern	Spacing	Panel
Label			
Gap Between Bars (in \%) Overlap (in \%) 0			

Gap between Bars from Different Panels (in \%)
7. Click the OK button to close the Plot Details dialog. Select View: Show: Frame to add the frame. The resulting graph should look like the image below:

6.2.13Plotting using Plot Setup

6.2.13.1 Summary

In this tutorial, we will show you how to implement various plotting tasks including creating graphs, modifying the plot type, adding plots to or removing plots from the graph, grouping or ungrouping plots, and editing the plot range, using Plot Setup dialog.

This tutorial will show you how to:

- Create line plot with Plot Setup
- Group or ungroup plots with Plot Setup
- Add or remove plots with Plot Setup
- Change plot type and display range with Plot Setup
- Change plot order with Plot Setup
- Create multi-Panel Plots with Plot Setup

6.2.13.2 Create Line Plot with Plot Setup

1. Start with a an empty worksheet and from the menu, select Data: Import from File: Single ASCII or click the Import Single ASCII button $\stackrel{\text { 127 }}{\text { 雷 }}$ to open the file browser.
2. Choose the file <Origin Installation Directory> \Samples\Curve Fitting\Step01.dat, check the Show Options Dialog check box, and click the Open button to bring up the impASC dialog.
3. Click the $\mathbf{O K}$ button to import the data into the worksheet.
4. Return to your workbook and ensure that no data is highlighted.
5. Select Plot > Basic 2D: Line, the Plot Setup Dialog will pop up. In the middle panel, you can see the Long Name is displayed by default. Select Column B (Sensor $A x$) as X, and Column C (Sensor A y) as Y . Click Add to add the plot into the bottom panel, which will automatically be added to Layer 1. Repeat this operation for Sensor B, and Sensor C.

6.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking \square and expand Available Data panel by clicking人 ${ }^{\text {again. }}$

6.2.13.3 Group/Ungroup plots with Plot Setup

Next we want to group this three plots together. Use the same graph from the previous example.

1. Press CTRL then select all three plots at the bottom panel, right click and select Group. Then these plots would be under the Group node.

2. Click OK to close the dialog. The graph would appear as follow:

3.

Note:

1. The plot grouping operation enable you to customize the appearance of these grouped data plots in Group Tab of Plot Details dialog.
2. To ungroup data plots, you can go back to the bottom panel of Plot Setup dialog then click
the Group node, right click select Ungroup.

6.2.13.4 Add or Remove Plots with Plot Setup

Next we are going to remove the data plot of Sensor C then add the data plot of Sensor D into the graph. Use the same graph from the previous example.

1. Activate the graph, then click Graph: Plot Setup to go back to the Plot Setup dialog. At the bottom panel, highlight the plot of Sensor C, then right click to select Remove. Click Apply then OK to close the dialog. The Sensor C plot would be removed from the graph.

2. To add the data plot of Sensor D, select the Group node in lower panel and go to the upper panel by clicking on the double up-sided blue arrow icon on top right corner, select Column H (Sensor D x) as X , and Column I (Sensor D y) as Y. Click Add. Click Apply then OK to close the dialog.
3. Next we are going to customize the style of the grouped plot. Double click the plot to enter Plot Details dialog. At the plot level, select Line tab, set Width as 3.Click Apply then OK to close the dialog. The
graph would appear as follow:

1

6.2.13.5 Change Plot Display Range with Plot Setup

1. Next we are going to modify the data plot display range.
2. Activate the graph, then click Graph: Plot Setup to go back to the Plot Setup dialog. Select the data plot of Sensor A in the bottom panel. Click the cell of Range column, a rectangle button would appear at the end of the cell.
3. Click this button. The Range dialog would pop up. Uncheck the Auto of From and To. Then Customize it as From 1 To 15 and click OK to close the dialog.

4. To apply this display range for other plots, right click the the data plot of Sensor A again and select Apply Range To Group.
5. To rescale the plot, click the checkbox of Rescale on the Layer 1 row of the Range Column. Click Apply then OK to close the dialog.

t	Range
- Layer 1	V Rescale
- Group	
m_{m} [Step01. dat]Step01! "Sensor A $x^{\prime \prime}(X)$, "Sensor A $y^{\prime \prime}(Y)$ $\ln _{\text {m }}$ [Step01. dat]Step01! "Sensor B x" (X), "Sensor B y" (Y) man [Step01. dat]Step01! "Sensor D x" (X), "Sensor D y" (Y)	$\begin{array}{ll} {[1: 15]} & 0<X<22.4,-0.0105<Y<0.05463 \\ {[1: 15]} & 0.2<X<22.6,-0.01679<Y<0.09869 \\ {[1: 15]} & 0.6<X<23,0<Y<0.34918 \end{array}$
1 \square III	\square
	OK Cancel Apply

6.2.13.6 Change Plot Order with Plot Setup

Next we want to change the plot order of these three plots. Use the same graph from the previous example.

1. Activate the graph, then click Graph: Plot Setup back to the Plot Setup dialog.
2. At the bottom panel, keep pressing the mouse on the plot of Sensor B then drag the plot above Sensor A.

Plot	Range
\square L' Layer 1	\checkmark Rescale
\square Group	
Ind Step01. dat]Step01! "Sensor A $\mathrm{x}^{\prime \prime}(\mathrm{X})$, "Sensor ${ }^{\text {A }} \mathrm{y}$ " (Y)	[1:15] $0<\mathrm{X}<22.4,-0.0105<\mathrm{Y}<0.05463$
1/2[Step01. dat]Step01! "Sensor B x " (X), "Sensor B $\mathrm{y}^{\prime \prime}(\mathrm{Y})$	$[1: 15] 0.2<X<22.6,-0.01679<\mathrm{Y}<0.09869$
. $\operatorname{lnm}_{\text {[Step01. dat }}$ Step01! "Sensor D $\mathrm{x}^{\prime \prime}(\mathrm{X})$, "Sensor D $\mathrm{y}^{\text {c }}$ (Y)	[1:15] $0.6<X<23,0<Y<0.34918$
1 \square III	\square,
	OK Cancel Apply

3. Click Apply then OK to close the dialog.The graph would appear as follow. You can see that the data plot of Sensor A is on top of that of Sensor B.

6.2.13.7 Change Plot Type with Plot Setup

Next we want to change these three line plots into scatter plots and modify the data plot range. Use the same graph from the previous example.

1. Activate the graph, right click at the Layer index icon $\mathbf{1}$ on the graph upper left corner, then select Plot Setup to go back to the Plot Setup dialog.
2. Select the data plot of Sensor B in the bottom panel, then select Scatter in the Plot Type panel. Click Replace to replace the original line plot.Other plots in the same group will automatically replaced by
scatter plot. Click OK to close the dialog.

6.2.13.8 Create Multi-Panel Plot with Plot Setup

Multi-Panel plot with several plots in each layer can be created conveniently using Plot Setup dialog.

1. Create a new project, start with a an empty worksheet and from the menu, select Data: Import from

2. Press CTRL and choose the file Step01.dat, Step02.dat, Step03.dat, and Step04.dat from the folder <Origin Installation Directory> \Samples\Curve Fitting\.... Click Add File(s). Check the Show Options Dialog check box, and click OK to bring up the impASC dialog.
3. Under Import Options, set Import Mode as Start New Books. Accept other default settings and click OK to close the dialog.Four workbooks Step01.dat, Step02.dat, Step03.dat, and Step04.dat will be created.
4. Do not activate any workbook and click Plot > Basic 2D: 4 Panel to go to the Plot Setup dialog.
5. Click the double up-sided blue arrow icon on top right corner to open top panel, then select Worksheets in Project in Available Data drop-down list. All four workbooks would appear in the upper panel.
6. Use Ctrl key to select all four workbooks in the upper panel, then select Column B (Sensor A X) as X, and Column C (Sensor $A y$) as Y in the middle panel.
7. Select Plot Type as Line and select Layer1 in ther bottom panel. Click Add. All data plots of Sensor A in these four workbooks would be added to Layer1.

8. Repeat the previous step to add Sensor B, Sensor C, and Sensor D to Layer2, Layer3, and Layer4 respectively. Click OK to close the dialog. The graph would appear as follow:

6.3 Axis

6.3.1 Axis

- Multiple Axis Breaks
- User-Defined Arbitrary Tick Positions
- Plot and Customize Date Time Data on Graph

6.3.2 Multiple Axis Breaks

6.3.2.1 Summary

Origin supports multiple breaks on an axis as shown below. The number of breaks and the break positions can be customized in the Axis dialog box. Furthermore, you can add recession bars(the "vertical bars" shown as below) by adding multiple reference lines on the X axis and fill the gaps between them.

Minimum Origin Version Required: 2017 SR0

6.3.2.2 What you will learn

This tutorial will show you how to:

- Add multiple breaks to both X and Y axes
- Customize axis tick label format
- Fill spans that are broken by missing values vertically

6.3.2.3 Steps to Customize Label Display and Add Axis Breaks

This tutorial is associated with the Multiple Axis Breaks folder of the sample project <Origin EXE
Folder>\Samples\TutorialData.opj.
Also, you can see this graph in Learning Center(Select Help: Learning Center menu or press F11 key). It is listed under the Line and Symbol sample graph table. Double-clicking on the thumbnail will open the target folder.

1. Activate the workbook. Highlight $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$ and select Plot $>$ Basic 2D: Line from the main menu to plot a line graph. Select and delete the legend.
2. To customize the graph axes double click on an axis to open the Axis dialog box. Click the Horizontal icon in Scale tab and set the X axis scale as graph below:

Select multiple axes to customize together.
Apply To... \quad OK Apply
3. Go to Bottom icon in Tick Labels tab, change the display format of tick labels to 16(means year as $y y)$ and add a prefix '.

4. In order to add several breaks to the X axis select the Horizontal icon in Breaks tab. Check the Enable box and set 3 axis breaks.

5. Click the Details... button to open the Breaks Details dialog, set Break1 from 12/1/1961 to 9/1/1972:

6. Select the Break 2 node in the left panel, change it to be from $\mathbf{3 / 3 1 / 1 9 7 7}$ to 8/29/1980. Switch to Break 3 node, change it to be from $\mathbf{7 / 2 7 / 1 9 8 4}$ to 3/1/2007. Click the OK button to apply and exit the Break Details dialog and in the Axis dialog, click the Apply button to view the changes.
7. To customize the Y axis, select the Left icon under the Tick Labels tab and use the format

Engineering:1k as the tick label display. Set the prefix as "\$". Click Apply to view the changes in the graph.

8. Go to the Breaks tab again and with the Vertical tab selected, enable 2 axis breaks at scale value $\mathbf{3 . 1} \mathbf{T}$ to 4.5T and 6.7T to 12.5T, as we had done for the X axis in Step 4 to 6 .
9. Click OK to apply the settings and get the graph similar as follows:

6.3.2.4 Steps to Add Recession Bars

1. Double-click on X axis to open the Axis dialog. Go to Reference Lines tab, click the interactive button 㿟 beside the Reference Lines at Value text box to select col(C) from worksheet. The x coordinates of all recession periods will be listed in the display table as reference lines. Then check Alternate Fill box to fill each period.

2. Click OK to apply the settings.

6.3.2.5 More Customization Steps

The following steps can further customize the graph to be exactly the same as the image in Summary.

1. Double click X axis title Date in the graph and rename it as Year.
2. To change Y axis range, double click on Y axis to open the Axis dialog. Go to the Scale tab with Vertical icon selected, set From, To, Major and Minor ticks as below.

Select multiple axes to customize together.

3. Go to the Breaks tab again, select the first axis break and click Details to open the Break Details dialog with the Break 1 node selected. Clear the Auto check box next to the break position option and change it to $\mathbf{3 8} \%$. Clear the Auto Scale check box and then change the tick settings as below:

4. Select Break 2 node, set break position, Major Ticks and minor ticks as below:

5. Click OK to apply and exit the Breaks Details dialog. Click Apply in the Axis dialog to apply settings.
6. Select Grids tab. Select both Vertical and Horizontal icons on the left panel, check Opposite to show a frame around top and right axes.
7. Right click in a blank area inside graph layer 1 and select Add/Modify Layer Title from the context menu. Enter US Recessions and Recoveries as the layer title.
8. Adjust the page dimension with Graph node selected in Plot Details dialog.

Print/Dimensions	Miscellaneous	Display	Legends/Titles
Dimensions			
Width 15 Units inch Height 8			

6.3.3 User-Defined Arbitrary Tick Positions

6.3.3.1 Summary

This graph will show you how to specify tick locations using a dataset and show customized tick labels at those locations.

Minimum Origin Version Required: Origin 2015 SR0

6.3.3.2 What you will learn

- How to specify the tick location using dataset
- How to show the customized tick labels

6.3.3.3 Steps

1. Copy the sample data, and paste it into row 1 of column A in Origin worksheet. Set the first row as Long Name and the second row as Units.

2. Highlight columns A and B. Select Plot > Basic 2D :Line + Symbol from the main menu. Alternatively, you can simply click the Line + Symbol button on the 2D Graphs toolbar.
3. Double-click the graph to open the Plot Details dialog. On the Symbol tab, change the symbol to a solid circle, and the color to Olive. On the Line tab, change the line color to Olive and click OK to close the dialog and apply the changes.

4. Double-click the X axis to open the Axis dialog. For both Horizontal and Vertical icon in Scale tab, enter these settings for the X and Y axes:

Select multiple axes to customize together.
Apply To... \quad OK \quad Cancel Apply

5. On Line and Ticks tab, go to Top and Right page, and check on Show to show the axis on top (right), Set the ticks style follows the graph below:

6. Then, click the Apply To... button and go to the Apply to Others dialog, set the following:

7. Click OK to close the Apply to Others dialog and return to the Axis dialog.
8. Go to Display tab in Tick Labels tab, and set the ticks Labels for bottom follows the graph below. In addation, you need to rotate the tick labels by 90 degree in Format tab for both top and bottom (which can be done in Bottom page) axis.

9. On the Bottom page under Tick Labels of \mathbf{X} Axis, set the Rotate(deg.) to $\mathbf{9 0}$ similarly.
10. Select the Grids tab in Axis dialog axis. Check on Show in Major Grid Lines group for both Vertical and Horizontal:

11. Click OK to close the Axis dialog. Adjust the Layer Area in Format: Layer: Size/ Speed tab. Your final graph should look like this:

6.3.3.4 Sample Data

Temperature	Transducer Output	Custom Temperature	Custom Label
${ }^{\circ}$ K	volts		
2.5	1.5	4.2	He Boiling Point
2.5	1.5	4.2	He Boiling Point
7.3	1.42048	77.36	N Boiling Point
13	1.28681	233.15	$-40^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$
24	1.06011	273.15	$0^{\circ} \mathrm{C}$

41	0.90549	373.15	$\mathrm{H}_{2} \mathrm{O}$ Boiling Point
70	0.85831		
125	0.7679		
181	0.63948		
246	0.53202		
288	0.24898		
348	0.13759		
399	0.09435		
436			

6.3.4 Plot and Customize Date Time Data on Graph

6.3.4.1 Summary

This tutorial will show you how to manipulate the date and time data, and customize the date and time data on the graph.

Minimum Origin Version Required: Origin 2015 SR0

6.3.4.2 What you will learn

- How to plot the date and time data on the graph.
- How to customize the date and time tick labels.

6.3.4.3 Steps

1. Start with a new project and import the data file Sample\Import and Export\Custom Date and Time.dat under Origin's program folder.
2. Double-click on $A(X)$ to open the Column Properties dialog; set Format as Date, Display as Custom Display, and input dd'.'MM'.'yyyy hh':'mm':'ss'.'\#\# in the Custom Display box as shown below.

3. Click OK button to go back to the worksheet. Highlight col(B) and select Plot > Basic 2D: Line from the main menu to plot it as a line graph. You will see that the tick labels of X axis are all the same. This is because the tick labels are showing the date information only, but the X data are all in the same day. So we need to change the tick label format to display time.

4. Double-click on the X axis (or select Format: Axes: X Axis from the main menu) to open the Axis dialog. Select Horizonal icon in the Scale tab, set the following first:

5. Go to the Bottom icon in Tick Labels tab, change Type to Time and select Display to HH:mm as shown below.

6. Click the OK button. The tick labels will now show as the corresponding time as in the graph below:

6.4 Compare Graphs Dynamically by Changing Data Filters

6.4.1 Summary

The Copy Columns To.. feature allows you to copy columns from a worksheet to a new worksheet while keeping the two sheets linked. Using this feature you can set multiple Filter conditions on one columns by
creating a corresponding number of worksheets. For example to set two Filter conditions on the Column Gas Type we created two sheets Type1 and Type2 that were linked to worksheet Raw.
We also used various features to create a dynamic Graph that would update to reflect the changes in Filter conditions in real time. You can watch the video tutorial explaining these concepts here:
https://www.youtube.com/watch?v=NOPud-91qCM
Minimum Origin Version Required: Origin 2015 SR0

6.4.2 What you will learn

This tutorial will show you how to:

- Dynamically compare data with different filter conditions
- Add multiple filter conditions on the same columns using different worksheets
- Add a dynamic filter label in a graph that updates with changes in the filter condition

6.4.3 Steps

This tutorial is associated with the Tutorial Data.opj file under <Origin EXE Folder> |Samples path.

6.4.3.1 Set Up the Worksheets

Open the Tutorial Data.opj file and browse to the folder Compare Graphs with Filters Data and active workbook Book1. The workskeet Raw contains data for the emission of different green house gases in different countries over a period of years.

1. Highlight the last three columns : Year, Gas Type, Value
2. Right click on one of the columns and in the context menu that opens select Copy Columns To...

3. In the Copy Columns to: colcopy dialog that opens, change the Recalculate to Auto so later when input data is changed the result will be automatically updated. Also make sure the
DestinationColumn(s) is set to <new>! <new> meaning a new worksheet is added, and click OK
4.

5．Name the new worksheet Type1
6．Repeat the above procedure and name the second worksheet Type2
7.

囲 Book1			$\square \square$	
	A（X）亶	$\mathrm{B}(\mathrm{Y})$ 畀	C（Y）界	＊
Long Name	Year	Gas Type	Value	
Units				
Comments				
$F(x)$				
Filter				
1	2010		47141	
2	2009		47171	
3	2008		51780	
4	2007		49446	
5	2006		48206	
6	2005		50406	
7	2004		51680	
8	2003		48864	
9	2002		46530	
4 －Raw $/$	e1 λ Typ	$2 /$	1 1 III	，

6.4.3.2 Set Filters

1. On Sheet Raw highlight column Country and select the Filter button.
2.

3. This will create a funnel icon on the top left of the Country column. Click on this and in the menu that opens deselect the Select All check box and check the France check box. Click OK
4.

5. The worksheet now only shows information for the country France.
6. In Sheet Type1 set a Filter on the Gas Type column for the gas HFCs. Since sheet Raw and sheet Type1 are linked, this worksheet will now show only the HFC emission values for the country France.
7.

8. In Sheet Type2 set a Filter for Gas Type PFCs. This worksheet now only shows PFC emission values for Country France.

6.4.3.3 Creating the Graph and Adding a Linear Fit

1. Without anything highlighted in any of the worksheets go to Plot > Basic 2D : Stack....
2. In the dialog that opens, click on the arrow button next to the Input box and select Select Columns...
3.

4. In the Data Browser dialog, make sure that List Datasets $=$ in Current Book and select both the Value columns in Sheets Type1 and Type2. Click Add and OK out.
5.

6. In the Stack: plotstack dialog, set Plot Type to Scatter and click OK. This will create the following graph:
7.

8. In the newly created graph double click on any axes, in the Scale tab set the Rescale as Auto. Do this for every axes on both plots of this graph so when the worksheet filter is changed and the graph data changes, the axes will rescale automatically.
9.

Note: By holding the Ctrl key and selecting both Horizontal and Vertical icons, you can change
Rescale for X and Y axes in the same layer, simultaneously. Use the Layer drop-down at the bottom of the dialog box to apply changes to both graph layers (i.e. Layer 1 and Layer 2).
10. Set the Layer drop-down to Layer 1, then click the Tick Labels tab. With Bottom icon selected, change the Display to show just the year.

11. Click the Line and Ticks tab. With the Right icon selected, and set Major and Minor Ticks Style to None and Apply.

E. Y Axis - Layer 1

12. Set the Layer drop-down list to Layer 2 and repeat for the Top X axis and Right Y axis in Layer 2 and click OK.
13. Delete the two Y axis title objects at the left part of the graph, add a new text label Value and rotate it to 90 degrees (right click and select Properties to change rotation angle) and use it as the new Y axis title.
14. Next we're going to do a Linear Fit so the emission trends are more apparent.
15. Activate the graph and go to Analysis:Fitting: Linear Fit....
16. Set Recalculate to Auto.
17. Use the arrow button next to the Input box to select Add all plots in active page. Click OK to close the dialog and perform a linear fit on the two plots.
18.

19. Double-click on the linear fit curves and go to the Plot Details dialog, in the Line tab, set the color as Red for each curve. Delete the two legend objects and move away the report table. The resulting graph will look like this:
20.

6.4.3.4 Add Dynamically Changing Labels

1. Click on the Sheet Type1 and select the Filter label row cell in column B.
2. Click Edit: Copy: Copy

3. Select the Text Tool $\mid \mathbf{T}$, and click on the graph upper panel. When the blue text box appears hold down Ctrl $+\mathbf{A l t}+\mathbf{V}$. This will paste the Data Filter Label as a link into the text box.
4. Click off of the new text label, then right-click and select Properties.
5.

6. In the dialog that opens, click on the Programming tab, then check the Real Time check box so the label changes every time the data filter is changed.
7. Do this with the Filter Labels in Sheet Type2 and Sheet Raw. Add the words "Gas Type" before the "PFC" and "HFC" labels and "Country" before the Country Data Filter Label. Also Add a Layer Title:
8.

6.4.3.5 Add Floating Graph to the Worksheet

1. To add the graph to the worksheet, activate the worksheet Raw
2. Right click on the grey section of the worksheet and in the context menu that opens select Add Graph..
3.

4. In the Graph Browser dialog that opens, select the graph we just created, and then click OK
5. Enlarge the graph by selecting it and dragging the edges. If you change the Filter Types in the worksheet now, the graph will update accordingly.

6.5 Layers

6.5.1 Layers

- Merging and Arranging Graphs
- Multiple Layers with Linked Axis
- Multi Layer Graph Customization

6.5.2 Adding and Arranging Layers

6.5.2.1 Summary

A typical graph page generally includes three elements: a set of X, Y (and Z) coordinate axes, one or more data plots, and associated text and graphic labels. Origin combines these three elements into a movable, resizeable unit called a layer. While a page can contain as many as 121 layers, only one layer can be active at any one time.

6.5.2.2 What you will learn

- How to tell how many layers a graph has?
- How to tell what data is in what layer?
- How to swap layers

6.5.2.3 Steps

6.5.2.3.1 Importing data

2. In the Origin folder, browse to the Samples folder and then the Graphing folder. Select Wind.dat from the list of files.
3. Click Open. The data file imports into the worksheet.

6.5.2.3.2 Plotting the data

1. Highlight the Speed and Power columns.
2. Click the Line button, \square on the 2D Graphs toolbar. A line plot is created. It appears that this data would be better plotted on a double-Y graph, a graph with two controlling Y axes.
3. Click the X to Close this window. You will be asked if you want to hide or delete the window. Click the Hide button. (If you Delete, you will not be able to Undo, and you will need to re-create the graph. Hiding closes the window from view, but you can later make it visible using the Project Explorer window.)
4. The Speed and Power columns should still be highlighted. Click the Double-Y Axis button, on the 2D Graphs toolbar. This new graph contains 2 layers.

6.5.2.3.3How to tell what data is plotted in a layer?

One way is with the legend:

1. Double-click on Graph1 from the Project Explorer window. The graph opens and becomes the active child window.
2. Select Format:Page and go to the Legends/Titles tab.
3. Set the Auto Legend Translation Mode to Data Range.
4. Click OK.

A second way is with the status bar:

1. Double-click on Graph2 from the Project Explorer window. Graph2 is now in front and becomes the active child window.
2. Click the Layer 1 icon, $\mathbf{1}$ to make layer 1 active.
3. Look in the lower right of Origin's status bar and you'll see [WIND]WIND!Col(Speed)[1:12].
4. Repeat for Layer 2 and you'll see [WIND]WIND!Col(Power)[1:12].

A third way is from the menu:

1. Make Graph2 active.
2. Right-click on the Layer 1 icon. At the bottom of the context menu, you see the data plot list. The one checked is the active data plot.
3. Right-click on Layer 2 to view the list of data that is plotted in it.
4. Note that you can also select the Data menu to view the data plot list.
5. A fourth way is with the Plot Setup dialog.
6. With Graph2 still active, Right-click on the layer 1 icon to select Plot Setup.
7. In the opened Plot Setup dialog, expand the Plot List to see also the data in Layer 2. You can see the advantage here is that you can see data in all layers at once.

In order to show all three panels in Plot Setup dialog, please expand Plot
Type panel by clicking $\hat{\wedge}$ 신and expand Available Data panel by clicking人 ${ }^{\text {a }}$ again.

Please refer to Plotting using Plot Setup for more information.
4. Uncheck the Show check box for the Speed data plot.
5. Click OK. This data plot is only hidden which is why the legend still indicates its presence in the layer.

The last way is from the Plot Details dialog.

1. Double-click on any of the line+symbol plots in Graph2.
2. Expand the tree so you see contents of both Layer1 and Layer2.
3. Uncheck the Speed and Power data plots.
4. Click OK.

6.5.3 Merging and Arranging Graphs

6.5.3.1 Summary

The Merge Graph Windows dialog allows you to select which graphs you wish to combine, choosing from any graph in the project. It also has controls to specify how you want the individual graphs arranged on the new page.
The Object Edit toolbar allows you to quickly align and size multiple layers.
The Layer Management dialog lets you add, arrange and link layers on a single graph page.

6．5．3．2 What you will learn

This tutorial will show you how to：
－Resize and align layers quickly
－Add a second axis using a nonlinear relationship with the primary axis
－Use Layer Management for more complex layer positioning and linking
－Merge multiple graphs into one graph

6．5．3．3 Aligning Layers using the Object Edit Toolbar

1．Select File：Open and open the OPJ \Samples\Graphing\Layer Management．opj and go to the subfolder Arranging Layers．（If you don＇t see the subfolders，click View：Project Explorer to open the Origin Project Explorer window．）
2．We want to use the Object Edit tools to rearrange the graph so make sure that this toolbar is visible．If it is not，you can open it from the View：Toolbars dialog box．

- －an Object Edit－\times

吅 品

3．On the graph，hold the Shift key down and click on all four layers to select them as a group．Press the
 height and width．Then click on the white space in the layer to deselect all graph layers．
4．Hold Shift key to click and select the bottom two layers and then click the Bottom button on the Object Edit toolbar to align them．Click on the white space in the layer to deselect all graph layers．

5．Hold Shift key to click and select the top two layers，then click the Top button to align them．Click on the white space in the layer to deselect all graph layers．
6．Click and select the top and bottom in the left column，and click the Left align $\xlongequal{\text { 饴．Click on the white }}$ space in the layer to deselect all graph layers．
7．Click and select the two in the right column and click the Right align 믕 $\left.\right|_{\text {button．}}$
8．Do not save changes to your project，as the same project will be used later to demonstrate the usage of Layer Management．

The Object Edit toolbar provides a quick way to align and resize layers．The first layer you select is the reference layer and all others are adjusted relative to the first－selected layer．The Layer Management tool provides additional options such as layer reordering and linking．

Another way to select layers in a multiple layer graph is to press CTRL or SHIFT while clicking on the graph layer icons.

6.5.3.4 Displaying Opposite Axes with a Nonlinear Formula

An Origin 2D graph layer is a set of X, Y axes, and opposite axes can be turned on for both X and Y. In addition, the opposite axes can also display labels using any user-specified nonlinear formula with respect to the primary axis.

1. Using the Project Explorer window, switch to the subfolder named Nonlinear Axis.
2. With the graph active, bring up the Layer Management tool by selecting Graph: Layer Management.
3. Switch to the Axes tab and expand the Top branch and check the Axis, Title, and Tick Label check boxes.
4. We want to display the labels on the top axis in units of Energy and the relationship between wavelength and energy is:
Energy (eV) = 1240/Wavelength (nm)
So in the Formula box, enter: 1240/x and click Apply, then click OK to close the dialog.

Use the Apply buttons on each tab to update your preview graph. Use the OK button to source graph.
Undo $O K$ Cancel

- If you are setting up a nonlinear relationship for the right Y -axis, in the Formula you still need to use \mathbf{x} instead of \mathbf{y}.
- You can also do similar settings in the Axis dialog to add such opposite axis:

5. Double-click and edit the top X -axis title and change it to: Energy (eV)

6. In the above image, the first tick label of the top axis is a missing value for energy that corresponds to zero wavelength. To hide it, double-click the top axis labels or axis, to open the Axis dialog. Go to the Special Ticks tab in Top icon. Then select Hide in the Axis Begin drop-down list. Click OK to apply the
settings and close the dialog.

Select multiple axes to customize together.

6.5.3.5 Using Layer Management to Link and Position Layers

The Layer Management tool can be used to position, resize, swap, and link layers:

1. Reopen the project \Samples\Graphing\Layer Management.opj and then switch to the subfolder named Arranging Layers. You can reopen the project by selecting File: Recent Projects: Layer Management.opj. Do not save changes to the project.
2. Bring up the Layer Management tool from Graph: Layer Management. In the left panel, rename the layers so that they are, top to bottom: Peak 3, Peak 2, Peak 4, Peak 1. The layer names now correspond to the legend for each layer.

Note: To rename a layer, double-click on the name.

- Layer Management			
Layer Selection		Add	Arrange
	Name	\square Arrange	
1	Peak 3		
2	Peak 2		Arrange Se
3	Peak 4		Link Layers
4	Peak 1		Hide Overl

3. Now drag and arrange the list on the left so that they are ordered Peak 1, Peak 2, Peak 3, Peak 4. The layer number and names now match.

Layer Management		
Layer Selection	Add	Arrange
Name	\square Arrange	
1 Peak 1		
2 Peak 3	Arrange Se	
3 Peak 4	Link Layers	
MPeak 2	Hide Overla	
		Column
and drag		Row

4. Now switch to the Arrange tab and do the following:
5. Check Show Axes Frame.
6. Set Horizontal Gap and Vertical Gap to 0.

7. Click Apply.

This resizes and repositions the layers so they are aligned, and hides ticks and labels where layers overlap.
5. Go to the Axes tab, hold down the CTRL key and select Peak 1 and 3 on left list, then expand the Left branch and set tick direction to In, and click Apply.

6. Now select Peaks 3 and 4, set the Bottom tick direction to In and click Apply. Then select Peaks 1 and 2, set the Top ticks to In and click Apply.
7. go to the Link tab and select Peaks 2, 3, and 4 in the left list and link them to layer 1, making sure you have the X-Axes linked Straight(1 to 1), and click Apply.

Click OK to close the dialog box.
8. Click and select the top left layer, layer 1, then drag and resize the layer, then move the layer. Note that the child layers resize and move too, since they are dimensionally linked to layer 1.

9. Go to the top left layer (layer 1), and double-click the top X-axis. In the X-Axis dialog, change the X-Axis scale From 10 To 35, and click OK. You'll see that all the other layers now display the same X -axis scale range.

If the layers are linked, they are treated as one unit. If you need to rearrange layers, you should first unlink them. You can re-link layers after arranging.

6.5.3.6 Merge Multiple Graphs

In this section, we merge two graphs from different subfolders of the same project while treating the four layers in one graph as a unit.

1. Click on the Rescale button when the Graph 1 in the Arranging Layers subfolder is active.
2. Select Graph: Merge Graph Windows in the main menu to open the dialog.
3. Do the following:

- Click the triangle button to the right of Graphs and from the flyout menu choose All in Project.

Graph1 and Graph2 will show in the Preview panel (not shown).

- Make sure Number of Rows = 2 and Number of Columns = $\mathbf{1}$.
- Make sure Treat Each Source Graph As a Unit is selected.
- Set the Vertical Gap to 20.

4. Click OK to close the dialog box. A new merged graph page is created:

6.5.4 Multiple Layers with Linked Axis

6.5.4.1 Summary

This tutorial will show how to merge four graphs to one graph, which contains multiple layers with linked axis.

Minimum Origin Version Required: Origin 2015 SR0
6.5.4.2 What you will learn

- How to make a Line + Symbol plot
- How to merge graphs
- How to link axis of layers
- How to customize axis

6.5.4.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Multiple Layers with Step Plot in Project Explorer.
2. Activate the workbook and highlight column Value1 and make a graph by selecting Origin menu Plot >

Basic 2D : Line + Symbol.
3. Activate the graph, right-click the legend and choose Properties from the context menu. In the Object Properties dialog,

- In the Text tab, put this text in the text field: $\backslash b($ Vertical $)$ and set Size to 36 .
- Go to the Frame tab, and set as following image. Click the OK button. Move the legend to the correct position.

4. Double click on the open white space in layer of the graph to open the Plot Details dialog. In the left panel, select Layer1. Activate the Background tab in the right panel, choose $L T$ Gray for the Color. Then select the plot in Layer1 from the left panel, under the Symbol tab in the right panel, set Size to 15 and Symbol Color to red. Switch to the Line tab, choose Step Vert from the Connect dropdown list and set Width to 4 and click OK to apply settings.

5. Now we are going to duplicate similar graphs from the other three columns. Right click on the graph window title bar and select Duplicate (Batch Plotting) from the context menu:

6. In the dialog that opens, select Column from the Batch Plot with drop-down list, hold Ctrl key and click to select all three columns C, D, E and click OK:
```
Select Column - [Book1D]Sheet1
```


7. For graph from each column, the legend text and Connect drop-down list will be different, listed below.

For column Value2:
legend text $=\backslash \mathrm{b}$ (Vertical Center)

Connect $=$ Step V Center

For column Value3:
legend text $=\backslash b($ Horizontal $)$

Connect $=$ Step Horz

For column Value4:
legend text $=\backslash b$ (Horizontal Center)

Connect = Step H Center
8. Activate a graph and then select Origin menu Graph: Merge Graph Windows to open the merge_graph dialog. Change the settings as the following image shows. Then click the OK button to merge these graphs.

9. Activate the new merged graph, choose Origin menu Graph: Layer Management to open the Layer Management dialog. In the Layer Selection panel, rename the layers by double clicking on the name and reorder the layers by clicking on the layer index and dragging up and down. Make sure the final layers' names and order are the same as the image shows below (In the Preview panel, the layers' indices and positions can be shown).

10. In the Layer Selection panel, press Ctrl key on the keyboard to select the following layers: Vertical Center, Horizontal and Horizontal Center. Go to the Link tab, select 1 from the Link To drop-down list. Then both X Axis Link and Y Axis Link are set to Straight(1 to 1). Then click the Apply button.

11. Go to the Axes tab, select Vertical layer from the left panel, then check all Axis check-boxes under Bottom branch, Left branch, Top branch and Right branch. Also, select In for Tick drop-down list under Top branch. Click the Apply button.

12. Select Vertical Center layer, in the Axes tab, Bottom branch, Left branch and Right branch share the same settings. And settings for Top branch shows in the image below. Click the Apply button.

Use the Apply buttons on each tab to update your preview graph. Use the OK button to apply the changes in preview graph to source graph.
Undo OK Cancel
13. Select Horizontal layer, in the Axes tab, check the Axis check-boxes under both Top branch and Right branch. Click the Apply button.

14. Select Horizontal Center layer, in the Axes tab, check the Axis check-box under Top branch. Click the Apply button.

15. Click the OK button to close the Layer Management dialog.
16. Double click on the X axis of the lower-left layer to open the \mathbf{X} Axis dialog. In the Scale tab, change the axis scale as the image below:

Select multiple axes to customize together.
Layer $3 \quad \vee$
17. Click the Vertical icon on the left panel to go to Scale tab for \mathbf{Y} Axis and change the axis scale:

18. Go to Tick Labels tab and click Bottom icon on the left panel and change the display of X tick labels:

19. Go to Special Ticks tab and hide the label at axis end by selecting Hide from Show drop-down list for Axis End:

20. Click on the Left icon on left panel, and hide the label at Y axis end by selecting Hide from Show dropdown list for Axis End.
21. Repeat step 16 to step 18 for the X axis of the lower-right layer.
22. Double click on the axis of lower right X axis, go to Tick Labels tab and Format, change the Size to be 30 and check Bold box.
23. Click on the Apply To... button on the bottom, in the bring up Apply To dialog.
24. Check Size and Bold boxes under Tick Labels node and select This Window from the drop-down list for both and click $\mathbf{O K}$ to apply the settings so that all axes' tick label size is set to be 30 now.

25. Change the both Y titles to Price and make them bold.

6.5.5 Multi Layer Graph Customization

6.5.5.1 Summary

The graph layer is the basic building block of all Origin graphs. A graph layer consists of a set of coordinate axes and (usually) one or more data plots, plus attached axis titles, plot legends, text labels, drawn objects, button objects, etc. The graph layer can be moved to any location or resized to any dimensions within the graph window. An Origin graph window contains between 1 and 1,024 graph layers.

When working with graphs that contain multiple layers, it helps to have some tools and a strategy for applying customizations to multiple layers a time, as opposed to simply modifying each plot or each axis scale individually. Beginning with Origin 2018b, you can edit multiple graph layers simultaneously using the Plot Details Layers tab Common Display controls.

Minimum Origin Version Required: Origin 2018b

6.5.5.2 What you will learn

- How to control the scaling of elements (axis titles, tick labels and graph legends) when graphs are merged.
- How to merge graph windows containing a single layer into a multi-panel graph.
- How to configure the merged graph so that plot or axis customizations made in one layer are applied to all layers.
- How to fix scaling issues with fonts in merged graphs.
- How to remove white space from the merged, multi-panel graph.
- How to remove unneeded legend objects and customize one object so that it serves as a legend for the multi-panel graph.

6.5.5.3 Steps

1. Start a new project. Press F11 to open Origin Central, click the Graph Samples tab, set the graph drop-down list to Multi-Panel Graphs and double-click on the Multiple Panel Graph from Index Data.

2. In the worksheet that opens, click on the Output Data tab and resize the window so that you can see all 12 columns of data. Note that the column headings have (1) a green lock on them, indicating that these are calculated values and (2) the column designations repeat in the pattern $X 1, Y 1, Y 1, X 2, Y 2, Y 2$, etc.
3. Select columns $B(Y 1)$ and $C(Y 1)$ and click the Line + Symbol button ${ }^{\boldsymbol{v}}$ on the 2D Graphs toolbar. Repeat the process for columns $E(Y 2)+F(Y 2), H(Y 3)+I(Y 3), K(Y 4)+L(Y 4)$. You should now have 4 similar graph windows, each containing a single graph layer with two plots (Note that you don't need to select the X column when making these graphs because Origin's default behavior is to plot Y values against any X column immediately to the left of selected Y columns).

6.5.5.3.1 Scale Elements

We are going to merge the above graph windows into a single 4-panel graph window but before we do that, we will briefly discuss element (axis titles, graph legends, etc.) scaling so that we understand how to control this in a merged graph.

1. Click on one of the four graph windows -- it doesn't matter which one -- and click Format: Layer.
2. In the Plot Details dialog box, click the Display tab and note the Scale Elements settings. By default, Scale With Layer Frame is selected. This tells us that when the size of the layer is changed, the size of attached elements such as the axis titles, graph legend, etc., will be scaled accordingly.
3. Click OK to close Plot Details, then right-click on the graph window title bar and choose Duplicate. You now have two identical windows.
4. Click on the duplicated window and click Format: Layer, again. Click on the Display tab again, but this time, set Scale Elements to Fixed Factor: 1, then click OK to close Plot Details. We now have two identical graphs, one with Scale Elements = Scale With Layer Frame and one with Scale Elements = Fixed Factor: 1.
5. Reposition and resize your identical graphs so that we can do a side-by-side comparison.

As mentioned, we ultimately plan to merge 4 separate graphs into a single, 4-panel graph and in doing so, we must shrink the size of our graphs to fit four to a page. What will be the effect of shrinking on text elements, for instance? We have set up a comparison to identical graphs, one with elements set to scale with the layer and one with elements set to a fixed size.
6. In the graph window that is set to Scale With Layer Frame, click once in an empty portion of the graph page and when the green selection handles appear, hold the CTRL key and drag a corner handle so that the graph covers approximately 25% of the page.
7. Repeat the last step with the graph window that is set to Fixed Factor: 1.
8. Now, compare the resulting smaller graphs and note, in particular, the difference in the way that the various elements -- the plot symbols, the text and legend objects -- behaved when the graph was made smaller.

We can see that setting the elements to Fixed Factor: 1 is probably going to cause problems when four graphs are merged onto a single page, so when we merge, we will leave the default setting for each of the merged graphs to Scale With Layer Frame.
9. So that you don't get it mixed up with the other graphs, delete the "Fixed Factor" graph.

6.5.5.3.2 Merging Graph Windows

1. With all four (and only the four) of your original graph windows showing in the workspace, choose Graph: Merge Graph Windows and open the Merge Graph Windows dialog box.
2. Make sure that all four graphs are listed in the Graphs box, then expand the Scale Elements branch and make sure that Scale Mode is set to Auto. Note the Preview pane to the right side of the dialog box, showing an approximation of your final, merged graph. Tip: If you want to keep your original graphs, make sure the Keep Source Graphs box is checked, or the graphs will be destroyed.
3. Click OK and a four-panel graph is created. Note the four layer icons in the upper-left corner of the merged graph -- one icon for each graph layer.

6.5.5.3.3 Common Display Controls for Simultaneous Edits to Multiple Layers

Suppose that we want to customize some elements or properties of the layers, plots and axes in a multi-panel graph? We could make edits to each layer, one-by-one, but this would be tedious. Beginning with Origin 2018b, you can use the Plot Details Layers tab Common Display controls to apply edits made to one layer, to other layers.

1. With your 4-panel (merged graph) active, click Format: Page. This opens the Plot Details dialog box.
2. Click on the Layers tab.
3. Under Common Display, check the Plot Properties box. As the "blue hint" tells us, we should check the appropriate boxes here first, then make customizations at the Layer/Plot level. We can use the Apply to controls to selectively apply Common Display changes (see documentation of Apply to controls).
4. In the left panel of Plot Details, click the arrow to the left of the Layer1 icon to expand to show the two data plots in the layer.

5. Click on the first plot in the layer, then on the Symbol tab to the right side of Plot Details, click on the symbol gallery (downward-pointing arrow) and change plot symbol shape to Circle, then change Size to 15. Leave Symbol Color as Auto as that will allow symbol color to follow line color. Click OK to close Plot Details and note that the symbol size is increased in all plots in our 4-panel plot.
6. We can continue to customize our 4-panel plot using Format and Style toolbar buttons. Click on one of the gray plots and note that both plots in the layer are now highlighted. Pause slightly and click a second time on the gray plot and this time, you will see that only that plot is selected.
7. Click the Line/Border Color button on the Style toolbar and choose Navy. Note that gray plots in each of the four panels are now navy blue in color. The graph should look something like this:

6.5.5.3.4 Fix Scale Factors

At this point, we have a satisfactory graph and we may consider our work finished. However, one thing that we should be aware of is that when the four graphs were merged, the scaling down of font size produced one small issue.

1. Select one of the graph legend objects, then hover over it with your mouse and you will see a tooltip that appears something like this:

Text(Attach to Layer): size(actual) $=22(10.1)$

The tooltip reports that the (font) size $=22$ but that the actual size is 10.1 . This occurs because, as we expected, the font was scaled down when we merged graphs. The problem now is that we have a font size that looks like it is 10.1 but Origin still thinks of it as a size $=22$ (Look to the Font Size list on the Format toolbar and it will report the original size of 22). We can correct this conflict with a simple menu command.
2. With the graph window active, choose Graph: Fix Scale Factors and accept the default value of 1 by clicking OK. Now, select one of the four legend objects, hover and you'll see that the tooltip now reports that both size and actual $=10.1$ (the decimal is not meaningful as Origin rounds to the nearest 0.5). Note also, that the Format toolbar now reports Font Size $=10$.

While we could have skipped this detail, it is not uncommon for users to want to be confused by conflicting information about scaled font sizes and this menu item is the best way to reset font size so that you know just what you are working with.

6.5.5.3.5 Fit Layers to Page

At this point, our graph looks satisfactory but we could do a couple of things to improve it. One would be to remove extra white space from the graph. We have a couple of options there but one quick way to do this is to choose the Fit Layers to Page menu item.

1. With the graph window active, choose Graph: Fit Layers to Page. This opens the Fit Layers to

Page:gfitp dialog.
2. Set a Margin of 5 and clear the Maintain Layer Aspect Ratios box, then click OK. Our graph layers are slightly re-proportioned and the white space around the outside is reduced.

If you are exporting or copying your graph to an external application, the Export

Margin Offsets dialog box can also be used to remove white space from the outside of the graph.

6.5.5.3.6 Graph Legend Adjustments for Panel Graphs

We don't need the four graph legend objects since each panel plots the same two variables. So, we will eliminate three objects and slightly reconfigure the fourth to act as a legend object for the four panels.

1. Press CTRL + select three of the legend objects and when the green selection handles appear surrounding the three, press Delete.
2. Drag the remaining legend object to the top-center of the graph page.
3. With the legend object still selected (green handles showing), press CTRL again and drag one of the green handles on the side of the legend object and drag it out horizontally until it looks like this:

4. Center the graph legend on top of the page. Your graph should now look something like this:

6.6 Graph Template and Theme

6.6.1 Graph Template and Theme

- Copy and Apply a Plot Format to Another Plot

6.6.2 Copy and Apply a Plot Format to Another Plot

6.6.2.1 Summary

It is possible to copy and paste formatting from one plot to another, so there is no need to spend time recreating identical customizations such as size and color of symbols and lines.

Minimum Origin Version Required: Origin 8.0 SR6

6.6.2.2 What you will learn

This tutorial will show you how to:

- Copy a plot format (color, size, etc. of the symbol or the line), and apply it to other plot.

6.6.2.3 Steps

1. Click the New Project button on the Standard toolbar to begin with a new project.
2. Select Data: Import from File: Single ASCII menu, and import exponential decay.dat in the \Samples \Curve Fitting subfolder in your Origin program directory.
3. Highlight column B, C and D, and select Plot: 2D: Line+Symbol: Line+Symbol" menu to plot these three datasets.
4. Double-click on the plot to show the Plot Details dialog box.
5. Choose Group tab in the dialog, and select Independent for the Edit Mode -- this makes it easier to customize individual plots.
6. Make sure that the top data plot (Time (X) Decay $1(\mathrm{Y})$) is selected in the left panel of the Plot Details dialog. If not, select this plot branch in the left panel.
7. Select the Symbol tab, and change the Size to "5". (You can also change the shape or the color to others of your choice.)
8. Select the Line tab, and change the width to " 0.2 ". (You can also change the style or the color to others of your choice.) Click OK. You will see that the Decay 1 plot has been customized.
9. Click on Decay 1 plots to select. Right-click on it and select Copy format. This will copy the plot format of Decay 1 to the clipboard.
10. On the graph, click on the Decay 2 data plot to select it, right-click and select Paste Format to: All. You will see the plot format of Decay 1 copied to Decay 2.

Note: Right-clicking on third plot "Decay 3" to select Paste Format(Advanced) to open the Apply Formats dialog, you can do further and more detailed settings.

6.7 Line and Symbol

6.7.1 Line and Symbol

- Complicated Fill Area
- Fill Partial Area between Function Curves
- Line Graph with Recession Bars
- Scatter Plot of Decay and Recovery Curves
- Micro-Raman spectroscopy of complex nanostructured mineral systems
- Multi-line-plot with Special Position Annotation Line
- Scatter Central Plot
- Line Graph with Masked Data
- Symbol Plot with Color Transparency
- Symbol Plot with Size and Colormap from Other Columns

6.7.2 Complicated Fill Area

6.7.2.1 Summary

Minimum Origin Version Required: 9.1 SR0

6.7.2.2 What You Will Learn

- Fill area between curves with two different colors.
- Use an ordered plot sequence to implement complex graph fills.

In this tutorial you will choose a Plot Details setting Fill to next data plot. When we say "next" this refers to the next plot in the plot list in the left panel of Plot Details". This has nothing to do with intersecting plots on the graph page.

6.7.2.3 Creating the Basic Plot

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj. Note that this tutorial requires numerous steps to produce a complex graph. Users should understand that this is not a basic Origin graphing tutorial.

1. Open the Tutorial Data.opj and browse to folder Multiple Fill Area.
2. Activate workbook Book2, Sheet1. Highlight columns C through F, then click Plot > Basic 2D: Line. A grouped line plot is created.
3. Select and delete the X axis title and legend object from the graph.
4. Double-click on any plot to open the Plot Details dialog. Go to Line tab and set Transparency to 100\%.
Fill Area Under Curve
Normal
5. Go to Group tab and set Edit Mode to Independent, then click Apply. This will allow us to specify custom fill area modes for each line.

6. Highlight the first plot in the left side of Plot Details. On the Line tab, enable Fill Area Under Curve and select Fill to next data plot - Above Below Colors.

7. Go to Pattern_Above tab and choose settings as shown below.

8. Go to Pattern_Below tab and set Fill Color to Red, the click Apply. The first filled area part of our plot is added.

9. Highlight the second plot in the left side of Plot Details. Go to the Line tab, enable Fill Area Under Curve and select Fill to next data plot - One Color.

10. On the Pattern tab, choose settings as shown below.

11. Repeat step $6 \sim 8$ for the third plot in graph but on the Pattern_Above tab, set Fill Color to None and Transparency to 0 (you must clear Follow Line Transparency). On the Pattern_Below tab, set Fill Color to Blue.
12. Your stacked fill area plot should now look like this:

6.7.2.4 Steps to Eliminate Overlapping Fill Areas

In the graph we just created, there are some overlapping fill areas that we do not want. We will hide them by adding a white fill area to cover them. We will be using the Layer Contents dialog box to add datasets to the graph, some of them multiple times.

1. From the menu, select Graph: Layer Contents. Use the right-pointing arrow button in the middle of the dialog to add these plots to the datasets to the right side of the dialog.

2. Use the Ungroup button to ungroup any plots that come over as groups. Grouping is denoted by the gn beside each dataset. You want to make sure that no groups exist (you can ignore the first four datasets that were added).
3. Arrange added plots in exactly the order shown. Use the up- or down-arrow buttons above the right side list, to rearrange the list as needed. Note that only ungrouped plots can be independently ordered. When your list looks like the figure above, click OK to close the Layer Contents dialog box.
4. Double-click on a data plot to open the Plot Details dialog box.
5. In the left side of Plot Details, highlight the fifth plot down $(C(Y))$. On the Line tab, check Fill Area Under Curve, and from the drop-down choose Fill to next data plot - Above Below Colors, Color $=$ Red and Transparency $=0$. On the Pattern_Above tab, Transparency $=0$ and Fill Color $=$ White. On the Pattern_Below tab Fill Color $=$ Red.
6. Highlight the sixth plot down $(\mathrm{D}(\mathrm{Y}))$ and set Color $=$ Red and Transparency $=0$.
7. Highlight the seventh plot down $(E(Y)$). On the Line tab, check Fill Area Under Curve, and from the drop-down choose Fill to next data plot - Above Below Colors, Color $=$ Blue and Transparency $=0$. On the Pattern_Above tab set Fill Color to White and Transparency to 0 . On the Pattern_Below tab, Fill Color = Blue.
8. On the eighth plot down $(\mathrm{F}(\mathrm{Y})$), click the Line tab and set Color to Black and Transparency to 0 .
9. On the ninth plot down $(\mathrm{H}(\mathrm{Y})$), click the Line tab and set Color to Orange and Transparency to 0 .
10. On the tenth plot down ($\mathrm{I}(\mathrm{Y})$), click the Line tab and set Color to Blue and Transparency to 0 .
11. For the eleventh and twelfth plots $(B(Y), G(Y)$ respectively $)$, click the Line tab and set the line Color to Gray and the Transparency to 0 .
12. For the thirteenth plot down $(E(Y))$, click the Line tab and from the drop-down set Fill to next data plot

- Above Below Colors, Transparency $=0$. On the Pattern_Above tab, set Fill Color $=$ None, Transparency $=0$; on the Pattern_Below tab, Fill Color $=$ White.

13. For the fourteenth plot down $(C(Y))$, click the Line tab and verify that Color = Black and Transparency $=0$.
14. For the fifteenth (last) plot down, click the Line tab and set Color $=$ Red and Transparency $=0$.
15. Close Plot Details and click the Rescale button ${ }^{\natural}$ on the Graph toolbar. Your graph should look roughly like the following. To polish your graph, continue with the last section.

6.7.2.5 Further Customizations

1. Double-click on the X axis (bottom, horizontal) tick labels. This opens the X Axis dialog box. Click the Scale tab and set the date range From $1 / 1 / 2013$ To $8 / 20 / 2013$. Set Minor Ticks Count $=0$.
2. On the Tick Labels tab set Display to show a three-letter abbreviation for month (e.g. Apr).
3. Click Apply.
4. To draw a box around the whole graph layer, choose View: Show: Frame.
5. Lastly, to add the dashed lines at temperature $=-10$ and +110 , double-click on the Y axis (left, vertical). Click on the Reference Lines tab and enter the following:

6. Click the Details button and in the Reference Lines dialog box, clear Auto Format, set Style to Dash and Thickness to 1 . Do this for both the -10 and +110 lines and click OK.
7. In the Axis dialog box, click OK to close the dialog. Your graph should now look like this:

6.7.3 Fill Partial Area between Function Curves

6.7.3.1 Summary

This tutorial shows how to plot two functions and customize the graph by partially filling an area between the two function curves.

Minimum Origin Version Required: 2017 SRO

6.7.3.2 What you will learn

- Generate function data using Set Values tool.
- Fill areas between two lines with different colors.
- Add and edit objects on your graph.

6.7.3.3 Steps

This tutorial with the Fill Partial Area between Function Plots folder in the project <Origin EXE Folder>\Samples \Tutorial Data.opj.

6.7.3.3.1 Filling Area Between Parts of Two Curves

To apply different fill colors to two or more portions of the curve, you need to plot curves in segments. In this tutorial, you will learn how to fill an area between curves defined by $\mathbf{X}<=\mathbf{1}$.

1. Open the Tutorial Data.opj and browse to the Fill Partial Area between Function Plots folder. Book2L contains two function curves (Note: To see how to generate a dataset from a function, see the last section of this Tutorial).
2. Select rows $1 \sim 36(-2.5<=X<=1)$ of all three columns in Sheet1 of Book2L and on the menu, click Plot> Basic 2D: Line to plot two lines. The two datasets (lines) are automatically grouped.
3. Now, go back to the worksheet, select rows $36 \sim 51(1<=X<=2.5)$ of all three columns and hover over the edge of the highlighted area until the cursor looks like this
 . Drag and drop the selected range, onto the graph you just created. If prompted to rescale the axes and show all data, choose Yes.
4. Select and delete the legend and the axis title.

5. Double-click on one of the line plots, to open the Plot Details dialog box. Select the 1 st plot under the Layer1 node on left panel.
6. Go to Line tab and check Fill Area Under Curve. Select Fill to Next Data Plot - Above Below Colors. Notice that this action adds a Pattern_Above and a Pattern_Below tab to the dialog box.

7. Go to Group tab, click the line color list in the Details column to select the increment list Candy as below:

8. Go to the Pattern_Above tab and set the fill color of the black line to LT Magenta with a 50% transparency.

9. Go to the Pattern_Below tab and set the fill color below the black line to be LT Cyan. Note that there is not a separate transparency control for Pattern_Below (uses the same transparency settings as Pattern_Above).

Group	Line	Panel	Drop Lines	Label	Offset	Pattem_Above	Pattem_Below
Border		Preview					
Color	Illl Q11 Candy						
Style	- Solid						
Width	0.5						

10. Select the third plot in the left panel, go to Group tab, click the line color list in the Details column to select the increment list Candy as below:

4 Graphl
4. ${ }^{\text {d }}$ Layer1
- [Book2L]Sheet1! $\mathrm{A}(\mathrm{X}), \mathrm{B}(\mathrm{Y})[1: 36]$
I [Book2L]Sheet1! $\mathrm{A}(X), \mathrm{CM})[1: 36]$
1) [Book2L]Sheet1: $\mathrm{A}(\mathrm{X}), \mathrm{B}(\mathrm{Y})$ [36:51]
\checkmark [Book2L]Sheet1! A(X), C(M) [36:51]

Group	Line	Panel	Drop Lines	Label	Offset

Right-click for more options, drag and move rows to rearrange if nested

11. Click OK to close the dialog box. The area in between the curves where $X<=1$ is now filled.

6.7.3.3.2 Changing the Axis Range

1. We want to change the \mathbf{X} axis display range from -2.5 to $\mathbf{2 . 5}$ and the \mathbf{Y} axis display range from $\mathbf{1 0 . 5}$ to 4. To do this, double-click on the X axis to open the Axis Dialog box. Set the X axis(Horizontal icon) in Scale tab as follows.

2. Go to Vertical icon in Scale tab and set the Y axis scale as follows.

3. To configure the X and Y axes so that they intersect at $\mathbf{0 , 0}$, Select both Bottom and Left icon in the left panel of the Axis Dialog. Set Axis Position to At Position = $\mathbf{0}$.

4. Click OK to close the dialog. Delete the Axis titles, and then select the two line groups separately to set Width to $\mathbf{2}$ both using the style toolbar. Then, the graph will looks like:

6.7.3.3.3 Adding Special Points with Labels to Annotate the Intersections

In the graph above, there are three intersections of two function curves. We want to mark two of them, at $\mathrm{X}=-$ 2 and $\mathrm{X}=2$ respectively.

1. Click the blue line $(\mathrm{X}<=1)$ twice to select this curve only as below:

2. Then, click once again on the intersection at $X=-2$ to select this individual point and then right-clicking on it to select Edit Point to open the Plot Details dialog. You can learn more about how to show and customize a individual point on graph.

3. In the dialog that opens, you will see a special point showing its row index has been added and selected under the second plot.

- Go to the Symbol tab, customize its style as below:

- Go to the Drop Line tab, enable the vertical drop line and set its style as shown below:

- Go to the Label tab, check the Enable check box to set Label Form to (X, Y) and Font Size to 22

4. Click OK to turn off this dialog. Do the similar steps as step $1 \sim$ step 2 to add another intersection at $X=2$ (row index $=46$).

And then, set the same styles for it. At the end, you will get the graph such as the one shown below:

6.7.3.3.4 Adding Function Formulas and Axis Arrows

1. To hide the axis tick labels at (0,0), open the Axis dialog again and go to Special Ticks tab, then for the Bottom icon set as below and do the same for the Left icon.

2. To add arrows to the ends of the axes. Go to the Line and Ticks tab of Axis dialog. Select both Bottom and Left icon in the left panel of the Axis dialog. Expand Arrow node, check the Arrow at End checkbox, and then set Width to 5.

3. Double-click on X axis to open the Axis dialog. Go to Reference Lines tab, enter 1 in the Reference Lines at Value text box, then click any place in the list table to add a reference line at $\mathrm{X}=1$. Do the
settings as below:

Click the Details button to set the line style.

Click OK to close this dialog, and then click OK button to apply the settings and close the Axis dialog too.

You can also use the Add Straight Line tool(opened by selecting Insert: Straight Line menu) to add such a vertical straight line at $\mathbf{X = 1}$.
4. To add the two curves' formulas to the graph, right-click on a blank area and choose Add Text.... Type any character into the object to create a text object firstly. And then right-click on it to select Properties from the context menu to open the Object Properties dialog. Enter the first formula in the Text tab.

5. Click OK button to close the dialog. Add one more text object and open Text Properties dialog again to enter the second formula above in Text tab. Click OK button again, then these two formulas have been added to the graph window both. Reposition them as needed.
6. Select the Curved Arrow Tool and add two curved arrows to connect formula labels to line plots.

7. Your final graph should look something like this:

6．7．3．3．5 Generating Function Data using Set Values tool

1．Open a new workbook．Choose Add New Columns to the worksheet so there are 3 columns．
2．Right－click $\operatorname{Col}(A)$ and select Fill Column with：A set of Numbers．．．
3．In the patternN dialog box，set up the following parameters：

From	-2.5
To	2.5
Increment	0.1
Mode	Repeat
Repeat Times for Each Value	1
Repeat Times for The Sequence	1
Total Number of Whole Set	51
display	

4．Double－click on the $\mathbf{F}(\mathbf{x})$ label row of $\operatorname{Col}(B)$ to turn to the in－place edit mode，then enter $-1^{*} A^{\wedge} 2+3^{*} A$ as below．

\＃Book2L		
腮每	A（X）	B （Y）鱼
Long Name		
Units		
Comments		
$F(x)=$		$-1^{*} \mathrm{~A}^{\wedge} 2+3^{*} \mathrm{~A}$
1	－2．5	－13．75
2	－2．4	－12．96

Note：Since Origin 2017，a new control Spreadsheet Cell Notation has been added and turned on by default（you will see the icon 胃胃 at the top－left corner of the worksheet），Origin supports to use column Short Name as notation in column formula，such as $A+1$ instead of $\operatorname{col}(A)+1$ ．

For earlier version，you are supposed to enter $-1^{*} \operatorname{col}(A)^{\wedge} 2+3 * \operatorname{col}(A)$ instead．
5. Highlight col(C) and right-click on it to select Set Column Values from context menu to open Set Values dialog. In this dialog, enter formula and the range definition as below:

6.7.4 Line Graph with Recession Bars

6.7.4.1 Summary

This tutorial will show how to create a line graph with recession bars. This type of graph is common when plotting economics data with periods of recession marked as vertical bars.

Minimum Origin Version Required: Origin 2017 SR0
6.7.4.2 What you will learn

- Plot a line graph
- Add reference lines and fill paired reference lines to show recession bars
- Set date display format in the Axis dialog

6.7.4.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj. Open the Recession Bars folder from Project Explorer and the workbook Book1G is activated.

6.7.4.3.1 Add Reference Lines and do Alternate Fill to add Recession Bars

1. Highlight $\operatorname{col}(A)$ and $\operatorname{col}(B)$ in the worksheet, choose Plot > Basic 2D: Line to create a line graph. Click on the line plot to select it and then use the Line/Border Color button in Style toolbar to set its color to red.
2. Double-click on X axis to open the Axis dialog. Go to Reference Lines tab, click the interactive button 登 beside the Reference Lines at Value text box to select col(C) from worksheet. Then the x coordinates of all recession periods will be listed in the display table as reference lines.

3. Check Alternate Fill box to fill each period. And uncheck the Line check box to hide all reference lines (by checking the Line check box on Line column header and then unchecking it to remove all selections in this column).

If you elect to show Label Text, you can choose <auto>, <value as entered> or enter your own custom string. For more information see The Reference Lines Tab, Label Text.

Customize the Display of Graph

1. Click the Graph1 icon in the left panel (take care not to clear the check box beside it) and on the Display tab, set Color as Dark Cyan. Click the Layer1 icon, set the Color on the Background tab as White, clear the Data on Top of Axes check box and check Frame check box in the Display tab. Click OK to close this dialog.

Plot Details - Layer Properties

Plot Details - Layer Properties

Background	Size/Speed	Display	Stack

Data Drawing Options
V Clip Data to Frame
\checkmark Clip Labels to Frame
\square Data on Top of Axes
\square Grid on Top of Data

Clipping Margins (\%)
Horizontal 0
Vertical 0
2. Double-click the X axis to open the Axis dialog. Click the Tick Labels tab, under

Display page select 2016 from Display drop-down list.

3. Go the Format page and change Rotate (deg.) to $\mathbf{9 0}$, so that all tick labels will rotate 90 degrees. Click Apply to view the settings.

4. Go to the Scale tab and set the X axis scale as below:

5. Go to the Title tab and change the content in Text box to Year to modify the X axis title.
6. Highlight Left icon on the left panel and change the Y axis title text to be (Index 2002 $=\mathbf{1 0 0}$) and click Apply.
7. Go to the Scale tab again and this time the Vertical icon is selected which indicates it is the Scale tab for Y axis, set the From value to 0 . Click the Apply button.
8. Go to the Grids tab and show the major grid lines in LT Gray following the settings below:

9. Click $\mathbf{O K}$ to apply the settings and close the dialog.

10. Go back to the graph and delete the legend. Right-click on the layer and select Add/Modify Layer Title to add a title. Type Industrial Production: Durable Consumer Goods (IPDCONGD) in the text box. Highlight the text and click the B button on the Format toolbar. Adjust the text to an appropriate size by typing or selecting a number in the Font Size $22 \quad$| 22 | list in the Format toolbar. You |
| :--- | :--- | should get the following graph.

6.7.5 Scatter Plot of Decay and Recovery Curves

6.7.5.1 Summary

The scatter plot below depicts 3 decay and recovery curves obtained after taking two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer. To learn more about the graph, please read the case study.

Minimum Origin Version Required: Origin 2016 SR0

6.7.5.2 What you will learn

- How to use the Plot Setup dialog to arrange plots in a layer
- How to customize the symbols in your graph

6.7.5.3 Steps

1. Download the zip file from here and extract the text files .

on the Standard toolbar to open the ASCII dialog and then import the text files.

2. In the impASC dialog, set Import Mode as Start New Sheets. Click OK to finish importing.

3. We will use the Plot Setup dialog to create a graph with 8 plots. Active the workbook, and make sure that no datasets are now selected. Click the \square button on the 2D Graphs toolbar to open the Pot Setup dialog.

Show all of the three panels of Plot Setup dialog (if not all of them are shown) by clicking the \qquad and \vee uttons.
First, we will add 4 line plots into a graph by using the Plot Details dialog. Highlight all dataset in the top panel, and then select column Timemin as X, column Theory as Ys in the middle panel. Then add them into the bottom panel.
Then we will add 4 scatter plots in to the same graph. Select Scatter from the Plot Type drop-down list, make sure all dataset in the top panel has been selected, and then select column Timemin as X , column

NormData as Ys in the middle panel. Then add them into the bottom panel.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\widehat{\wedge}$ and expand Available Data panel by clicking 시 again.

Please refer to Plotting using Plot Setup for more information.
5.

In bottom panel, if there is a Group branch under Layer1, right-click on it to select Ungroup from the short-cut menu to ungroup these plots.

Click OK to generate the graph which look like the following image shows.

6. Double-click the layer icon at the top-left corner of graph window to open the Layer Contents dialog.

Then group the Theory plots and NormData Plots as Group 1 and Group 2 using the Group button after
highlight the 4 Theory/Norma Data plots separately by using mouse and the Shift key,

7. Then we will customize the 8 plots in the Plot Details dialog. Select Format: Plot to open the Plot Details dialog. In the left panel of the dialog, you could see there are 8 plots: the first 4 plots are line plots, the other 4 are scatter plots.
8. We will first customize the 4 line plots. Open Plot Details by double clicking the plot. On the left panel, 4 line plots are put ahead of the 4 scatter plots. You can select the first line plot by selecting the first plot under Layer 1 in this panel then go to Line tab. Select B-Spline from the Connect drop down list and set the Width to 3. Then click the Apply button. In the Group tab, select None for the increment cell in Line Color row. Click OK to apply these settings.

9. Then customize the 4 scatter plots. Go to Plot Detail and then select the fifth plot in the left panel, which should be the first scatter plot. Go to Symbol tab, change the Size to 8 and Edge Thickness to 0 . In the Group tab, we will mainly customize the symbols in the list box that in the middle of the tab. In the Symbol Type row, select By one in the Increment column. Click the \cdots button to open the Increment Editor dialog, in the dialog select UpTriangle, Circle,Hexagon and Square for the first 4 rows.
In the Symbol Edge Color row, select By one in the Increment column. In the Details column, click the color list to select the list Q11: Candy from the color list drop-down list.

In the Symbol Interior row, select By one in the Increment column. Click the \cdots button to open the Increment Editor dialog, in the dialog select Solid, Solid,Half Left and Solid for the first 4 rows. Click

OK button to close the Plot Details dialog, then the graph will look like.

10. Then customize the Axes of the graph. Double click on the X axis to enter Axis Dialog.

First, we customize the axes scale. Go to Horizontal icon in Scale tab, change From to -5, To to 690; set Major Ticks Type as By Increment and Value as 100, respectively. Repeat these steps to customize the Y axis range (the Vertical icon) as From to 0.61 and To to 1.01 , and Value as 0.05 .

To customize the Axis Ticks, select Top icon in Line and Ticks tab, enable the Show check box, then go to Top icon in Line and Ticks tab, select In from both Major Ticks and Minor Ticks drop-down lists.

Repeat the same steps for Right Axis under Right icon.

11. Then you will will customize the titles and the legend. Change the titles follows the images shows. Right click on the legend and select Legend:Update Legend from the context menu to open legendupdate dialog. In this dialog, do the following:

Click Ok to close this dialog. Then the legend will update. Double-click on it to turn to the in-place edit mode, remove the first four rows.
The final graph will look like

6.7.6 Micro-Raman spectroscopy of complex nanostructured mineral systems

6.7.6.1 Summary

This tutorial will show you how to create a multiple line plot and how to customize it.

Minimum Origin Version Required: Origin 2015 SR0
6.7.6.2 Steps

1. Create a new worksheet. Click the Import Single ASCII button $\stackrel{113}{\mathrm{FI}}$ and import the Micro_Raman_Spectroscopy.txt file under <Origin EXE Folder>\Samples\Graphing \backslash path.

\＃\＃Micro－Raman spectroscopy of complex nanostructured mineral systems								$\square \square \times$
	$A(6)$	日（1）	C1（V）	C 2 m	C3＠）	C4（）	C5（）	C6 ${ }^{\text {A }}$
Long Name								
Units								
1	100.263	762.24	100.263	947.9676	100.263	9966.063	100.263	1091！
2	101.997	765.94	101.997	951.6754	101.997	9940.0309	101.997	10928
3	103.728	771.5	103.728	944.2353	103.728	9954.8876	103.728	1091；
4	105.461	765.92	105.461	957.2229	105.461	9936.3143	105.461	1092：
5	107.194	769.61	107.194	936.8001	107.194	9951.1572	107.194	1091！
6	108.927	767.74	108.927	944.2147	108.927	9956.7125	108.927	1092！
7	110.657	767.73	110.657	959.035	110.657	9943.7279	110.657	1093：
8	112.389	784.39	112.389	955.3154	112.389	9969.6578	112.389	1092＇
9	114.121	760.3	114.121	955.3027	114.121	9945.5715	114.121	1092！
10	115.85	762.14	115.85	951.589	115.85	9952.9684	115.85	1093：
11	117.581	765.83	117.581	940.4814	117.581	9945.5616	117.581	1092t
12	119.312	773.21	119.312	947.8704	119.312	9928.9203	119.312	10936
13	121.041	763.95	121.041	962.6417	121.041	9952.9419	121.041	109.
14	122.771	767.63	122.771	934.9271	122.771	9945.5469	122.771	1092：
15	124.501	771.31	124.501	942.3073	124.501	9951.0786	124.501	1092
16	126.228	784.21	126.228	938.6123	126.228	9947.3817	126.228	1092：
17	127.957	765.75	127.957	945.9827	127.957	9938.1579	127.957	1092：
18	129.686	774.95	129.686	955.1878	129.686	9963.9533	129.686	10928
19	131.413	762.04	131.413	947.8086	131.413	9945.5224	131.413	10936
4 Micro－R	an spec	copy of	－7］			くへい ${ }^{\text {and }}$		\rightarrow

2．Highlight all the columns in the worksheet．Right－click and select Set As：XY XY from the context menu．Then click the Line button on the 2D Graphs toolbar．

Delete the legend．The graph should look like this：

3. Double-click on the \mathbf{X} axis to bring up the Axis dialog box. In the Scale tab, set the options as the screenshots below.

4. Click the Vertical icon on the left panel to go to the Scale tab of \mathbf{Y} Axis and then set the options as in the screenshots below and Click OK.

5. Now, we will apply a Graph Theme to add a top \mathbf{X} axis and a right \mathbf{Y} axis. Select Preferences: Theme Organizer to open the Theme Organizer dialog. Activate the Graph tab and select Opposite Lines from the table. Then click Apply Now. Click Close to close the dialog.

6. Click the Line button on the Tools toolbar and draw a line across the peaks' centers as the sample image shows. Hold down the SHIFT key while drawing the line to force it to snap to the vertical. Double-click on the line. In the Line tab, select Dash with the Type drop-down list. Click OK.

7. Click the Text button in the Tools toolbar. Add a text object near the line object and enter $\mathbf{4 6 1}$ into the text object.

Right-click on the text object and select Properties from the shortcut menu. In the Text of the dialog, set the options as in the screenshot below. Click OK.

8. Right-click on the title of the Y axis and select Properties from the short-cut menu. In the Text of the dialog, enter Raman intensity/arb.units in the edit box, highligh it, click the Bold button, and change size to 28. Click OK.

9. Right-click on X axis title and select Properties from the shortcut menu. In the Text of the dialog, enter Wavenumber/cm-1 in the edit box, highlight it, click the Bold button, and change size to 28. Highlight -1 click SuprtScript button. Click OK.

The graph should look like this:

6.7.7 Multi-line-plot with Special Position Annotation Line

6.7.7.1 Summary

This tutorial will show you how to create a multi-line-plot with special position annotation line.
MATI SPECTRA OF $\mathrm{C}_{6} \mathrm{H}_{6}^{+}$USING VARIOUS METHODS

Minimum Origin Version Required: Origin 2015 SRO

6.7.7.2 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key , and then open Graph Sample: Line and Symbol)

1. Open Tutorial Data.opj and browse to the Multi-line-plot with Special Position Annotation Line folder in Project Explorer (PE).
2. Active to the worksheet in workbook Multi-line-plot with Special Position Annotation Line. To plot a multiple line plot, highlight all the columns in the worksheet, and click the Linebutton on the 2D

Graphs toolbar. Delete the legend object from graph.

3. Double click the axis to open the axis dialog, set the axis scale and ticks via dialog:

- Go to the Line and Ticks tab and set the ticks:

- Go to the Scale tab in same dialog, set the scale for X and Y axis:

For X (Horizontal): From 74505 to 74575;
For Y (Vertical): From -2500 to 45000;
4. Go to the Ticks Labels tab and change the display format for Left into Scientific: 10^3, then, go to the Grids tab with Horizontal icon selected, check Show for Major Grid Lines, click OK to close the dialog.

5. Select the View: Show: Frame in main menu to added a line frame on the graph. The graph is similar to this now:

6. Double click the plot line to open the Plot Details dialog, in Group tab, open the Increment Editor as shown in graph, designate color for each line, then click OK to close two dialog.

7. Then, you will add vertical line on Graph, select Insert: Straight Line in main menu to open the dialog, set the X coordinates in the dialog, and set color: red, click OK to apply the settings.

8. A straight line with text was added on the graph. Edit the Text object above the line object by double click it, the ${ }^{\mathbf{x}^{2}}$ and \mathbf{x}_{2} in Format toolbar is helpful when creating superscripts and subscripts. Entering the content as shown in graph below:

Then, click somewhere outside the text box to quit the text editing, drag to move the text to a proper position.
Now, the text object get the X coordinates of the line, when you drag to move the line object horizontal, the text also updates simultaneously.
9. Add explanatory strings for line plot, add a title on the graph by using Text Tool as well.

There are 2 ways to edit text labels:

- In-place Text Editing: Double-clicking puts you in WYSIWYG edit mode. Using the Style and Format toolbars makes it easy to add formatting to any text. For special characters, the Symbol Map can be used.

The Symbol Map can only be opened while in In-place edit mode. To enter In-place edit mode, double-click on the text label. Then, open the Symbol Map by pressing CTRL+M. Or right-click inside the text label and select Symbol Map.

- Text Control dialog box (from previous versions of Origin): Hold down the CTRL key when double-clicking text. Highlight any portion of the text and apply the desired style, Greek font, etc.
this dialog.

10. The finished graph is similar to the graph in Summary Section in this tutorial.

6.7.8 Scatter Central Plot

6.7.8.1 Summary

A scatter central plot is a graph with the X and Y axes located in the middle of the layer. In this tutorial, a scatter central plot will be created, then the symbol and the axes will be customized.

Minimum Origin Version Required: Origin 2015 SR0

6.7.8.2 What you will learn

- Set column values using Set Values dialog box
- Create a scatter central plot
- Change the color and shape of the scatter points
－Customize axis tick labels

6．7．8．3 Steps

1．Start with an empty worksheet with two columns．We are going to fill a worksheet column with values using the Set Values dialog box．

2．Highlight column A，right－click and select Fill Column with：Row Numbers from the shortcut menu． Right－click column A again and select Set Column Values to open the Set Values dialog box．Type
This－ $\mathbf{1 1}$ in the text box，then click Apply to finish setting values for column A．
Set Values－［Book1］Sheet1！Col（A）

| \square | 回 |
| :--- | :--- | :--- |

Formula wcol（1） $\operatorname{Col}(\mathrm{A})$ Function Variables Options							
Row（ i ）：From＜auto＞	To	＜auto＞					
$\operatorname{Col}(\mathrm{A})=$				F．\ll	\ll	＞＞	$\gg 1$
This－ 11							
Recalculate Auto			狊吅 OK	Cancel	Apply		v

3．Click the \gg button to select column B in the Set Values dialog box．Type $\mathbf{A} \wedge^{\wedge} \mathbf{2}+\mathbf{A}+\mathbf{1}$ in the text box this time．Then click OK to set values for column B．

4．Highlight column B and select Plot＞Basic 2D：Scatter Central from the Origin main menu．This creates a scatter central plot．

5. We will change the color and shape of the scatter points. Double-click on the scatter plot to open the Plot Details dialog, expand Layer1 node on the left panel and highlight its sub-node. In the Symbol tab of right panel, click the down-sided triangle button beside Preview and choose the solid circle symbol. Click the button beside Symbol Color and choose Individual Color: Red. Click OK to close Plot Details.

6. Now we will customize the axes. Double click on the Y axis to open the Axis dialog box. On the Scale tab for \mathbf{Y} Axis, change the To value to 450 .
7. Click Special Ticks tab, enter $\mathbf{2 0 0}$ in At Axis Value column right below Axis End and uncheck its correspond box in Show column to hide the special tick as displayed in following:

8. Click the Bottom icon on the left panel and click to highlight the Axis End row, then choose Hide from the drop-down list in Show column.
9. Click OK to finish axes settings. The scatter central plot looks like the following.

10. Now, delete the legend and change the labels of axes \mathbf{A} to \mathbf{X} and \mathbf{B} to \mathbf{Y} and make the text bold.
11. Right click on the X axis label and select Properties shortcut menu and choose $\mathbf{0}$ from Rotate(deg.) drop-down list, and click OK. Move the \mathbf{X} to the end of X axis. Add a text object $Y=X 2+X+1$ and customize it as $Y=X^{2}+X+1_{\text {through }}$ the following steps:

12. The final graph looks like the following:

6.7.9 Line Graph with Masked Data

6.7.9.1 Summary

You can masking subranges of data graphically. In this tutorial, a line graph is created first, then the masking tool is used to mask the low peaks on the graph.

Minimum Origin Version Required: Origin 2015 SR0

6.7.9.2 What you will learn

- Plot a line graph
- Set the scales of axes
- Mask data on the line graph

6.7.9.3 Steps

 Line_Graph_with_Masked_Data.txt under <Origin EXE Folder>\Samples\Graphing path.
2. Highlight both columns in the worksheet and select Plot > Basic 2D : Line from the Origin main menu to plot a line graph.

3. Double click on the X axis to open the Axis dialog box. Set the increment value to 0.25 as in the image below:

4. Click the Vertical icon on the left panel to set the Y axis scale as in the following image:

5. Click OK to close the Axis dialog and delete the graph legend. Change the X label to Time[s] and the Y label to Signal[A.U.], and bold both text labels and set the font size as 28. Create a title by adding a text object that says Time Series. Bold the title and set the font size of the title to $\mathbf{3 6}$.

6. Activate this graph, then click and hold the Regional Mask Tool button on the Tools toolbar until a menu appears. Select Mask Points on Active Plot to enter masking mode.

7. Click an appropriate place on the graph and drag out a rectangle to select the low peaks and, at the same time, mask them. Drag out additional rectangles until all low peaks are masked. Then click the Pointer button on the Tool toolbar to exit masking mode.

6.7.10Symbol Plot with Color Transparency

6.7.10.1 Summary

This tutorial will show you how to create a symbol plot with color transparency, categorical legend and bubble scale. This graph displays a symbol plot of XY data where the size of the symbol and its color have been mapped to two other data columns in the worksheet: Mass and Type. The categorical legend can be utilized to identify Type via color and the bubble scale can be used to check Mass via symbol size. Color transparency has been applied to the plot so that overlapping data points are visible.

Minimum Origin Version Required: Origin 2015 SR0

6.7.10.2 What you will learn

This tutorial will show you how to:

- How to control the size and color of plot symbols using values in worksheet columns.
- How to add a legend from categorical values
- How to add a bubble scale and customize it
- How to set the transparency to the symbol plot
- How to add a frame to the graph

6.7.10.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key , and then open Graph Sample: Line and Symbol)

1. Open Tutorial Data.opj and browse to the Bubble with Transparency folder in Project Explorer (PE).
2. Go to Book2G, highlight $\operatorname{Col}(\mathrm{A}) \sim \operatorname{Col}(\mathrm{C})$ in the worksheet and select Plot > Basic 2D : Bubble from the main menu.
3. Select Format: Plot... in the main menu to open the Plot Details dialog. Then go to the Symbol tab and set the symbol format as in the following:

O

Set Scaling Factor to 3.

- Click the down arrow next to the Preview box to open the symbol gallery and select the filled circle symbol.
- In the Symbol Color drop-down list, select Indexing: Col("Type")
- Set Transparency to $\mathbf{5 0 \%}$.

4. Click OK to save settings and close the dialog. The graph should now look like this:

5. To update the axes scales and title, select Format: Axes: X Axis... to open the Axis dialog box. Modify the following settings:

- In the Scale tab for \mathbf{X} Axis, choose the following setting:

- Click Vertical icon on the left panel and go to Scale tab for \mathbf{Y} Axis and set the following:

- Go to Title tab, and change Y axis title as Sample Y-Dimension (cm) and set font and size as following:

- Then click Bottom icon on the left panel and change X axis title as Sample X-Dimension (cm) and set and size as following:

- Click OK to apply the settings.

6. Double click on the bubble scale to bring up Bubble Scale Control dialog. Select Nested from Layout drop-down list and check Half Circle and Show Leader Line boxes and click Apply as shown in
following:

7. Click on the left panel to go to Levels page, set From as $\mathbf{2 0}$ and $\mathbf{T o}$ as $\mathbf{5 0}$ and change increment Value to $\mathbf{1 0}$ as shown in following:

8. Click Title on the left panel, check Show box and change content in Title to be Mass, then set the Size to be $\mathbf{2 8}$ and check Bold box. Click OK to close dialog as shown in following:

9. The graph is as following now:

10. Go to Graph:Legend:Categorical Values... to bring up Graph Manipulation:legendcat dialog.

Uncheck Size box and click OK to close the dialog and move the generated legend to a proper position in top-left corner.

11. Right click on the legend and select Properties from shortcut menu, customize the text as shown in the following:

12. Click $\mathbf{O K}$ to close dialog.
13. Select the Text Tool T button on the Tools toolbar and click once to the left side of the page just above the frame. Type the following into the text object: Agate Cross-Section by Type and Location. Customize the font. Select and re-position the text object as needed.

The final graph should look something like this:

6.7.11Symbol Plot with Size and Colormap from Other Columns

6.7.11.1 Summary

This tutorial will show you how to create a symbol plot with size and color from other columns.
This graph displays a symbol plot of data from multiply columns where the size and color of the symbol have been derived from other data columns in the worksheets. User defined Colormap has been applied to the plot.

Minimum Origin Version Required: 2016 SR0

6.7.11. 2 What you will learn

This tutorial will show you how to:

- How to control the size and color of plot symbols using values in worksheet columns.
- How to set the user defined colormap
- How to edit the grids lines for plot

6.7.11.3 Steps to Construct a Symbol Plot with Size and Colormap from Other Columns

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Symbol Plot with Size and Color Mapping in Project Explorer.
2. Select the $\operatorname{Col}(X)$ and $\operatorname{Col}(Y)$ in first sheet of the workbook and click Plot > Basic 2D:Scatter to get a scatter plot.
3. Click Graph: Layer Contents in main menu with the graph active, and select all the columns with Long name $\mathbf{Y}, \mathbf{Y 1}, \mathbf{Y} 2$ and add them into the right panel. Click Ungroup button to ungroup all datasets. Click

OK to close dialog. The order and quantity of column Long name listed in right panel should be exactly the same as the graph, use up and down button to adjust the position, and use
 to remove the repetitive items.

- Layer Contents: Add, Remove, Group, Order Plots - Layer1								x
Worksheets in Folder				Layer (1)	¢ $\downarrow \square$ Rescale on Apply			
\checkmark Include Shortcuts				Group				
Book Name	Sheet	Long Name *	*	Book Name	Sheet	Long Name		Plot Type
Electrical	filler	Y2	\rightarrow	Electrical	nost-Electrical Onen	Y		Scatter
Electrical	filler	Y1			post Electica			
Electrical	Pads	Y	-	Electrical	pre-Electrical Open	Y		Scatter
Electrical	post-Electrical 0		A	Electrical	Pads	Y		Scatter
Electrical	Package	Y		Electrical	Package	Y		Scatter
Electrical	Transducers	Y	三	Electrical	Transducers	Y		Scatter
Electrical	pre-Electrical O_{1}			Electrical	filler	Y2		Scatter
Electrical	post-Electrical Oper	Time		Electrical	filler	Y1		Scatter
Electrical	pre-Electrical Open							
Electrical	Package	Name						
Electrical	Transducers	Name						-
Electrical	pre-Electrical Open	Energy at 1st xdı	-	》 Layer Propert	Ps... Plot Setup... Appl	OK	Cancel	

4. Double click the scatter to open the Plot Details dialog, go to Symbol tab, Set the Symbol for each plot one by one follows the Graph below, after each step setting, please click Apply to make a rudimentary saving.
5. The next 7 steps will guide you finish the symbol setting for each dataplot. Symbol setting for dataplot 1 :

6. Symbol setting for dataplot 2

7. Symbol setting for dataplot 3

8. Symbol setting for dataplot 4

Add label for dataplot 4

9. Symbol setting for dataplot 5

Add label for dataplot 5

10. Symbol setting for dataplot 6 and 7 , which act as the legend:

11. Then, Click OK to close the window. Double click the Axis X to open the Axis dialog, and set the Scale for both Horizontal and Vertical icons From -50 to 50 with same Major and Minor ticks style:

then click OK to apply. you can get a graph like this:
12.

6.7.11.4 Steps to Set the Colormap and Legend

1. The Edge color of the post-Electrical Open and pre-Electrical Open plot both used Map:Col(C), so we will further make some style setting for Color scale in Colormap tab. Click Level to open Set Levels dialog, set levels from 0 to 155 with Major Levels 5.

Set Levels					$2 x$
From To	$0$$155$		O Increment	31	
			(0) \# Major Levels	5	
Type	为 Linear		\# Minor Levels Total \# of Levels First Level	0	
				5	
			Ind/Min/Max OK		Cancel

2. Double click each Level value to edit them and double click each Fill color to edit them as well :

Click Apply to apply these color setting to the graph (for the post-Electrical Open scatter).
3. Then we would like to save the setting as a theme named as mycolor.oth. The theme will be applied to the post-Electrical Open scatter.

Apply the theme to the pre-Electrical Open scatter.

Click OK to close the window.
4. Click Graph: Legend: Dataplot in main menu, a legend will display in the graph. Right click the legend and click Properties in list, and edit the content in Object Properties dialog as follows graph, then click

OK.

5. Click Insert: Color Scale in main menu, an Color Scale will display in the graph.

1. Select Format: Layer in main menu to open the Plot Details dialog, go to the Size/Speed tab, edit the Layer Area as follows:

2. Go to the Display tab in Plot Details dialog, edit the Clipping Margins(\%) to -2\%, click OK to close dialog.

Background Size/Speed $^{\text {Display }}$	Stack
Scale Elements Scale With Layer Frame Fixed Factor: 0.96	Show Elements XAxes Labels Y Axes Data Z Axes Frame
Data Drawing Options Clip Data to Frame Data on Top of Axes Grid on Top of Data	Clipping Margins (\%) Horizontal -2 Vertical \square -2

3. Copy the previous Legend and paste it on the graph, edit the new legend in this way:

click OK to close dialog.
4. Double click the color scale to open the Color Scale Control, go to the Levels page, check on Hide Head and Tail Levels, then go to the Labels page and set the Display as graph below:

Add a title Elapsed Time for the color scale in Title tab, Click OK to apply.
5. Double click the axis to open the Axis dialog. Set Grids line for both Horizontal and Vertical in Grids tab in the same style as shown in graph below:

Click OK to apply the setting and close dialog.
6. At last, add a Text "symbol size is relative to event energy" in the graph by using Text Tool \mathbf{T} in Tools box.

6.8 Column, Bar and Pie

6.8.1 Column, Bar and Pie

- 2D Pie Chart of a Population Study
- Bar Graph of African Population
- Bar and Scatter Plot with Error Bar
- Column Graph with Error Bars
- Stack Column With Labels
- Clustered-Stacked Column Chart
- Grouped Column with Error Bars and Data Labels
- Grouped Stacked Column
- Stack Column Plot with Different Positive and Negative Y Scale
- Variable Column Width
- Stack Column and Bar Charts of Rechargeable Battery Statistics

6.8.2 2D Pie Chart of a Population Study

6.8.2.1 Summary

This tutorial will show you how to create and customize a 2D Pie chart.

Minimum Origin Version Required: Origin 2018 SR0

6.8.2.2 What will you learn

This tutorial will show you how to

- Create a 2D Pie chart
- Customize the Pie chart

6.8.2.3 Steps

1. Create a new worksheet paste the sample data shown here.

弗	Book1 *			-
腮-z	A(X)	B(Y)	C(Y)	\wedge
Long Name				
Units				
Comments				
$\mathrm{F}(\mathrm{x})=$				
1	Hispanic	45.4	1	
2	White	35.7	18	
3	African American	9.3	19	
4	American Indian	0.4	20	
5	Asian/Pacific	8.9	24	
6	Other	0.3	18	
7				\checkmark
		,	2	

2. Highlight column B and select the 2D B\&W Pie Chart button on the 2D Graphs toolbar.

The graph should look like this:

3. Right click on the Legend and select Delete from the short-cut menu.
4. Right-click on the graph and select Plot Details from the short-cut menu to open the Plot Details dialog. In the Pie Geometry tab, set the options as in the screenshot below.

5. In the Labels tab, set the options as in the screenshot below.

Click OK to close the Plot Details Dialog. Rearrange the text labels so that they do not crowd each other.
6. Select the Text button from the Tools toolbar. Then click near the top of the layer. Enter Population by Major Ethnic Group to add a title for the graph. Use the tools in the Format toolbar to customize the text, as needed. The graph should look something like this:

6.8.2.4 Sample Data

Open a fresh worksheet and either click this link
(http://www.originlab.com/ftp/graph gallery/data/2D Pie Chart.txt) and copy the data from your browser page; or select the data in the table below and copy.

Click on the empty data cell in row 1 , column $\mathrm{A}(\mathrm{X})$ and paste the copied data.

A(X)	B(Y)	$\mathbf{C}(\mathbf{Y})$
Hispanic	45.4	1
White	35.7	18
African American	9.3	19
American Indian	0.4	20
Asian/Pacific	8.9	24
Other	0.3	18

6.8.3 Bar Graph of African Population

6.8.3.1 Summary

In this tutorial, we will create a graph to compare African population distributions for 2010 vs. predictions for 2050.

Source: Population Divis ion of the Department of Econoric and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2008 Revision, http://esa. un. org/unpp, Monday, April 12, 2010; 3:19:17 PM.

Minimum Origin Version Required: Origin 2015 SRO

6.8.3.2 What you will learn

This tutorial will show you how to:

- Duplicate graph with data in other columns
- Set axis scale to reverse a bar chart
- Merge graphs

6.8.3.3 Steps

To create this graph, we must create four separate bar plots, customize them and merge them into one graph.

6.8.3.3.1 Prepare Source Bar Plots with Batch Plotting

1. Start with an empty Origin workbook, import the data file African_Population.dat under <Origin EXE Folder> \Samples \Graphing path. (Or if you do not have the file in your Origin installation, download the zipped data file from ftp.)

2. Highlight column B and select Plot >Basic 2D: Bar to plot a bar graph. Use the Fill Color button \qquad the Style toolbar to change the fill color to Red.
3. Now we are going to duplicate similar graphs from the other three columns. Right click on the graph window title bar and select Duplicate (Batch Plotting) from the context menu:

4. In the dialog that opens, select Column from the Batch Plot with drop-down list, hold Ctrl key and click to select all three columns C, D, E and click OK:

Select Column - [Africanpopula]African_population

5. Three similar graphs will be created (When you get a Reminder Message asking Would you like to rescale the axes to show all the data, select Yes and click OK).
6. We now have four bar graphs of four groups: male-2010, female-2010, male-2050, female-2050.

6.8.3.3.2 Customize Bar Plots

We will now individually customize the four bar plots.

1. First we will customize Graph1 (i.e. the one with legend showing male-2010).
2. Double-click on the data plot to open the Plot Details dialog box. Expand Layer1 node on the left panel and highlight its subnode, on the Pattern tab on right panel, change the Color of Fill to Blue. Click OK to apply the color setting and close the dialog.
3. Double click on the Y axis (the horizontal axis in bar plot) to open the Axis Dialog. On the Scale tab for \mathbf{Y} Axis, set From $=\mathbf{1 7}$, $\mathbf{T o}=\mathbf{0}$, Value of major tick increment $=\mathbf{- 5}$:

4. Click the Vertical icon on the left panel and go to Grids tab of X Axis and clear the Show check box under the Minor Grid Lines branch, to hide the minor grid lines. Click Apply:

Select multiple axes to customize together.
Apply To...
5. Go to the Line and Ticks tab and set Style under Minor Ticks to None:

6. Now we will hide minor grid lines and minor ticks for all other graphs. Click the Apply to... button to bring up Apply To dialog and select the check box beside Ticks and Grid Lines. In the drop-down menus for both, select All Windows in Folder and click OK to apply settings. Now, minor grid lines and ticks in all graph windows in the same folder of Project Explorer will be hidden:

7. Next we will customize the Y axis scales for Graph2(female-2010) and Graph3(male-2050). Open the Axis Dialog for each graph and set the axis scales following the screenshots below:

Select multiple axes to customize together.
8. Double-click on X axis of Graph4 to open the Axis dialog to set the X -axis scale following the screenshot below:

Select multiple axes to customize together.

9. Double-click on the data plot of Graph3 (male-2050) and open the Plot Details Dialog. Expand Layer1 node to highlight its subnode, click the Pattern tab on right panel, set the Color for Fill to Blue.
10. For Graph2(female-2010) and Graph4 (female-2050), select the tick label for X axis (vertical axis) and press the Delete key to remove them. Similarly, remove the axis titles for both X and Y axes. Now you should have four customized bar plots like those below:

6.8.3.3.3 Merge Multiple Graphs

Now we have four distinct bar graphs. We will merge these four graphs and do some final customizations, such as adding text annotations.

1. Activate one of the four graph windows and select Graph: Merge Graph Windows from the main menu. This opens the merge_graph dialog box. Edit the settings as follows and merge these four bar graphs into one graph window.

2. In the merged graph, drag the two Y (horizontal) axis titles "Population (million)" to center align them. Sequentially select and delete the four graph legends.
3. Right click on an open space in the graph layer and select "Add Text". Type to create the four text labels. The text labels used are:

- Figure 1. African population by five - year age groups and sex, 2010 versus 2050
- 2010
- Males
$N=515,267$
- Females
$N=517,776$
- 2050
- Males
$N=998,354$
- Females
$N=1,000,112$
- Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat,

World Population Prospects: The 2008 Revision, http://www.un.org/en/index.html, Monday, April 12, 2010; 3:19:17 PM.

You may further customize the position, text font, size, color and alignment of the newly added labels. Your final graph should look much like the the graph pictured below.

Figure 1. African population by five-year age groups and sex, 2010 versus 2050

Source: Population Divis ion of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2008 Revision, http//ess. un.org/unpp, Monday, April 12, 2010; 3:19.17 PM.

6.8.4 Bar and Scatter Plot with Error Bar

6.8.4.1 Summary

Below graph is made of bar chart and scatter plot.

Minimum Origin Version Required: Origin 8.0 SR0
6.8.4.2 What will you learn

- How to add a scatter plot to a bar graph
- How to set the Plus and Minus error bar

6.8.4.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Bar Plot with Errors in Project Explorer.
2. Activate the workbook Book2N, right-click the $\operatorname{col}(\mathrm{C})$ to select Set as: \mathbf{Y} Error from the context menu.
3. Highlight $\operatorname{Col}(A), \operatorname{col}(B)$ and $\operatorname{col}(C)$, select Plot > Basic 2D: Column from the main menu to plot a column graph with Y error bar.

4. Activate the graph window, and then select Graph: Exchange X-Y Axes.

5. Highlight the col(D) in the worksheet and then activate the graph window again. Select Insert: Plot to Layer: Scatter from the main menu to add the $\operatorname{col}(\mathrm{D})$ as scatter to the column graph.

6. Double-click the column graph to open the Plot Details dialog. Set the Color and Pattern options in the Fill group of Pattern Tab as below.

7. Select the scatter plot in the left panel, then set the Symbol as below. Then click OK button to close the dialog.

8. Activate the graph window, hold the Ctrl key and select the first bar to set its pattern as Dense as below from the Style toolbar.

9. Select Graph: Legend: Reconstruct Legend from the main menu to update the legend for graph.
10. Right-click the legend to select Properties from the context menu to open the Objects Properties dialog. Set Background as Black Line. Then edit and move the legend as below.

6.8.5 Column Graph with Error Bars

6.8.5.1 Summary

This customized graph shows an example of a bar graph with added error bars. The same Y data is plotted twice, once as a scatter plot and again as a column plot. The error bars are attached to the scatter plot in this case. Error bars can be included in the graph in both the Y and X dimensions.

Minimum Origin Version Required: 2015 SRO

6.8.5.2 What you will learn

- Create and customize a column graph
- Use the Plot Setup dialog to add a new data plot to your graph

6.8.5.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj. (If you don't have the Project file, please download the data file from here)

1. Open the Tutorial Data.opj and browse to the folder Column Graph with Error Bars. Activate the worksheet and make sure the column plot designations are set as $\mathbf{X}, \mathbf{Y}, \mathbf{Y}$ Error and Label accordingly.
2. Highlight column 2 and select Plot > Basic 2D: Column to create a column graph.
3. With the graph window active, select Graph: Plot Setup... to bring up the Plot Setup dialog box. Click the up-sided double triangle arrow icon to expand top two panels and we will add the scatter data and
error bars from this dialog box, as shown below:

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\wedge}$ and expand Available Data panel by clicking 시 again.

Please refer to Plotting using Plot Setup for more information.
4. Click the Add button to add scatter data to the column plot. Then click OK to go back to column graph window.
5. Double-click the columns to bring up the Plot Details dialog box. Customize the graph using settings on the Pattern tab as shown below:

6. Double-click on the Y axis to open the Axis dialog box. Set the Y axis scale as shown in the screenshot below:

Select multiple axes to customize together.
Apply To... OK Cancel
7. Then go to the Tick Labels tab to set X axis tick labels as shown in following screenshot:

8. Go to the Grids tab and click the Horizontal icon on the left panel to customize grids for \mathbf{Y} Axis and turn on major grid lines by duplicating the settings in the image below:

9. Click Apply first, and then hold Ctrl key to select both Vertical and Horizontal icons on the left panel and select the Opposite checkbox to turn on opposite additional lines for both X and Y axes.
10. Click OK to apply settings and close the Axis dialog box. Finally, delete the legend object.

6.8.6 Stack Column With Labels

6.8.6.1 Summary

This graph displays a stack column plot. Each data point in each column has been labelled using the associated data value, and custom formatting applied to column fills and labels.

U.S. Population by Race

Minimum Origin Version Required: 2015 SR0

6.8.6.2 What will you learn

This tutorial will show you how to

- Create a stack column plot
- Add labels for columns
- Customize the column graph

6.8.6.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Stack Column With Labels folder in Project Explorer (PE).
2. Activate the worksheet and select columns B through E. In the main menu, select Plot > Basic 2D :

Stacked Column. Alternatively, you can click the Stacked Column button on the 2D Graph toolbar.

3. Double-click the X axis tick labels to open the Axis dialog box. Go to Tick Labels tab and set the X axis tick labels as following:

4. Select the Grids tab and hold Ctrl key to select Horizontal icon in left panel to simultaneously apply changes to the \mathbf{Y} Axis., Check the Opposite box to add lines opposite both the X and Y axes:

Select multiple axes to customize together.
5. Go to the Scale tab and click Vertical icon on the left panel to set the value of $\mathbf{T o}$ to $\mathbf{1 0 2}$ for Y axis and click OK to apply settings and close the Axis dialog box.
6. Double-click the plot to open the Plot Details dialog box. On the Group tab, set the Fill Color as shown below:

7. On the Label tab, select Enable. Set the Font, Color, and Size to Verdana, white, and 18. Set Label Form to Custom and enter " $\$((y), .0) \%$ " for the Format String.

8. On the Spacing tab, set Gap Between Bars(in \%) to $\mathbf{3 0}$.

9. On the Pattern tab, set Gradient Fill as shown below:

10. In the left panel, select Layer1. On the Background tab, set Color and Gradient Fill as shown below:

11. Click OK to close the dialog box. To complete the graph, change the X and Y axis labels to "Year" and "Population (\%)", then add the graph title "U.S. Population by Race."

6.8.7 Clustered-Stacked Column Chart

6.8.7.1 Summary

This tutorial will show you how to create a clustered-stacked column chart in Origin. This graph consists of two graph layers, each of which has a stacked column.

Minimum Origin Version Required: Origin 8.5.1 SRO

6.8.7.2 What will you learn

This tutorial will show you how to

- Create a stacked column graph.
- Create a graph that has two stacked column graphs.
- Customize a column chart.

6.8.7.3 Steps

After version 2015, Origin supports to set subgroup for mutilple stacked column plots in a layer. And it is easier to plot the grouped stacked columns graph. Please refer this tutorial: Grouped Stacked Column

1. Import the sample data Data 1 and Data 2 into different worksheets in Origin. Set the first line as Long Name for them and set the sheet names as 2010 and 2011 respectively.

\#ook1		-			\square	X
	$\mathrm{A}(\times)$	B(\%)	CO	D(1)		\wedge
Long Name		Product A	Product B	Product C		
Units						
Comments						
1	Jan	42	33	40		
2	Feb	88	85	37		
3	Mar	99	34	82		
4	Apr	51	43	38		
5	May	21	66	52		
6	Jun	74	31	28		
7						\checkmark
4 2010 1	2011 /			< IIII	$>$	

2. Create a new graph layer by selecting File: New : Graph from the main menu. And then select Insert: New Layer: No Axes(Link XY Scale and Dimension) from the main menu to add another layer to the graph window you just created.
3. Select Graph: Plot Setup... from the maint menu to open the Plot Setup dialog. In this dialog, select Column/Bar in the Plot Type box, select worksheet 2010 and 2011 in the top panel respectively, assign $\operatorname{col}(\mathrm{A})$ as X and $\operatorname{col}(\mathrm{B}) \sim \operatorname{col}(\mathrm{D})$ as Y in the middle panel, and then click the Add button to add them to

Layer 1 and NoAxes layer respectively.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\widehat{\wedge}$ and expand Available Data panel by clicking 슬again.

Please refer to Plotting using Plot Setup for more information.
4. Click OK button to close the Plot Setup dialog. Click the Rescale button, you will get a graph with two column graphs overlapped as shown below:

5. Double-click on the graph to open the Plot Details dialog. Select Layer1 level in the left panel, go to Stack tab in the right panel, and select the Cumulative option. Select NoAxes level, do the same setting.

6. Select Graph1 level in the left panel, go to the Miscellaneous tab in the right panel, and check the Column/Bar Gap/Offset Across Layers check box.

7. Click OK button, you will see the plot with two stacked columns will show side by side with an auto gap.

8. Double-click on the graph to open the Plot Details dialog again. Set the Border Color and Fill Color respectively, as shown below:

9. Go to the Pattern tab to set the Transparency as 40 , Border Width as 0.2 , and Gradient Fill as shown for both graph layers:

10. Click OK button to close the Plot Details dialog.

11. Right-click on the graph legend, select Update Legend from the context menu to open the LegendUpdate dialog. Set the Update Mode as Reconstruct, Legend as One Legend for All,Layer

Order as Descending and Plot Order within Layer as Ascending.

12. Click OK button to close the dialog and then update the axis labels, you will get the final graph shown below:

6.8.7.4 Sample Data

6.8.7.4.1 Data 1

	Product A	Product B	Product C
Jan	42	33	40
Feb	88	85	37
Mar	99	34	82
Apr	51	43	58
May	21	66	28
Jun	74	31	52

6.8.7.4.2 Data 2

	Product D	Product E	Product F
Jan	96	87	35
Feb	62	66	15
Mar	65	86	51
Apr	32	24	87
May	77	26	34
Jun	69	33	71

6.8.8 Grouped Column with Error Bars and Data Labels

6.8.8.1 Summary

Origin supports grouped column graphs with indexed data. Multiple group levels are supported. Grouping information can be shown in tick label tables on the X or Y axes.

Minimum Origin Version Required: 2015 SR0

6.8.8.2 What will you learn

This tutorial will show you how to

- Plot grouped column and error bar with indexed data
- Customize tick labels, colors, gaps, error bars and data labels
- Update legend to show grouping information.

6.8.8.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key , and then open Graph Sample: Column and Bar)

1. Open Tutorial Data.opj and browse to the Grouped Column with Error Bars and Data Labels folder in Project Explorer (PE).
2. In the following steps, we want to customized the order of values shown in the graph but not change the source data. Right click Column B in workbook, select Set As Categorical in the list menu, double click the literal "Unsorted" to open the Categories tab. Then select Ascending in Sort list and click OK to
close the dialog.

3. Do the same operation for Column \mathbf{C} and \mathbf{F} to set the Column \mathbf{C} and $\mathbf{F a s}$ categorical data as well and set the order of categorical values as Ascending.
4. We are going to create a grouped column chart from worksheet. Highlight column $\mathbf{D}(\mathbf{Y} 2)$ and $\mathbf{E}(\mathbf{y E r r})$ and select Plot > Categorical : Grouped Columns - Indexed Data... from the main menu.
5. In plot_gindexed dialog, click in the "Group Column(s)" to add columns B, C, and \mathbf{F} (in that order) to the Group List. Click the OK button.

A grouped column plot with error bar is created. The 3-row tick label table at the bottom shows the grouping information. Note that a worksheet is created to contain the data used to create this graph.

6. To hide the first tick label row, double-click on any tick label in the row, e.g. EC2. The Axis dialog box will open with the Bottom $\mathbf{3}$ icon selected in the left panel. uncheck the Show box and click Apply.

7. We want to customize the appearance of the Bottom 2 tick label row. Select the Bottom 2 icon on the left panel. On the Table tab, clear the Auto box, clear all Border check boxes then click the OK button.

Two tick label rows remain, each with different layout.

6.8.8.4 Further Customizations

The tutorial steps that follow, further customize the graph so that it looks like the image in the Summary section.

1. With the graph window active, choose Format: Axis Tick Labels: Y Axis Tick Labels. Click the Grids tab. With Horizontal highlighted in the left panel, under Major Grid Lines, check the Show box. Click

Apply to show horizontal grids.

2. To turn on frames for both X and Y axes, hold the CTRL key and select both Horizontal and Vertical in left panel. Under Additional Lines, check the Opposite box and click OK.
3. From the menu, choose Format: Plot. In Plot Details, click the Label tab and check the Enable box. Duplicate the settings as shown below.

You can use the Numeric Display Format drop-down to format the label values. For instance, to show a single decimal place for each label, enter ".1", then click Apply. For more information, see Custom Numeric Formats
4. To adjust the gap between each week, go to the Spacing tab and set the Gap Between Subsets(\%) to 15 (hint: you can type into the box).

5. We are going to use the data in column F to set fill pattern and add a color gradient fill to the column plot. Go to the Pattern tab of Plot Details and set as follows. The gradient fill direction should be Horizontal Center Out.

To set fill Color to White, click the drop-down, click the Single tab and click the White cell. Similarly, for fill Pattern, click the drop-down, click the By Points tab, click the Use Column Values button and choose $\operatorname{Col}(F)$ from the list.
6.

7.
8. To customize the pattern list, click on the Pattern drop-down list again and then click the pencil icon to the right of the pattern list. This opens the Increment Editor, where you create your custom pattern list. Rearrange the top three entries in your custom list as shown, by dragging the numbered buttons to the left side of the pattern gallery.

9. To remove negative error bars, select the error bar plot in the left panel of Plot Details, (The second dataset under Layer1), then go to the Error Bar tab and clear the Minus check box.

10. To change the graph page background color, select the Graph icon in the left panel of the Plot Details dialog box. Go to the Display tab and set color to LT Gray.

11. To change layer background color to white, select Layer1 node on left panel of the Plot Details dialog. Go to the Background tab and set Color to White. Click OK to close Plot Details.

12. To show pattern information in the legend, right click the legend and choose Legend: Categorical

Values. Check the Fill Pattern and Show All Categories boxes and click OK.
13. To arrange the legend horizontally, select the legend, press the CTRL key and drag one of the green handles along the sides of the legend until the legend entries are arranged in a horizontal fashion.

14. Drag the legend to an appropriate position. Select and press Delete to remove the Y axis title.

To center and adjust margins on a finished graph, click on the graph to activate it, then choose Graph: Fit Layers to Page. Enter your Margin and determine whether to Maintain Layer Aspect Ratios, then click OK.

6.8.9 Grouped Stacked Column

6.8.9.1 Summary

In Origin, multiple datasets can be plotted as a stacked column graph. Usually these datasets are grouped together by default. In addition, subgrouping is possible for stacked column graphs such as the one shown
below with 2 subgroups:
Sales

\square	Ferrari East
	Ferrari Central
	Ferrari West
\square	BMW East
\square	BMW Central
\square	BMW West

Minimum Origin Version Required: 2017 SRO
6.8.9.2 What will you learn

This tutorial will show you how to:

- Plot a stacked column graph
- Subgroup the stacked column
- Create and customize an X axis table for the graph

6.8.9.3 Steps to Create a Grouped Stacked Column Plot

This tutorial is associated with the Grouped Stacked Column folder in the project <Origin EXE Folder> |Samples\Tutorial Data.opj.

Note: You can also access this sample graph by double-clicking on its thumbnail under the Column and Bar graph sample in the Learning Center dialog(Help: Learning Center menu or press F11).

1. Activate the worksheet Sheet1, highlight $\operatorname{col}(\mathrm{B}) \sim \operatorname{col}(\mathrm{G})$ and select Plot > Basic 2D: Stacked

Column from the menu to create a stacked column graph:

2. Double-click on the column plot to open the Plot Details dialog. On the Group tab, select By Size for Enable subgroup and set Subgroup Size to 3.

3. On the Label tab, check the Enable checkbox.

4. Graph1	Group	Pattem	Spacing	Label
4. \checkmark Layer1	\checkmark Enable			
[Book 1J]Sheet1! Month(X), B(Y) [1* $\left.1^{*} 7^{\times}\right]$	Font	'T D	fault: Arial	\checkmark
\checkmark [Book1J]Sheet1! Month(X), C(Y) [19 $\left.{ }^{\text {x }} 7^{*}\right]$				
- [Book1J]Sheet1! Month(X), D(Y) [1* $\left.{ }^{\text {P }} 7^{\times}\right]$	Color	\%	Auto	*
V [Book1J]Sheet1! Month(X), E(Y) [19:7 $\left.7^{\times}\right]$	Size		22	\checkmark
, [Book 1J]Sheet1! Month(X), F(Y) [19:7 $\left.{ }^{\text {a }}\right]$				
\checkmark [Book1J]Sheet1! Month (X), $\mathrm{G}(\mathrm{Y})\left[1^{\text {x }}\right.$: $\left.7^{*}\right]$		hite Out	B I	$\underline{\mathbf{U}}$

4. Select Layer1 in left panel of Plot Details dialog and click the Stack tab. Check the Use

Subgrouping (in Group tab) for Cumulative/Incremental check box. Click the Apply button.

5. Click OK to close the dialog. Select Graph: Rescale to Show All from the main menu.

6.8.9.4 Steps to Create a Tick Label Table for X Axis

1. To create two rows of tick labels for the X axis, double-click on the X axis tick labels to open the Axis dialog.

- Go to Bottom icon with Tick Labels tab selected.
- Under Format tab, change Font Size to $\mathbf{1 6}$
- Under Table tab, check the Enable checkbox and set Number of Rows to 2. Bottom icon will change into Bottom 1 and Bottom 2 on the left panel.
- Set the Table layout as shown below:

- Select the Bottom 2 icon and set Dataset Name to [Book1J]Sheet1!label in Display tab, and set the Font size to 10 in the Format tab. This will change the tick label row to the car names from the worksheet label $\mathbf{(Y) ~ c o l u m n . ~}$
- Set the table layout as the dialog below:

- To show a frame around the layer, select the Grids tab, Check on the Opposite check box under the Additional Lines branch and click OK button for both Horizontal and Vertical icons.

6.8.9.5 More Customization Steps

The following steps can further customize the graph to be exactly the same as the image in Summary.

1. Double-click on the column plot to open the Plot Details dialog. On Group tab, click the \ldots button in the 'Details column of the Fill Color row. Increment Editor opens.
2. Click on the arrow to the right of the first color, then click on an empty color well under Custom. In the Color dialog that opens, set the Red, Green and Blue values to 165, 196 and $\mathbf{0}$, then click OK.
3. Create five more custom colors using these $R G B$ values: ($\mathbf{2 4 3}, \mathbf{6 2}, \mathbf{1 2}),(\mathbf{2 4 3}, \mathbf{2 0 0}, \mathbf{3 0}),(\mathbf{0}, \mathbf{6 4}, \mathbf{1 2 7})$ (119, 0, 31), and (124, 191, 243).
4. Click the number (7) to left of the next color in the Increment Editor list, then scroll to the bottom of the list, press Shift then click on the number to the left of the last color. Click Delete to remove the selected colors so that you have just the six custom colors that you just created. Click OK to close the Increment Editor.

Plot Details - Plot Properties

Group	Pattem	Spacing	Panel	Label

$$
\begin{aligned}
& \text { Edit Mode } \\
& \text { Independent © Dependent }
\end{aligned}
$$

Right-click for more options, drag and move rows to rearrange if nested

Right-click for more options, drag and move
rows to rearrange

To stack columns with subgrouping. go to Stack check "Use Subgrouping (in Group tab) for Cumulaive
5. On the Label tab, set Size to 12, Color to Dark Gray and click on the Bold button. Choose Custom as Label Form and enter $\mathbf{\$ (\mathbf { p } , \mathbf { 0 }) \%}$ in Format String box. This adjusts the labels on the columns.

6. Click the Spacing tab and increase the Gap Between Bars(in \%) to $\mathbf{3 0}$.

7. Select Layer1 in left panel of Plot Details dialog and click the Stack tab. Check the Show Total Label on Stacked Column/Bar.

- Plot Details - Layer Properties

```
4.0 Graph1
    4-\nabla Layer1
        | [Book1]]Sheet1! Month(X), B(Y) [1*:7*]
        | [Book1J]Sheet1! Month(X), C(Y) [1*:7*]
        | [Book1]]Sheet1! Month(X), D(Y) [1*:7*]
        | [Book1J]Sheet1! Month(X),E(Y)[1*:7*]
        | [Book1J]Sheet1! Month(X), F(Y) [1*:7*]
        | [Book1J]Sheet1! Month(X),G(Y)[1*:7*]
```


Offset
O None
© Cumulative

- Incremental
- Constant
- Auto

O Individual Gap (\%)

$$
\square x
$$

YDisplay column/bar plot by sorted orderUse Subgrouping (in Group tab) for Cumulative/Incr
Normalize to Percent for Cumulative/Incremental
\square Show Connect Line on Stacked/Floating Column/Bar
V Show Total Label on Stacked Column/Bar
8. On the Group tab, change Edit Mode to Independent.
9. Select the 4th plot in the left panel and click on the Label tab. Set Color to LT Gray. Click Apply button.
10. Select the 5th plot in the left panel, and on the Label tab change Color to LT Gray and Size to 11. Click OK to close the dialog.
11. Select and delete the X and Y axis titles.
12. Right-click on en empty portion of the graph window and select Add/Modify Layer Title from the context menu. Type Sales as a layer title.
13. Select and drag the legend box to an appropriate position. Resize as needed, using the green selection handles.

6.8.10Stack Column Plot with Different Positive and Negative Y Scale

6.8.10.1 Summary

We will show how you can use axis break without a gap to produce this graph, that has much larger Y scale range for the negative bars.

Minimum Origin Version Required: 2015 SRO
6.8.10.2 What You Will Learn

This tutorial will show you how to:

- create a stacked column plot with error bars.
- enable an axis break without a gap.
- divide one axis into several segments and set scales separately.

6.8.10.3 Steps to Add Axis Break with No Gap

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can see this graph in Origin Central(Select Help: Origin Central menu or press F11 key). It is listed under the Column and Bar Charts sample graph table. Double-clicking on the thumbnail will open the target folder.

1. Open Tutorial Data.opj and browse to the Custom Axis Scale to Show Different Scale folder in Project Explorer and activate the workbook sample.
2. select all the columns and choose Plot > Basic 2D :Stacked Column to create a stacked column plot with error bars.

3. Positive columns cannot be seen since their absolute values are too small comparing to those of negative columns.
4. We can break the Y axis at $Y=0$ and use different axis scale for those two segments. First double click on the Y axis to open the Axis dialog and set Y Range (in Vertical icon) to be from -180000 to 80

5. Then go to the Breaks tab with Vertical icon active, and enable 1 axis break. Also set the Break Half Length to 0 so the break indicator will not show. Set both the Break From and the Break To to $\mathbf{0}$ so the axis will break at 0 and no break gap shows. Uncheck Auto Postion and enter 50 for the Position cell.

6. Set Custom Scale for the region after break $(\mathrm{Y}>0)$ by clicking Details:

7. Click Apply to apply the settings and view the updated graph, you can see the axis scales are different for the regions above or below the $Y=0$ line and the columns for positive values can also be seen in the
graph.

6.8.10.4 More Customization Steps

The following steps can further customize the graph to be exactly the same as the image in Summary.

1. Set the X scale to be from -2 to 20 , Major tick by increment 2.
2. Go to the Grids tab and select both Vertical and Horizontal icons, select the Opposite check box so the grid lines opposite to both X and Y axes will show.

3. Click OK to apply the settings and close the Axis dialog.
4. To change the positive and negative column colors to light gray and gray, double click on the columns to open the Plot Details dialog to make the changes shown below

5. To customize the legend, right click on the legend object and select Properties to open the Object Properties dialog, arrange the two legend entries to be in the same row as below and click OK

6. Move the legend to be above the graph.

6.8.11 Variable Column Width

6.8.11.1 Summary

Origin allows you to specify a dataset to control column/bar width. When the Scaling Factor is 0 , the dataset values determine bar width in terms of X axis scale values.

Minimum Origin Version Required: Origin 2015 SR0
6.8.11.2 What will you learn

This tutorial will show you how to

- Plot a stack column graph
- Set the width of column with a variable
- Customize the axis ticks and tick labels

6.8.11.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Variable Column Width in Project Explorer.
2. Activate the workbook Book3A, highlight $\operatorname{col}(F), \operatorname{col}(A)$ and $\operatorname{col}(B)$ and select Plot $>$ Basic 2D :

Stacked Column from menu to plot a stacked column.

3. Double-click on the plot to open the Plot Details dialog. Click the Group tab then click the button
\square to open the Increment Editor. Select two custom colors as Fill Color.

4. Go to the Spacing tab, select $\operatorname{Col}(C)$: " w " as Width (in \%) and set Scaling Factor to 0. After clicking Apply, it will be displayed as ' $<0=$ Use X Unit> .

5. Go to the Label tab, set Position to Center and select $\operatorname{Col}(C):$ " w " from the Label Form drop-down list.

6. Click OK to close the dialog. Double-click on the X Axis to open the Axis dialog.

- Select Horizontal icon in the Scale tab, select By Custom Positions for Type and [Book3A]Sheet1!F"Product Share (\%)" for Position.

Select multiple axes to customize together.

- Go to Bottom page in Tick Labels branch, set Type to Tick-indexed dataset and Dataset Name to [Book3A]Sheet1!D"Item".

- Go to the Grids tab and check the Opposite check box under the Additional Lines branch for both Vertical and Horizontal
- Click OK to close the dialog.

7. Double-click on the Y axis title and change it to Unit Sales. Right-click the legend box and select Properties... from fly-out menu. Edit the legend to display on one line. The graph should look like the following:

6.8.12Stack Column and Bar Charts of Rechargeable Battery Statistics

6.8.12.1 Summary

This tutorial will show you how to create a Stack Column bar graph.

Minimum Origin Version Required: Origin 2015 SR0

6.8.12.2 What will you learn

This tutorial will show you how to

- Create a Stack Column bar graph.
- Customize the graph.

6.8.12.3 Steps

1. Create a new worksheet. Import the sample data.

\# Stack Column and Bar Charts of Rech... $\square \square \times$					
	$A(x)$	$\mathrm{B}(\mathrm{C})$	C(1)	D(1)	\wedge
Long Name	Year	Lion	Nimh	Nicd	
Units					
1	1991	777719	--	--	
2	1992	759629	--	--	
3	1993	807048	72204	--	
4	1994	879264	204666	12000	
5	1995	872698	306106	32029	
6	1996	694384	356218	125388	
7	1997	703296	580930	193496	
8 星					
4 ${ }^{\prime}$, Stack	olumn	Bar Cha	s of $\mathrm{P}: \mid<$	IIII $>$:

2. Highlight all the columns and click the Stack Columns button on the 2D Graphs toolbar.

The graph should look like

3. Then apply a graph theme to add a top \mathbf{X} axis and a right \mathbf{Y} axis. Select Preferences: Theme Organizer to open the Theme Organizer dialog. Activate the Graph tab and select Opposite Lines from the table. Then click the Apply Now button. Click the Close button to close the dialog.

4. Double-click on the \mathbf{Y} axis to open the Axis dialog. Go to Horizontal icon in Grids tab, and check Show checkbox under the Major Grid Lines section. Click the OK button to add grid lines to the graph.

5. Go to the Title tab to change the title of Y axis to Millions of Unit Batteries. Then choose Top icon and add a graph title Rechargeable Batteries CCC. The graph should look like:

6.8.12.4 Sample Data

Download the Stack_Column_and_Bar_Charts.txt file from
http://www.originlab.com/ftp/graph gallery/data/Stack Column and Bar Charts.txt. Click the Import Single ASCII button $\stackrel{127}{\text { 曲 }}$ and select the file to import it into Origin.

The following table contains part of the sample data.

year(X)	Nicd(Y)	NiMh(Y)	Lion(Y)
1991	777719	--	--
1992	759629	--	--
1993	807048	72204	--
1994	879264	204666	12000
1995	694384	356218	32029
1996	703296	580930	125388
1997			193496

6.9 Multi-Axis and Multi-Panel

6.9.1 Multi-Axis and Multi-Panel

- Double Y
- 3Ys Y-YY
- Stack Lines by Y Offsets
- Vertical 2 Panel Line
- Multiple Axis Plot
- Energy-Level Structure of the Er3+ Ion in A YAG Crystal
- Create an 8 layer multi-panel plot template
- Panel Graph with Inset Plots of High-resolution Electron Energy-loss Spectra

6.9.2 Double Y

6.9.2.1 Summary

This tutorial will show how to create a graph with double Y axes.

Minimum Origin Version Required: Origin 2015 SR0

6.9.2.2 What you will learn

- Create a graph with double Y axes
- Customize scatter plots
- Change axis scale, type, title, etc.
- Update legend

6.9.2.3 Steps

This tutorial is associated with the project: \Samples \backslash Graphing \backslash Double Y.opj.

1. Open the project <Origin Installation Directory>\Samples \backslash Graphing \backslash Double Y.opj and activate the workbook.
2. Highlight four columns of data in the worksheet, then choose menu Plot $>$ Basic 2D : Double-Y to create a graph with double Y axes.
3. Customize scatter plots:

- Double click on the plot to open the Plot Details dialog box. In the left panel, select the plot in Layer1, and set the plot type to Scatter, symbol to Triangle and size to $\mathbf{1 0}$ (Hint: the box accepts text entries).

- Choose the first plot in Layer2, then change the Plot Type, Size and Color as shown below.

- Choose the Error bar plot in Layer2, then change Color to Gray in the Error Bar tab.
- Click OK to apply your customizations and close the dialog box.

4. Double click on X axis to open the Axis dialog box. On the Scale tab for \mathbf{X} Axis, set the X axis scale to be from 92 to 83 with increment of -2 .

Select multiple axes to customize together.
\square Apply To... OK
5. Click Vertical icon on the left panel and go to the Scale tab for \mathbf{Y} Axis and apply the following settings to the left Y axis:

Select multiple axes to customize together.

$$
\text { Layer } 1 \quad \vee
$$

6. Click Horizontal icon on the left panel to go to Title tab and change the X Axis title to Transition Temperature (K):

7. Click Left icon on the left panel to change the Y Axis title to Deposition Pressure (Torr).
8. Set the Layer drop-down to 2 to switch to Layer 2 controls. Repeat the settings as in step $5-6$, but with scale From = 765, To = 795, Type = Linear. For Major Ticks, change the Value for Increment to 10. Go to Title tab and change Text to Annealing Temperature ($\backslash+(0) C$).
9. Go to the Line and Ticks tab and set both Major Ticks and Minor Ticks to In and click OK to apply settings.

10. Click the legend to select it, then right-click and choose Properties from the shortcut menu. This opens the Object Properties dialog box. Go to Frame tab, change Frame to Box. In the Text tab, enter the following:
$V(1.1)$ As Grown

V(2.1) Annealed

11. Click OK to close the Properties dialog box. Move the legend to an appropriate position.

6.9.3 3Ys Y-YY

6.9.3.1 Summary

This tutorial will show how to create a graph with three Y axes; one left Y axis and double right Y axes.

Minimum Origin Version Required: Origin 2015 SRO

6.9.3.2 What you will learn

- Create a graph with three Y axes; one left Y axis and double right Y axes.
- Customize scatter plots.
- Change axis scale, type, title, etc.
- Add an axis to an existing graph.
- Update the graph legend.

6.9.3.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
You will also find this graph in Learning Center. Select Help: Learning Center from the menu or press the F11 key. From the Samples in list, choose Graph Sample: Multiple Axis.

1. Open Tutorial Data.opj and browse to the $\mathbf{3 Y s} \mathbf{Y}-\mathbf{Y Y}$ folder in Project Explorer (PE).
2. Highlight all data columns in the worksheet, select Plot > Basic 2D:3Ys Y-YY main menu to create a graph with three Y axes - one left Y and two right Y .
3. Customize data plots:

- Double-click on the plot to open the Plot Details dialog box. In the left panel, select the plot in Layer1, then change the plot type, symbol and color as shown below (be careful not to clear the check box to the left of the plot):

- Click the data plot in Layer2 and change the plot type and symbol shape as shown in the following:

- Choose the Error bar plot in Layer2, then change its color to Black.
- Choose the plot in Layer3. Change the Plot Type to be Line + Symbol and go the Symbol tab (right panel), choose the following settings:

- Select the Line tab (with Layer 3 still selected) and change Connect to B-Spline. Click OK to close Plot Details.
Fill Area Under Curve

4. Double-click on the X axis to open the Axis dialog box. Configure the X axis scale as shown in the following:

Select multiple axes to customize together.
\square Apply To... OK
5. Go to Tick Labels tab and click Top icon on the left panel, check the Show box and show tick labels of top axis.

6. Then go to Line and Ticks tab, check Show Line and Ticks box to show line and ticks for top axis and click on Apply.

7. Go to the Scale tab and click the Vertical icon on the left panel and duplicate the following settings:

8. Go to the Title tab, select Show and change the title Text to Deposition Pressure (Torr) and select Auto from color drop-down list.

Select multiple axes to customize together.
Apply To...
9. Click Apply to and apply the axis settings to layer 1.
10. Set the Layer drop-down list to 2 and in the left panel, choose Right.
11. Click the Scale tab and set From $=765$ and $T o=795$, and set the Major Ticks increment Value to 10. Click the Title tab, check Show and change the axis title to Annealing Temperature ($\backslash+(0) C)$ and select Auto from the Color drop-down list.
12. Set the Layer drop-down list to 3 and in the left panel, choose Right. On the Scale tab, set the axis scale to read from 0 to 6 with a major tick increment Value $=1$. On the Title tab, check Show and enter $\mid g(D) T \backslash-(c)(K)$ for Text and set the Color drop-down list to Auto.
13. Click OK to apply settings and close the dialog box. On the graph, right-click the legend object and choose Properties from the shortcut menu. This opens the Object Properties dialog box. Go to Frame tab, and change Frame to Shadow. Go to Text tab, and enter the text shown below, then click OK to close the dialog box. Reposition the legend object, as needed.
$V(1.1)$ As Grown

V(2.1) Annealed
$V(3.1) \backslash g(D) T \backslash-(C)$

14. Add a graph title by creating a text object and typing Characteristics of Samples Grown Under Different Conditions. Reposition as needed.
15. Right-click outside the graph (but still within the white area) and select Fit Page To Layers.... Accept the defaults and click OK to adjust the page size to better fit the graph layers.
16. To the right side of the graph, click once to select the axis titles and the blue Y axis, then drag to reposition them so that they don't overlap one another. Your graph should now look something like this:

6.9.4 Stack Lines by Y Offsets

6.9.4.1 Summary

This tutorial will demonstrate how to create a graph with stack lines by Y offsets.

Minimum Origin Version Required: Origin 2015 SR0

Aside from the stacked individual line plots described in this tutorial, you can create stacked line plots comprised of sub-groups of lines, with offsets created between subgroups. See the Plot Details Stack tab for details.

6.9.4.2 What you will learn

- How to create a graph with stack lines by Y offsets
- How to customize a rectangular object
- How to add a new XY scaler

6.9.4.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj.

Create a Stack Line Plot

1. Open the Tutorial Data project and browse to folder Stack Lines by Y Offsets in Project Explorer.
2. Highlight all the columns in the data worksheet of Book6A, and choose menu Plot > Basic 2D: Stack Lines by Y Offsets to create a graph with stack lines by Y offsets.

Customize the Stack Line Plot

1. Delete the following objects by selecting them and pressing the Delete key on your keyboard:

Legend

Y axis

Y axis labels

Y axis title
X axis title

2. Double click on the X axis to open the Axis dialog. On the Scale tab, change the value of To to 10 . Click OK to close the dialog.

Add XY Scaler

1. Click the Rectangle button on the Tools toolbar and then create a rectangle on the graph.
2. Double click on the rectangle to open its properties dialog. Change the following settings.

Fill Pattern tab
Fill Color = LT Yellow

Dimensions tab
Units = scale
Left $=0.25$
Top $=9000$
Width $=3.5$
Height $=4000$

3. Click OK to close the Object Properties dialog.
4. Select Graph: New XY Scaler from the Origin menu to create a new XY scaler.
5. Double click on the scaler to open the Scaler Properties dialog. Set the following properties in the dialog:

Font Settings branch
Font Size $=24$
X branch
Length(Scale) $=2$
Title $=2$
Y branch
Position $=$ Right
Length (Scale) $=2500$
Title $=2500$

6. Click OK to close the Scaler Properties dialog.
7. Move the scaler object onto the rectangle you created.

Drag and Change Plot Offset

1. Click on the top data plot (purple one) twice to select it. (Click only once will select the whole group):

2. Click and drag the mouse to move the data plot.

Note: an alternative is to go to the Offset tab in Plot Details dialog and change the Y offset.

6.9.5 Vertical 2 Panel Line

6.9.5.1 Summary

This tutorial will demonstrate how to merge and customize two graphs.

Minimum Origin Version Required: Origin 2015 SR0

6.9.5.2 What You Will Learn

In this tutorial, you will learn how to:

- Merge graph windows
- Customize graph axes after merging
- Apply a graph theme

6.9.5.3 Steps

1. Create a new worksheet. Click the Import Single ASCII button ${ }^{127}$ 曾 and import the Vertical_2_Panel_Line.txt file under <Origin EXE Folder>\Samples\Graphing path.

\#\# Vertical 2 Panel Line.dat								$\square \square$	
	$A(x)$	B(Y)	$\mathrm{C}(1)$	D(Y)	$\mathrm{E}(\mathrm{Y})$	F(V)	G(Y)	$\mathrm{H}(1)$	\wedge
Long Name	Year	All Persons	All Males	All Females	Black Males	White Males	Black Females	White Females	
Units									
1	1965	42.3	51.6	34	59.2	50.8	32.1	34.3	
2	1974	37.2	42.9	32.5	54	41.7	35.9	32.3	
3	1979	33.5	37.2	30.3	44.1	36.5	30.8	30.6	
4	1983	32.2	34.7	29.9	41.3	34.1	31.8	30.1	
5	1985	30	32.1	28.2	39.9	31.3	30.7	28.3	
6	1987	28.7	31	26.7	39	30.4	27.2	27.2	
7	1990	25.4	28	23.1	32.2	27.6	20.4	23.9	
8	1991	25.4	27.5	23.6	34.7	27	23.1	24.2	
9	1992	26.4	28.2	24.8	32	28	23.9	25.7	
10	1993	25	27.5	22.7	33.2	27	19.8	23.7	
11	1994	25.5	27.8	23.3	33.5	27.5	21.1	24.3	
12									\checkmark
	Panel Lin	ne/				$1 \leqslant$	III	$>$	\therefore

2. Select column 2 to column 4, select Plot > Basic 2D: Line + Symbol main menu or click the Line + Symbol button on the 2D Graphs toolbar.

The following graph will be created:

Go back to the worksheet. Select column 5 to column 8 and click the Line + Symbol button on the 2D
Graphs toolbar to create a new graph as shown below:

3. To merge the two graphs, select Graph: Merge Graph Windows from the menu. Accept the default settings and click OK. The two graphs will merge in one window:

4. Ensure that Layer 1 is selected on the top left corner of the graph and double-click on the \mathbf{Y} axis of Layer 1 to open the Axis dialog. In the Scale tab, set the dialog options as shown below:

5. Click Horizontal icon on the left panel, and go to Tick Labels tab, uncheck the Show box to hide the tick labels in Layer 1 and click OK to apply settings.

6. Delete the X axis title in Layer 1. Set the same scale for the Y axis of Layer 2. The graph should now appear as shown below:

7. Apply a theme to add a top \mathbf{X} axis and a right \mathbf{Y} axis. Select Preferences: Theme Organizer from the main menu to open the Theme Organizer dialog. Activate the Graph tab and select the Opposite Lines from the table and click the Apply Now button. Use the Close button to close the dialog.

8. Select the Legend of Layer 1 and right-click on it to select Properties from the short-cut menu. Set the dialog options as shown below:

Move the legend to the desired position.
9. Select the Line button from the Tools toolbar and draw a line on the Layer 1 as shown in the sample image. Hold down the SHIFT key while drawing to ensure that the line is vertical. Double-click on the line to open the Properties dialog of the line object. In the Line tab, select Dash in the Type drop-down list and enter $\mathbf{2}$ in the Width edit box. Activate the Control tab. Select both the Horizontal Movement and the Vertical Movement check boxes. Click the OK button to finish.
10. Repeat steps 8-9 for Layer 2.
11. Select the Text button in the Tools toolbar. To add a title for the graph click in the middle of the graph and enter Cigarette Smoking by Persons 18 Years and Over in the United States. Double-click on the \mathbf{Y} axis title of Layer 1 and Layer 2 and enter Percent Who Smoke.

The final graph should appear as shown below:

6.9.6 Multiple Axis Plot

6.9.6.1 Summary

This tutorial will demonstrate how to create a $4-Y$ plot and add recession bars.

Minimum Origin Version Required: Origin 2015 SR0

6.9.6.2 Steps

1. Create a new workbook, click the Import Single ASCII button and import the multi_axis_plot.txt file under <Origin EXE Folder>\Samples\Graphing path.
2. Place the mouse cursor near the top left corner of the worksheet. When the cursor changes to a down-right arrow, left-click to select the whole worksheet.

\#\#wltiaxisplot - multi_axis_plot.txt						$\square \square$
\}	A(\times)	B(C)	cm	DM	E(V)	
Long Name	DATE	Personal Saving	DATE	Unit Labor Cost	DATE	Output ${ }^{\text {F }}$
Units		Eillions of Dollars		Index 1992=100		
Comments						
Sparklines		$\text { Nrhor }+1$				
1	1/1/1947	10.3	1/1/1947	21.175	1/111947	
2	4/1/1947	4.3	4/1/1947	21.547	4/1/1947	
3	7/1/1947	8.4	7/1/1947	21.874	71111947	
4	1011/1947	6.5	1011/1947	22.444	10111947	
5	1/1/1948	8.4	1/1/1948	22.278	11111948	
6	4/1/1948	12.8	4/1/1948	22.058	41111948	
7	7/1/1948	16.6	7/111948	22.781	71111948	
8	1011/1948	15.6	1011/1948	23.141	101111948	
9	1/1/1949	11.3	1/111949	22.765	1:111949	
10	4/1/1949	9	4/1/1949	22.345	4/1/1949	\checkmark
4 multi_	axis_plot/			<	\square	

3. Right-click and select Set as: XY XY from the short-cut menu to set proper plotting designations for the worksheet columns.

multiaxisplot - multi_axis_plot.txt						$\square \square$
	A(X1)	B(\%1)	$\mathrm{C} \times 2)$	D(\%2)	E(X3)	\wedge
Long Name	DATE	Personal Saving	DATE	Unit Labor Cost	DATE	Output F
Units		Billions of Dollars		Index 1992=100		II
Comments						
Sparklines	R	$\ldots-1+r_{1+1} \mid$				-
1	1/1/1947	10.3	1/1/1947	21.175	1/1/1947	
2	4/1/1947	4.3	411/1947	21.547	411/1947	
3	7/1/1947	8.4	7/1/1947	21.874	7/1/1947	
4	1011/1947	6.5	1011/1947	22.444	1011/1947	
5	1/1/1948	8.4	1/1/1948	22.278	1/1/1948	
6	4/1/1948	12.8	4/1/1948	22.058	4/1/1948	
7	7/1/1948	16.6	7/1/1948	22.781	7/1/1948	
8	1011/1948	15.6	101/11948	23.141	101/11948	
9	1/1/1949	11.3	1/1/1949	22.765	1/1/1949	
10	4/1/1949	,	411:1949	22.345	4/1/1949	\checkmark
\begin{tabular}{\|l	l	l	}			
\hline \hline
\end{tabular} | axis_plot/ | | | \|< | | $>1 \mid$ |

4. Highlight all the columns. From the main menu, select Plot > Basic 2D : 4Ys YY-YY to create a plot as shown below:

5. Double-click on the graph to open the Plot Details dialog shown below. In the left panel, select the second plot in Layer 1 and set the Plot Type option at the bottom of the dialog as Line. In the right panel Line tab, choose the settings shown below and Apply.

6. Select the Pattern tab. Set the dialog options as shown below and click OK.

7. Ensure Layer 1 is selected in the top left corner of the graph and double-click on the bottom X axis to open the Axis dialog for Layer 1. On the Scale tab, change the dialog options as shown below and Apply.

8. Go to Tick Labels tab, change the dialog options as shown below and Apply.

9. Go to Line and Ticks tab, click the Top icon on the left panel and check Show Line and Ticks. Then choose In for Style under Major Ticks and None for Style for Minor Ticks and click OK to apply settings.

10. Click on the legend to select it and use the mouse to drag it to the desired position.

The final graph should appear as shown below:

6.9.7 Energy-Level Structure of the Er3+ Ion in A YAG Crystal

6.9.7.1 Summary

This tutorial will demonstrate how to create a graph showing the energy-level structure of the Er3+ ion in a YAG crystal.

Minimum Origin Version Required: 2015 SRO

6.9.7.2 What you will learn

This tutorial will demonstrate how to:

- Create a graph by selecting part of the data from a column
- Set symbol properties
- Merge graphs
- Change the size and position of a layer

6.9.7.3 Steps

1. Start with an empty worksheet and use the Single Import ASCII農 icon to browse to the \Samples\Graphing subfolder of the Origin program folder, and import the file Van_Rudd_Er_Energy_Levels.txt.
2. Highlight column B and create a symbol plot by selecting menu Plot > Basic 2D : Scatter.
3. Double click the data points scatter to open the Plot Details dialog. In the Symbol tab of the right panel, change the symbol and symbol color as shown below:

4. In the Drop Lines tab, check the Horizontal box and set Width to 1. Click OK to apply the changes.

5. Double click on the X axis to open the Axis dialog. Set the X axis scale from 0 to 1 in the Horizontal icon in Scale tab :

6. Go to the Line and Ticks tab, Tick Labels tab, and Title tab respectively, make sure Bottom icon is selected and deselect the Show Line and Ticks or Show box to hide all elements in the bottom X axis including line \& ticks, labels and title:

7. In the Vertical icon in Scale tab, set the following for the Y axis scale: From: 0, To: 24000, Value(in Major Ticks Group): 2000.
8. Go to Left icon in Title tab, change the Text for the Y axis title to Energy Levels $(\mathrm{cm} \backslash+(-1))$:

9. Go to the the Left icon in Line and Ticks tab, select In from the drop down menu for Major Ticks and Minor Ticks:

10. Use OK to save the axis settings. Delete the legend object in the graph by selecting it, right-clicking and choosing delete from the drop down menu. The graph should appear as shown below :

11. Highlight cell $1-8$, cell $9-15$, cell $16-21$, cell $22-26$, cell $27-31$, cell $32-43$, and cell $44-48$ respectively, to plot scatter graphs by selecting menu Plot > Basic 2D: Scatter and then repeat step 3 through step 11 to make another 7 graphs. Set the increment value of the Y axis (step 7) to 100, and the From and To values as 0 to 600,6500 to 6900,10200 to 10500,12300 to 12800,15200 to 15600,18300 to 20800, 22200 to 22700, respectively. The Title in Y axis (step 8) are also different and should be set as $\mid+(4) I \backslash-$ $(15 / 2), \backslash+(4) I \backslash-(13 / 2), \backslash+(4) I \backslash-(11 / 2), \backslash+(4) I \backslash-(9 / 2), \backslash+(4) F \backslash-(9 / 2), \backslash+(4) F \backslash-(7 / 2) \backslash+(2) H 2 \backslash-(11 / 2)$ $\backslash+(4) S \backslash-(3 / 2)$, and $\backslash+(4) F \backslash-(3 / 2) \backslash+(4) F \backslash-(5 / 2)$, respectively. Then set the Y axis Major Ticks and Minor Ticks to None.
12. In order to change the rotation angle of the Y title created in step 9, select the Y title, choose Properties from the right-click menu and set the Rotate(deg.) to 0 in the Object Properties dialog that opens.

13. Activate one of the graphs and select menu Graph: Merge Graph Window. Change the settings as shown below and click the OK button to merge the 8 graphs previously created.

14. Double click on the merged graph to open the Plot Details dialog. In the Size/Speed tab of Layer 1, change the Layer Area as shown below:

15. Set the other layers' sizes to 15×15 (Width and Height in step 15), and move them to the desired position. Adjust the size of the Y axis label and add the corresponding arrows and circles. The graph should appear as shown below:

6.9.8 Create an 8 layer multi-panel plot template

6.9.8.1 Summary

All child windows in Origin, with the exception of the Notes window, are created from template files. These template files describe how to construct the window. For a graph window, the template file determines all page and layer characteristics, such as page size, number of layers, inclusion of text labels and data plot style information to name a few.

Minimum Origin Version Required: 2016 SR0

6.9.8.2 What you will learn

This tutorial will show you how to:

- Create an 8 layer multi-panel plot
- Apply axis settings from one axis to all axes
- Save a graph template
- Reuse the template with similar data

6.9.8.3 Steps

6.9.8.3.1 Choosing the Data Source

1. Click the New Project button on the Standard toolbar, to begin a new project.
2. Open Import Wizard using the Import Wizard button on the Standard toolbar. (Note that if this is the first time that you have started the Import Wizard, you will experience a slight delay as Origin compiles the necessary files.)
3. Verify that the ASCII radio button is selected in the Data Type group.
4. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Curve Fitting folder. Select Step01. dat from the list of files.
5. Click the Add File(s) button and save changes with OK.
6. Leave the Import Filters for current Data Type as Data Folder: step. (This filter has the settings to use when importing the file.)
7. Click the Finish button. The data file imports into the worksheet.

6.9.8.3.2 Plotting the Data

1. Highlight the entire worksheet of data. (Note that you can select an entire worksheet by placing your cursor in the blank area in the upper left corner of the worksheet. When the cursor becomes a downward pointing arrow, click once to select the entire worksheet.)
2. Select Plot > Basic 2D :9 Panel. A new 9 layer graph with 9 graphs is created.
3. Select the empty graph and ensure the 9th layer on the top left corner of the window is selected. Pressing the Delete key will now delete this graph and this layer leaving 8 graphs on 8 separate layers behind.
4. Select Graph:Layer Management. In the Layer Management dialog that opens select the Arrange tab.
5. Set Number of Rows to 4 and Number of Columns to 2 .
6. Clicking the Apply button gives a preview in the small window on the right side of the dialog, showing a 2x4 arrangement.
7. Click OK to save the changes.

6.9.8.3.3 Editing the Graph

The goal is to save this 8 panel graph as a template; i.e. a new plot type, so that it can be used again with new similar data. Since the template will also save plot style information, we will customize the graph a bit further.

1. Double-click on the X axis in layer 1. The Axis dialog opens.
2. Select the Grids tab, check the Show boxes under both Major Grid Lines and Minor Grids Lines tree node to display major and minor grid lines for X axis.
3. Set the Color for both Major and Minor grids to LT Gray.
4. Click Apply to... button to open the Apply To dialog, make sure the Apply From is chosen as Bottom.
5. Select the check box All Below and then select This Window in the drop-down menu.
6. Click the OK button to apply the same setting to all axes in all layers of this graph page.

6.9.8.3.4Saving as a new graph template

1. Select File:Save Template As. A dialog opens allowing you to choose the category that the template will be saved in as well as the name given to the new template.
2. Change the Template Name to PAN8. (Note that the Template Name that appears when the dialog opens is the name of the original template that was used to create the graph.)
3. Select the option Mark as Cloneable Template.
4. Click OK.
6.9.8.3.5 Plotting into your new template
5. Click the New Folder button on the Standard toolbar.
6. Click the Import Wizard button on the Standard toolbar. The Import Wizard opens.
7. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Curve Fitting folder. Select Step02. dat from the list of files.
8. Click the Add File(s) button.
9. Click OK.
10. Leave the Import Filters for current Data Type as Data Folder: step. (This filter has the settings to use when importing the file.)
11. Click the Finish button. The data file imports into the worksheet.
12. Highlight the entire worksheet of data. (Note that you can select an entire worksheet by placing your cursor in the blank area in the upper left corner of the worksheet. When the cursor becomes a downward pointing arrow, click once to select the entire worksheet.)
13. Select Plot: Templates: Template Library to open Template Library to select PAN8 to plot.

6.9.9 Panel Graph with Inset Plots of High-resolution Electron Energy-loss Spectra

6.9.9.1 Summary

Origin can be used to create a three panel graph with inset plots similar to the image shown below:

Minimum Origin Version Required: 2015 SRO

6.9.9.2 What you will learn

This tutorial will demonstrate how to:

- Use the Plot Setup dialog to create curves on one graph using data from multiple workbooks.
- Add Inset Graphs.
- Copy and Paste Style formats.
- Use the Layer Management dialog to link axes.

6.9.9.3 Steps

6.9.9.3.1 Using the Plot Setup dialog

This tutorial is associated with <origin exe folder>\Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and go to the folder Three Panel Graph with Inset Graphs.
2. Activate the workbooks Measured and Original name: BOS".
3. Ensure that nothing is selected in either workbook and click the line button \square on the 2D Graphing toolbar.
4. This will bring up the Plot Setup dialog box.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\wedge}$ and expand Available Data panel by clicking 슬again.

Please refer to Plotting using Plot Setup for more information.
5. Under Available Data select the Worksheets in Folder option from the drop-down list. This will ensure that in the panel to the right, data is available from all the workbooks in the current folder.

6. Make sure that the Original name: BOS worksheet is selected as shown above. In the center panel enable the box corresponding to \mathbf{X} and $\mathbf{A 4}$ and the second box corresponding to \mathbf{Y} and $\mathbf{B 4}$.
7. This will set $\operatorname{col}(A 4)$ as the X values and $\operatorname{col}(B 4)$ as the Y values regardless of column designation in the workbook. Select Add and a new curve will be created in the pre-existing Layer on the third panel:

Plot Type:		Show	S)	d]S						\rightleftarrows
Line	-	X	Y	yEr	L	Column	Long Name	Comments	Sampling Interval	Positic
Scatter	Q	\square	\square	\square	\square	BT				
Line + Symbol	\#	\square	\square	\square	\square	A. 2				
Column / Bar		\square	\square	\square	\square	B2				
Area		\square	\square	\square	\square	A3				
Stacked Area		\square	\square	\square	\square	B3				
Fill Area		V	\square	\square	\square	A4				
High - Low - Close	-	\square	\square	\square	\square	B4				

Plot List: Drag entries in 1st column to reorder or to move between layers. Right click for other options. Replace Add

8. On the first panel, change the highlighted workbook to Measured.
9. On the left, set Plot Type to Scatter.
10. On the second panel, select the check boxes as shown below:

Plot List: Drag entries in 1st column to reorder or to move between layers. Right click for other opti

Plot	Range
- L L Layer 1	∇ Rescale
We [Driginal name: B0S]Sheet 1 ! $\mathrm{A} 4(\mathrm{X}), \mathrm{B4}(\mathrm{Y})$	[${ }^{\text {x }}$:1001*${ }^{\text {x }}$]
	[1*:3020x]

11. Select Add and the plot will be added to the Layer in the third panel. Select OK to close the dialog box. Your graph should look like the one shown below:

12. Activate one of the workbooks and follow the procedure above to create two more graphs using the following designations in the Plot Setup dialog (remember to change the plot type to Scatter for the data from Measured):

Graph 2

Worksheet Name	Set \mathbf{X} as	Set \mathbf{Y} as
Original name: BOS	A1	B1
Measured	C	D

Graph 3

Worksheet Name	Set \mathbf{X} as	Set \mathbf{Y} as
Original name: BOS	A2	B2
Measured	A	B

6.9.9.3.2 Adding Inset Graphs

1. Select the Add Inset Graph With Data button on the Graph toolbar to add an inset graph to each graph. Each inset graph appears on its own layer and each graph can be customized, zoomed, panned and moved around like the full-size parent graph it was created from.
2. Select and drag each graph to the center:

6.9.9.3.3 Merging Graphs
3. From the Origin menu select Graph: Merge Graph Windows: Open Dialog. Alternatively select the回 는 button on the Graphs toolbar.
4. In the Graph Manipulation: merge_graph dialog that opens, under Arrange Settings, set the Number of Rows as $\mathbf{3}$ and the Number of Columns to 1. The Preview will appear on a panel to the right.
5. Enable the check box for Treat Each Source Graph as a Unit, to keep the graphs and the corresponding inset graphs linked.
6. Enable Show Axes Frames to add frames around each graph:

7. Click $\mathbf{O K}$ to exit the dialog.

6.9.9.3.4 Customizing Plots and the Copy Format Feature

1. Double-click the first graph to open the Plot Details dialog box.
2. Use the \ll button to expand the left panel. Click on the arrow next to the Layer1 icon to expand it and show the layer 1 contents.
3. Select the plot [Measured]Sheet1!E[X]... and on the Symbol tab, change the symbol to a circle, the Size as 5 and the Symbol Color to Red as shown below. Select Apply.

[-I Plot Details - Plot Properties

4. Select the plot [Fitted]Sheet1! $A 4[X], B 4 \ldots$ and on the Line tab set the line color as Blue.
5. Click OK to exit the dialog box.
6. The next step is to apply this color scheme to all the parent graphs and inset graphs to avoid manually changing them all. Right-click on the customized graph and from the context menu select Copy Format: All Style Format:

7. Right-click on each remaining graph and select Paste Format from the context menu.

Beginning with Origin 2018b, you can use the Plot Details Common Display controls for simultaneous editing of layer, plot and axis properties in a multi-layer graph. For more information, see The (Plot Details) Layers tab controls.

6.9.9.3.5 Using the Layer Management Dialog Box to Link and Customize Axes

The next step is to set the scales on the axes and add axis breaks to show the important parts of the graphs.

1. Select Graph: Layer Management. In the dialog box that opens there will be a panel named Layer Selection on the left. It lists all six of the layers in this graph - 3 for parent graphs and 3 for inset graphs.
2. In order to customize one parent graph axis and have the changes implemented on the other two parent graphs, the axes are linked in the Link tab. The first Layer cannot be linked so it is the one that is customized and the other graphs are linked to it. Select Layer $\mathbf{3}$ and in the Link tab set Link to as 1 and set X Axis Link and Y Axis Link as Straight[1 to 1] as shown below:

3. Click Apply.
4. Do the same for Layer 5 and click Apply.
5. Click OK to exit the dialog box.
6. Double-click any axis on the first graph to open the Axis Dialog.
7. Go to Horizontal icon in Scale tab, set From and To to -250 and 1500. Set the Increment Value on the Major Ticks section as 250.

8. Go to Horizontal icon in the Breaks tab, set Number of Breaks to 1.
9. Select Break 1 under the Breaks node and create a break From: 850, To: 1250.
10. On the same page, clear the Auto check box for Position (\% of Axis Length) and set it as 75.

11. Go to Vertical icon in Scale tab, set the scale as From: 0 , To: 0.22 with increments of 0.1 .

12. Select OK. All three graphs will now reflect your changes.
13. To customize the Inset Graphs, zoom into the first one on Layer2 using the Zoom Pan button on the Tools toolbar. Use the mouse wheel to zoom in.

14. Once zoomed in, select the Pointer button on the Tools toolbar to exit the zoom mode. Doubleclick on the Inset Graph to open the Plot Details dialog. Select the [Measured]Sheet1!E[X]... graph and on the Drop Lines tab, check the Vertical box. Click OK.

Data Points Display Control
Skip Points \qquad
15. Double-click on any axis.
16. In the Axis Dialog that opens, set the scale for the \mathbf{X} Axis on the Scale tab From: 1350, To: 1450, with increments of $\mathbf{5 0}$.
17. Under the Vertical icon, set the scale From: 0, To: 0.03. Go to Lines and Ticks tab and on the left icon, set the Major Ticks to None and the Minor Ticks to None.
18. Select OK to exit the dialog box. Select the tick labels on the left Y axis and press Delete to remove them. Do the same with axis labels.
19. Press CTRL+W to zoom out and return to normal graph size.
20. Select the customized Inset Graph, right-click and choose Copy Format: All Style Formats from the context menu.
21. Select, right-click and Paste Format to the other two Inset Graphs, to duplicate the drop lines settings.
22. Repeat the last two steps, this time selecting Copy Format: Scales to duplicate the axis settings.

6.9.9.3.6 Adding Titles, Legend and Text Objects

1. Activate the first Layer by clicking the layer icon on the top left corner of the graph. Right-click on the graph and from the context menu choose Add/Modify Layer Titles. Type Wurtzite GaN in the box that opens, change the font size and type face as desired and drag to an appropriate position:

2. Select the legend objects for the second and third graphs and press DELETE.
3. Select the remaining legend, right-click and choose Properties. In the Text tab of Object Properties dialog box, type Fitted in place of $\%(\mathbf{1})$ and Measured in place of $\mathbf{\% (2)}$. Place both on the same line. Set the font size as desired. Go to Frame tab, and set the Frame to None. Click OK and drag the legend object to an appropriate place.

4. Delete the first and third Y -axis titles. Double-click the second one and type Intensity [arb. units]. Do the same for the single X-Axis title, labeling it Energy Loss [cm-1].
5. Right-click on the graph and choose Add Text from the context menu or choose the \mathbf{T} button on the Tools tool bar. Add text objects as shown below. Use the $\left.\mathbf{x}_{2}\right|_{\text {button for writing subscripts: }}$

6. Select each of the inset graphs and change size or position as desired. Use the \nearrow button on the Tools toolbar to create arrows where desired on the Inset Graphs:

7. The final graph should appear as shown below:

6.10 Contour

6.10.1 Contour

- XYZ Contour
- Contour Plots and Color Mapping
- Ternary Contour
- Combining Line and Contour Plots
- Contour Graph with XY Data Points and Z Labels
- Contour Plot with Vector Overlay
- Create Heatmap with Virtual Matrix and Colormap Bar Plot

6.10.2XYZ Contour

6.10.2.1 Summary

This tutorial will show you how to create a contour from XYZ data.

Minimum Origin Version Required: 2015 SR0

Prior to Origin 2018 SRO，the application of a custom boundary sometimes generated an imperfect fill at boundary margins．This has been improved in 2018．The user can restore the previous contour－fill behavior using system variable＠TCSM．

6．10．2．2 What will you learn

This tutorial will show you how to
－Create a Contour Plot from XYZ data
－Customize levels，lines，and color mapping
－Use a Custom Boundary
－Cutomize the Color Scale
－Customize the axes of the plot

6．10．2．3 Steps

This tutorial is associated with the 2D and Contour Graphs project：\Samples\2D and Contour Graphs．opj
（Note：Users with Origin 2017 and later will find this data in Origin Central（press F11 to open）under Graph Samples＞Contour Plots）．

1．Open the 2D and Contour Graphs：Contour：XYZ Contour folder in the Project Explorer．Activate Book1B and highlight column D and then click Contour－Color Fill button from the 3D and Contour Graphs toolbar．

豎 Contour－Color Fill		
罭 Contour－B／＇ Lines＋Labels		
E：Gray Scale Map		
臨 Contour Profiles		
18 Polar Contour theta（ X$) \mathrm{r}(\mathrm{Y})$		
楼）Polar Contour r（ X$)$ theta（Y）		
A Ternary Con		
	㗁 或	［

The graph should look like：

2. Double-click on the contour plot to bring up Plot Details dialog. Select the Contouring Info tab and set the options in the dialog as the screenshot below:

3. Select the Color Map/Contours tab, click the Level heading and set the dialog as the following screenshot shows:

- Click the Fill heading, select Load Palette and then select Rainbow from the Palette list and click OK to close dialog.
- Click the Lines heading, make sure that Show on Major Levels Only is selected. Select the Color check box under Apply to All and choose LT Gray from the drop-down list as contour line color. Click OK to close dialog.
- Click on the line at value 30 to customize it separately and click OK to close dialog.

4. Then go back to the Colormap / Contours tab, clear the check box Follow Contour Line under Boundary so that the boundary line could have separate style.
5. Click OK to close the Plot Details dialog, then select Format: Axes: X Axis... to open the Axis dialog. Then do the following things.

- Select the Scale tab and make sure the Horizontal axis icon is selected so X axis scale is being updated, set From, To equal to -127, -65.
- Select the Vertical axis icon to customize the Y axis scale, set $\mathbf{F r o m = 2 3 , ~ T o = 5 0 .}$

6. Click OK to apply the setting and close the Axis dialog.
7. Now we are going to change the layer size/aspect ratio and turn off the XY axes and its frame. Make sure the graph window is active and select Format:Layer to open the Plot Details - Layer Properties dialog, first go to the Size/Speed tab and change the values in Layer Area as below:

8. Go to the Display tab and clear the \mathbf{X} Axes and \mathbf{Y} Axes check boxes under Show Elements. Click OK to apply the setting and close the dialog.
9. Right click on the white space in graph layer and select Fit Page to Layers, accept the default dialog settings and click OK to make all elements visible.
10. In the graph, select the axis title object Latitude and Longitude, hit the Delete key to remove them from the graph.
11. Now we will customize the color scale object. Double-click on the color scale to bring up the Color Scale Control dialog. Then do the following settings:


```
[-' Color Scale Control - Layer 1
```

```
Q x
```

```
Q x
```

Levels Labels
Layout Title Line and Ticks Right Left

Background

Arrangement

- Auto
- Vertical
- Horizontal

Reverse Order
Show Labels on Opposite Side
Size and Label Offset (in \% of font height)
Color Bar Thickness
Label Offset from Bar Edge
Label Side Offset from Center

12. Click OK to apply the settings and close the Color Scale Control dialog.
13. Right-click above the contour plot and select Add Text to add a graph title 30-Year Mean Temperature for the Month of January. Use the Format toolbar and/or double-click on the completed text label to update the font, font size, etc. The graph should look like

6.10.3Contour Plots and Color Mapping

6.10.3.1 Summary

Origin offers rectangular, polar, and ternary contour plots. For rectangular contour plots, the data can be either in a matrix or in a worksheet in XYZ format. Polar contour plots can be generated from three columns of data in a worksheet, organized either as $\mathrm{R} \Theta \mathrm{Z}$ or $\Theta \mathrm{R} Z$. Ternary contour plots can be generated from worksheet data organized in $X Y Z Z$ format where the 2 nd Z-column contains the 4th parameter which is the height value at a given XYZ point in the ternary space.

Many options are available for customizing contour plots, such as setting different major and minor contour levels, displaying contour lines only at major levels, applying color palettes, and also control for a custom boundary in the case of contour plots created directly from the worksheet.

6.10.3.2 What You Will Learn

This tutorial will show you how to:

- Set values in a Matrix and create a Contour Plot
- Customize levels, lines, and color mapping
- Extract data from contour lines
- Create a Contour Plot directly from XYZ data
- Use a Custom Boundary
6.10.3.3 Create Contour Plot from Matrix

1. To create a new matrix click the New Matrix button

. Move the cursor to the upper left corner of the matrix until the shape of the pointer changes as in the following image and click to select the entire matrix.

ㅍ.. MBook1:1/1				-	x
》	1	2	3	4	回
1	--	--	--	--	-
2	--	--	--	--	
3	--	--	--	--	
4	--	--	--	--	
5	--	--	--	--	
6	--	--	--	--	
7	--	--	--	--	
8	--	--	--	--	
9	--	--	--	--	
10	--	--	--	--	
11	--	--	--	--	
12	--	--	--	--	
13	--	--	$\overline{-7}\|\cdot\|$		-
	et1				,

To set the dimensions, right-click and select Set Matrix Dimension/Labels in the context menu. On the XY Mapping tab, change setting as shown below .

2. Input data into the matrix by highlighting it and right-clicking. Select Set Matrix Values in the context menu to open the Set Values dialog. Type i* $\boldsymbol{\operatorname { s i n }} \mathbf{(x)} \mathbf{-} \mathbf{j} \boldsymbol{*} \boldsymbol{\operatorname { c o s }} \mathbf{(\mathbf { y })}$ in the Formula edit box and click the OK button to generate data. The matrix should look like this:

呥 MBook1 : $1 / 1$		The column index			$\square \square$	\times
	1	2	3	4	5	D
1	-1	-1.90017	-2.80133	-3.70448	-4.61058	\triangle
2	-0.995	-1.79034	-2.58767	-3.38898	-4.19618	
3	-0.98007	-1.66063	-2.34419	-3.03371	-3.73208	
4	-0.95534	-1.51134	-2.07133	-2.63927	-3.21901	
5	-0.92106	-1.34295	-1.76984	-2.20664	-2.65821	
6	-0.87758	-1.15616	-1.44073	-1.73721	-2.0514	
7	-0.82534	-0.95184	-1.08532	-1.2327	-1.40075	
8	-0.76484	-0.73102	-0.70517	-0.69521	-0.70886	
9	-0.69671	-0.49491	-0.3021	-0.12714	0.02123	
10	-0.62161	-0.24489	0.12186	0.46876	0.78613	
11	-0.5403	0.01756	0.56446	1.08951	1.58209	
12	-0.4536	0.29081	1.02324	1.73186	2.40504	
13	-0.36236	0.57312	1.49563	2.39233	3.25065	
14	-6.2675	0.86267	1.97887	3.06729	4.11436	-
1 \square	The ro	index		\| 1		!

3. Each data point in the matrix corresponds to two different kinds of indices. One is the column and row indices. The other is the X and Y coordinates. Select View: Show X / Y from the main menu to see the X, Y coordinates:

器 MBook1 : $1 / 1$		The X coordinates			\square	X
	0	0.1	0.2	0.3	0.4	D
0	-1	-1.90017	-2.80133	-3.70448	-4.61058	-
0.1	-0.995	-1.79034	-2.58767	-3.38898	-4.19618	
0.2	-0.98007	-1.66063	-2.34419	-3.03371	-3.73208	
0.3	-0.95534	-1.51134	-2.07133	-2.63927	-3.21901	
0.4	-0.92106	-1.34295	-1.76984	-2.20664	-2.65821	
0.5	-0.87758	-1.15616	-1.44073	-1.73721	-2.0514	
0.6	-0.82534	-0.95184	-1.08532	-1.2327	-1.40075	
0.7	-0.76484	-0.73102	-0.70517	-0.69521	-0.70886	
0.8	-0.69671	-0.49491	-0.3021	-0.12714	0.02123	
0.9	-0.62161	-0.24489	0.12186	0.46876	0.78613	
1	-0.5403	0.01756	0.56446	1.08951	1.58209	
1.1	-0.4536	0.29081	1.02324	1.73186	2.40504	
1.2	036236	0.57312	1.49563	2.39233	3.25065	
1.3	-1. ${ }^{\text {d }} 5$	0.86267	1.97887	3.06729	4.11436	\checkmark
4	The Y	rdinates		+	-	

4. You can also select View: Image Mode to show the image form of the matrix:

5. Select View: Data Mode to exit the image mode. Create a contour plot by activating the matrix and selecting Plot > Contour: Contour - Color Fill. The graph should appear as shown below:

6.10.3.4 Customize Levels, Lines and Color Map

Origin makes it easy to customize every aspect of the contour plot, including the color scale and adding labels:

1. Double click on the contour plot to open the Plot Details dialog. Make sure the left panel is expanded by clicking on the arrow button on the bottom left of the dialog. Click on Layer1 in the left panel (leave the check-box checked, and click on the word itself), and select the Size/Speed tab in the right panel. Disable the Matrix data, maximum points per dimension box to turn off Speed Mode.
2. Expand the Layer option in the left panel and select [MBook1]MSheet1!1(Z)(1:10201) under it to open the matrix level options. Select Colormap/Contours in the right panel and click on the Level heading to open the Set Levels dialog. Click the Find Min/Max button and set Major Levels to $\mathbf{8}$ and Minor Levels to 32. Click the OK button.

3. Now load a palette for the contour. Click on the Fill heading. In the dialog that opens, select the Load Palette radio box. Click the Select Palette button and select the Rainbow palette from the dropdown. Click OK.

4. Click the Line heading to open the Contour Lines dialog. Check the Show on Major Levels only box and click OK. Then click the OK button to close the Plot Details dialog.
5. Set the properties for the color scale. Right click on the color scale and select Properties from the context menu to open the Color Scales Control dialog. Select Levels in left panel, select All Major Levels for the Show on drop-down list.

Color Scale Control - Layer 1

Hide Head and Tail Levels

Show on
All Major Levels
Major ticks follow Major Levels, Level column of Plot Detail Colormap tab.

Minor Ticks

Type	By Counts
Count	0

6. click OK. The contour should resemble the following image:

7. Click twice on a contour line (two separate single clicks) to select all lines at that level. Change the color to Green by using the Line/Border Color button in the Font toolbar. Change the width to $\mathbf{3}$ by using the Line/Border Width button $\boldsymbol{\square}$ in the same toolbar.

Make sure only one contour line is selected (not all the contour lines at that level) and right click on the selected contour line. Select Add Contour Label to add a label.

8. Click twice on a contour line to select it, right click and select Extract Contour Lines. Origin will extract the data for that contour line to a worksheet. The following image shows part of the data in the worksheet:

\#\#. Book2 - Contour Lines from Graph1 *			\square 回	x
	A(X)	$\mathrm{B}(\mathrm{Y})$		*
Long Name				
Units				
Comments				
$\mathrm{F}(\mathrm{x})=$				
Z-Level	39.500000	39.500000		
Area	12.70802	12.70802		
	10.28145	10.28145		
	6.06732	6.06732		
	$2.85618 \mathrm{E}-4$	$2.85618 \mathrm{E}-4$		
Sparklines		\ll		
1	0.36099	10		
2	0.36218	9.9		
3	0.36377	9.8		
4	0.36581	9.7		
5	0.36832	9.6		
6	0.37133	9.5		
7	0.37487	9.4		
8	0.37895	9.3		
9	0.38362	9.2		
10	0.38889	9.1		
11	0.39479	9		
12	0.4	8.92026		
13	0.4014	8.9		
14	0.40891	8.8		
15	0.41716	8.7		
4 $\square^{\text {a }}$ Sheet1			1 III	

6.10.3.5 Create a Contour Plot from XYZ Data

Origin can create contour plots directly from XYZ data in a worksheet without the need for an intermediate matrix. Delaunay Triangulation is used to compute and draw the contour lines.

1. Create a new worksheet and import the 3D XYZ.dat from the \Samples \backslash Matrix Conversion and

Gridding folder by using the Import Single ASCII button
. Highlight the third column and right click on it to select Set As: Z. SelectPlot > Contour: Contour Color Fill to create a graph as in the following image:

6.10.3.6 Show the Triangulation Grid

1. Show the triangulation grid that is used to create a contour plot from the data. The individual data points are located at the nodes or vertices of the grid. Create a new worksheet and import the XYZ Random Gaussian.dat file from the \Samples \Matrix Conversion and Gridding folder by using the Import Single ASCII button $\stackrel{183}{(17]^{2}}$
2. Highlight the third column and right click on it to select Set As: Z. SelectPlot > Contour: Contour Color Fill to create a graph.

3. Double click on the contour plot to open the Plot Details dialog. On the Colormap/Contours tab, click on the Line heading to open the Contour Lines dialog. Deselect Shown on Major Levels Only and select Hide All to hide all the contour lines. Click OK to close this dialog. Then select the Show Grid Lines and Show Data Points check boxes. Click OK to close the Plot Details dialog.

The contour plot with its superimposed grid should look like this:

6.10.3.7 Apply Custom Boundary

A custom boundary can be applied to contour plots created directly from XYZ data where user provides the data points for the boundary in additional columns of the same worksheet. This feature is useful when there is a specific boundary data that defines the outline of an object, for example the profile of an engine where the contour shows engine temperature.

1. Continue to use the worksheet and the contour plot that was created with the XYZ Random

Gaussian.dat in the previous example.
2. In the XYZRandomGaus workbook, click the Add New Columns button ${ }^{+}$自 twice to add two columns. Highlight the two columns and right click on them. Select Set As: XY XY from the context menu and enter four rows of data such as below:

12	10
18	12
16	18
14	16

3. Double click on the contour plot to open the Plot Details dialog. Select the Contouring Info tab in the right panel. Set the dialog as in the following image to customize the boundary for the contour plot. Remember to uncheck the Show Grid Lines and Show Data Points check boxes in the Color Map/Contours tab. Click OK to close the Plot Details dialog.

The graph should resemble the following image:

Prior to Origin 2018 SRO, the application of a custom boundary sometimes generated an imperfect fill at boundary margins. This has been improved in 2018. The user can restore the previous contour-fill behavior using system variable @TCSM.

6.10.4Ternary Contour

6.10.4.1 Summary

This tutorial will show you how to create a Ternary Contour graph and to overlay a scatter plot.

6.10.4.2 What will you learn

- Create the Ternary Contour graph
- Overlay a scatter plot using the Plot Setup dialog box.
- Customize the graph using the Plot Details dialog box.

[^6]This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press $\mathbf{F 1 1}$ key , and then open Graph Sample: Contour)

1. Open Tutorial Data.opj and browse to the Ternary Contour folder in Project Explorer (PE).
2. Activate Book1A, highlight the entire worksheet and select Plot > Contour: Ternary Contour to create a Ternary Contour graph. The graph should look like this:

3. Now we will overlay a scatter plot on the ternary contour graph. Right-click on the layer icon and select Plot Setup from the context menu. This opens the Plot Setup dialog box.
4. In the upper-left corner of the dialog box, set Available Data to Worksheets in Folder. Select Book1, set Plot Type to Scatter and select check boxes to the left of columns A, B and C so that they plot as X, Y and Z, respectively. Click Add to add the scatter plot to Plot list at the bottom of the Plot Setup dialog
box. The settings should duplicate those shown in the following image:

In order to show all three panels in Plot Setup dialog, please expand Plot
Type panel by clicking $\hat{\star}$ and expand Available Data panel by clicking人 ${ }^{\text {® }}$ again.

Please refer to Plotting using Plot Setup for more information.
5. Now we will customize the contour graph and the scatter plot. Double-click on the contour plot to bring up the Plot Details dialog box.
6. Select the Color Map/Contours tab, click on the Level heading, then duplicate the settings as shown in the image.

7. Click OK to close the Set Levels dialog box. Click on the Fill heading to open the Fill dialog box. Select Load Palette. Select Rainbow from the Palette list and click OK.
8. In the left panel of Plot Details, select the scatter plot and customize the symbols as follows (note that to enable the Fill Color list, you must click the downward-pointing arrow beside Preview and choose one of
the unfilled symbols from the gallery):

9. Click OK to close the Plot Details dialog box.
10. Drag the color scale to resize it and move it to a suitable place on the graph. The graph should now look something like this:

6.10.5Combining Line and Contour Plots

6.10.5.1 Summary

This tutorial will show you how to create a Word Map by combining Line Plot and Contour graph.

6.10.5.2 What will you learn

- Create a contour graph
- Combine a Line Plot and a Contour graph
- Customize the contour graph

6.10.5.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Map Combining Line and Contour Plots folder in Project Explorer (PE).
2. Activate MBook1A matrix and highlight entire matrix. Select Plot > Contour : Contour - Color Fill to create a contour graph.

3. At this step, we will add a Line plot to the contour graph. Select Graph: Layer Contents to open the dialog. In the top-right available data drop-down list of the dialog, choose Worksheets in Folder. Select $B(Y)$ column of the Book5 in the left panel, choose Line plot type, and add to the right panel. Then click OK button. Delete the legend for the added line plot.

4. In the following steps, we will customize the graph. Select Format: Layer to open the Plot Details dialog. Select the Size/Speed tab, disable two checkboxes that in the Speed Mode, Skip Points if needed group.
5. Expand the Layer1 branch and select contour plot in the left panel of the Plot Details dialog. Then do the following things:

- Go to the Color Map/ Contours tab, click the Level heading to open the Set Levels dialog. Set the dialog as the following image shows:

- Click OK button to close the dialog. Click the Fill head to open the Fill dialog, select Introduce Other Colors in Mixing radio box. Then set From to Orange and To to Navy.

○ Click OK button to close the dialog. Click the cell the in the Fill column and $\mathbf{< 0 . 5}$ row to set fill color to Red.

- Click OK button to close the dialog. Click the cell the in the Fill column and $>\mathbf{7}$ row to set fill color to Black.
- Click OK button to close the dialog. Click the Lines heading to open the Contour Lines dialog, uncheck the Show on Major Levels only check box and then select the Hide All option.
- Click OK button to close the dialog. Click the Color box that in the Missing Value group, set fill color to White. Click OK button.

6. Go to Numeric Formats tab of Plot Details dialog, select Decimal Places radio box and keep the default value 1.
7. Click Ok button to apply the settings to the graph. The graph should look like:

Double click on the Color Scale to open the Color Scale Control dialog and go to the Layout page, do the following setting:

Go to the Levels page, do settings as below:

8. Resize and reposition of the color scale. Then modify the X, Y axis tick labels, titles and add the graph title as the example graph shows. The graph should look like

6.10.6Contour Graph with XY Data Points and Z Labels

6.10.6.1 Summary

This tutorial will show you how to create a contour from XYZ data and add Z value as label for each XY data point.

6.10.6.2 What will you learn

This tutorial will show you how to

- Create a Contour Plot from XYZ data.
- Customize levels, lines, and color mapping.
- Plot a scatter plot on a contour graph.
- Show the labels for scatter points.

6.10.6.3 Steps

1. Start a new workbook and import the file

Sample/Matrix_Conversion_and_Gridding/XYZ_Random_Gaussian.dat.
2. Highlight $\operatorname{col}(\mathrm{C})$ and set it as Z. Then highlight all columns and select Plot > Contour : Contour Color Fill from the main menu to plot a contour graph.

3. Double-click the layer icon to open the Layer Contents dialog. In this dialog, select col(B) in the left panel, set the Plot Type as Scatter, then add it to the right panel.

4. Click OK button to close the dialog. The scatter plot will be added to the contour graph.

5. Double-click the graph to open the Plot Details dialog. In this dialog, go to the Colormap/Contours tab, the contour plot in the left panel is selected. Click the Level... header to open the Set Levels dialog to set the Minor Levels as 4.

6. Click OK button to go back the Plot Details dialog. Go to the Label tab while the scatter plot is selected in the left panel, check the Enable check box to activate this tab. Set the Size as 12,

Position as Below and Label Form as $\mathrm{Col}(\mathrm{C})$.

7. Click OK button to close this dialog. The Z values will be added as labels to the graph. Click the Rescale button $\stackrel{\swarrow}{\longleftrightarrow}$ to rescale the graph.

6.10.7 Contour Plot with Vector Overlay

6.10.7.1 Summary

This tutorial will demonstrate how to create a contour plot with vectors overlay.

6.10.7.2 What you will learn

This tutorial will show you how to:

- Create and customize a contour graph and its color scale
- Create the XYAM vector graph
- Merge the two graphs

6.10.7.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Contour)

6.10.7.3.1 Create the Contour Graph

1. Open Tutorial Data.opj and browse to the Contour Plot with Vector Overlay folder in Project Explorer (PE).
2. Activate the W147 matrix and select Plot> Contour: Contour - Color Fill in the menu. The graph below will be created:

3. Select Format: Plot to bring up the Plot Details dialog. In the Colormap/Contours tab customize the Contour settings as shown below:

- Click the Level heading to set the following levels at the Set Levels dialog:

Plot Details - Plot Properties

Colormap / Contours Label

Click column header or single cell to edit. Double-click Level cells to edit

- Click the Fill heading to select Load Palette, and choose Temperature from the Palette list in Fill dialog. Click OK.
- Click the Line heading, enable the Color check box under Apply to All and choose Gray in the Color drop-down list. Click OK.

4. Go to Label tab, select the Significant Digits radio button and set the value to 1. Click OK.

5. Let's make preparations for the third section Merge the Two Graphs. First, we am going to hide the axes. Select Format: Layer and in the Display tab deselect the \mathbf{X} Axes and \mathbf{Y} Axes check boxes. Click

OK.

6. Delete X and Y Axis title.
7. To change the color scale, double-click on the scale object to open the Color Scale Control dialog. Do the settings below:

- In the Labels node,
- Set the Font to Verdana.
- Set the Size to 22.

- In the Layout page,
- Select Black Line from the Background drop-down list,
- Set Color bar thickness to 100.

- In the Title page, enter $w(m s \backslash+(-1))$ in the Title box and set Font Size to 26.

In the Line and Ticks page, uncheck Show Line and Ticks on Right and Show Border check box

- Click OK and position the color scale in the desired location on the right side of the graph by selecting and dragging it.

The contour plot should now appear as shown below:

6.10.7.3.2 Create the XYAM Vector Graph

1. Activate the WOR81147 worksheet, highlight the last three columns and select Plot > Specialized : Vector XYAM in the menu.
2. Double-click on any vector to bring up the Plot Details dialog on the Vector tab. Use the settings shown below:

Then click OK.
3. To update the axis scales, select Format: Axes: X Axis... to open the dialog and complete the following:
$\bigcirc \quad$ On the Scale tab, set X From =1, $\mathbf{~ T o ~ = ~} \mathbf{1 0}$ and Value of Increment =2.

Select multiple axes to customize together.
Apply To...
OK
Cancel
Apply

- On the Scale tab, choose Vertical icon in the left panel of Axis dialog. Set the scale of Y as From = 5, To = 95, and Value of Increment =10.
- Go to the Line and Ticks tab in the Axis dialog. Press Ctrl key to select the Top and Right icon in the left panel. Then check Show Line and Ticks check box, and set the Style of Major Ticks
and Minor Ticks to In. The top X and right Y axis will be shown with line and ticks.

Select multiple axes to customize together.

- Click OK.

4. At this stage, you may notice that the vectors extend outside the axes (layer frame). To make sure they display within the layer frame, select Format: Layer and in the Display tab check the Clip Data to

Frame box. Click OK.

5. Right-click on the legend of the vectors graph, and select Properties... in the context menu to open the Object Properties. Set the dialog as shown below:

6.10.7.3.3 Merge the Two Graphs

The contour and vector graphs are generated by the steps above, and are ready to be merged into one.

1. Minimize or Hide all other graphs except for the contour and vector graphs created using the instructions above. With one of the two graphs active, select Graph: Merge Graph Window... from the main menu.
2. In the Merge Graph dialog, specify the settings as the following:

- Expand the Arrange Settings node, and set the Number of Rows as 1.
- Expand the Spacing (in \% of Page Dimension) node, and enter a value of approximately " 25 " in the Right Margin text box to show the color scale legend from the contour plot. Click OK.

3. To set font type as Verdana for all the objects:

- Set the objects individually, by clicking on the object and selecting Verdana in the Font button Whefault: Arial

Or

- Use Theme Organizer to create and apply a font theme to the current graph.

4. The final graph should look something like this:

6.10.8Create Heatmap with Virtual Matrix and Colormap Bar Plot

6.10.8.1 Summary

This tutorial create two kinds of graph, a Heatmap Plot based on a virtual matrix together with a Bar Plot with Color Map, and merged them together.

Minimum Origin Version Required: 2015 SRO

6.10.8.2 What you will learn

This tutorial will show you how to:

- Create Heatmap Plot based on an Virtual Matrix.
- Create Bar Plot with Colormap.
- Merge the Heatmap Plot and Bar Plot together.

6.10.8.3.1 Create Heatmap Plot from Virtual Matrix

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder Heatmap and Virtual Matrix Manager. Open workbook Electricity Usage with first sheet active.
2. The XYZ mapping of workbook is shown in graph below, this will help you to understand how the Heatmap plot is created in next steps:

HEP - Electricity Usage							$\square \square$	
	Z1(Y)	A(X)	B (Y)	C(Y)	D(Y)	E(Y)	$F(Y)$	14
Long Name		$\mathrm{X} \longrightarrow$	1:00	2:00	3:00	4:00	5:00	
Units								
Comments								
$F(x)=$					Z	\longrightarrow		
1	Jan	1/1/2013	14327	14190	13785	13730	13820	
2	Jan	1/2/2013	14919	14732	14721	14817	15098	
3	Jan	1/3/2013	16864	16547	16361	16285	16649	
4	Jan	1/4/2013	16547	16209	16083	16117	16513	
5	Jan	1/5/2013	16298	16000	15870	15943	16107	
6	Jan	1/6/2013	14175	13902	13747	13706	13828	
7	Jan	1/7/2013	14805	14645	14549	14702	15082	
8	Jan	1/8/2013	16355	16130	16160	16240	16614	
9	Jan	1/9/2013	15391	15102	14967	14852	15143	
10	Jan	1/10/2013	14337	14103	14100	14220	14555	
11	Jan	1/11/2013	14175	13882	13595	13637	13815	
12	Jan	1/12/2013	12831	12409	12272	12128	12250	
13	Jan	1/13/2013	11632	11303	11073	11012	11008	
14	Jan	1/14/2013	12501	12391	12352	12464	12951	
15	Jan	1/15/2013	15090	14799	14724	14777	15008	
16	Jan	1/16/2013	15450	15180	15053	14898	15145	
17	Jan	1/17/2013	15088	14521	14448	14388	14710	\checkmark
	Temp/				[1-			

3. Highlight all cells in Z region. In order to quickly select all, select the Cell in Column(B)-Row 1 and use the worksheet scroll bars to show the cell in last column and last row, hold Shift key and click this cell to select all. click Plot > Contour: Heatmap in main menu to open the plotvm dialog for Heatmap plot.
4. Specified the X, Y ranges as shown in graph below.

5. In this dialog, check Format \mathbf{X} Data and Format \mathbf{Y} Data check boxes, click the button \ldots respectively to format X and Y data following the graph below:

6. The tick labels in Y axis are too dense to be seen, so now we are going to change that. Double click the axis in the graph to open the Axis dialog:

- Select Left icon in Tick Labels tab, go to Display tab, select Date as the Type, and set Display drop-down list to Dec(Current Month), click Apply to save the setting.

Select multiple axes to customize together.

- Go to the Table tab, check on Enable box, click Apply to save. You will find that the month names are shown as tick labels for Y axis in the form of a table.

Select multiple axes to customize together.

7. Next, we will specify the scale and tick labels for X axis:

- Go to Bottom icon in Tick Labels tab, and make sure Time is selected as the Type in Display tab, change the Display to $h h \mathrm{pm}$, click Apply to save the setting.

Select multiple axes to customize together.

- Go to Horizontal icon in Scale tab, make sure the settings resemble the screenshot below, click Apply to save the setting. Click OK to close the dialog. Remove the title for X axis.

Enter space-separated position values OR select a dataset from drop-down.

First Tick
\square Minor Ticks

$1 \quad$ III

Select multiple axes to customize together.

8. Click the tick labels for both XY aixs in the graph, change the font size to 10 via Format Toolbar.
9. Select Format: Plot in main menu with Heatmap graph active.

- Set the Level for Colormap follows the graph below:

Click OK to close the Set Levels dialog

- Click the Fill color of the Colormap on head cell(blue area) to set Fills follows the graph below:

- Scroll down to the Colormap tail, set its fill color to red in the same way.
- Click Save in Colormap/Contours tab to save the pattern as heatmap.oth which will be used in the second parts of the graph.

10. In the Plot Details dialog, click the first tree node in left panel (should be Graph1 by default), change page size to $11^{*} 11$ inch in Print/Dimensions tab, click Apply, then in the left panel, select the sub tree node for Layer1, go to the Size/Speed tab, change the Layer area follows graph below, click OK to apply the settings and exit the dialog:

11. We will turn off the speed mode by click the [sis in Graph Toolbox to view the graph with higher resolution. The finished graph for Heatmap should be similar to the graph below:

Once the Virtual Matrix were created, they will be saved internally. You can browse them in Virtual Matrix Manager. The saved Virtual Matrix can be used for Contour/Heatmap/3D surface plot directly, you can select the virtual matrix from the input box of the plot dialog as shown in graph below:

6.10.8.3.2 Create the Bar Plot with Colormap

1. Go to the Temp sheet in Electricity Usage workbook, highlight the worksheet and select Plot > Basic 2D : Bar in main menu to create a Bar plot.
2. Now, we will defined the style of axis:

- Double click the axis to open the Axis dialog, change the Scale of axis (X) follows the graphs below in Vertical page of the Scale tab.

- Then, change the Scale for $\operatorname{axis}(\mathrm{Y})$ in Horizontal page from -55 to 55 with Major Ticks value 25 and Minor Ticks counts 1, then click Apply.

- We will also hide the line and ticks for X axis in Line and Ticks tab by uncheck the box of Show Line and Ticks. Besides, grids can be hide by using similar ways in Grids tab.
- Click OK to close the dialog.
- Change the Y axis title to $C D D / H D D$ by double clicking on the Y title object and entering the inplace edit mode. Delete the ticks labels and axis title of X axis by select it and hit Delete key.

3. Next, we will create the Colormap for the graph, the Colormap theme should be identical to the Heatmap created before. Click the Format: Plot in main menu to open the Plot Details dialog:

- Set the color for both Border and Fill as Map:Col(B).

- Go to the Colormap tab, load the heatmap.oth as Colormap Theme.

- Click the Level of the Colormap to set Levels follows the graph below:

Click OK to close the Set Level dialog and Click Apply in Plot Properties dialog to save the settings.
4. In the left panel, select the first tree node (by default, Graph2), change page size to $11 * 11$ inch in Print/Dimensions tab, click Apply, then switch to the Layer1 tree node and go to the Size/Speed tab, change the Layer area follows graph below, then,click OK to close dialog:

The finished bar plot is similar to the graph below:

6.10.8.3.3 Merge the Heatmap Plot with Bar Plot and More Customization Steps

1. Select Graph: Merge Graph Window in main menu with Heatmap graph active, merge Graph1 and Graph2 together, the Rearrange Layout should be unchecked, click OK to apply the setting.

hen, you will resize the size of the merged graph (Graph3), click Format: Page >> Print/Dimensions tab, change the page size to $11 * 11$ inch again, click OK. Click CTRL+W to adjust the graph view.
2. Specify the style of the color scale:

- Double click the color scale to open the Color Scale Control dialog, set the Levels page as shown in graph below:

E) Color Scale Control - Layer 1			?
LevelsLabelsLayoutTitleQine and TicksBottomTop			
	Type		\checkmark
	\square Major Ticks		
	Type	By Increment \quad -	
	Value	2000	
	First Tick		
	\square Minor Ticks		,
	Type	By Counts -	
	Count	0	
	$1 \square$	II'	
		OK Cancel	Apply

- Set the Labels page as shown in graph below:

- Set the Layout page as shown in graph below:

Click OK to apply the settings, drag the outline of the color scale in the graph to reach a proper size and location.
3. Select the unwanted axis title or legend and delete them, add text object with graph information by using text tool.

The finished graph is similar to the graph below:

6.11 Statistics

6.11.1Statistics

- Box Plot
- Grouped Box Chart with Color Indexed Data Points
- I Shaped Box Plot
- Marginal Distribution Curve
- Overlapping Box Chart
- Two-Level Grouped Box Chart
- Unbalanced Grouped Box Chart
- Grouped Box Plot
- Notched Boxes with Variable Width Control
- Simple Dot Chart
- Multi-Data Dot Chart
- Add multiple fitted curves in a Histogram
- Weibull Probability Plot
- Q-Q Plot
- Scatter Matrix
- Histogram with Distribution Curve overlay

6.11.2Box Plot

6.11.2.1 Summary

This tutorial demonstrates how to create the following box plot with the data points and distribution curves both.

Water Discharge at Station 120011

Minimum Origin Version Required: Origin 2015 SRO
6.11.2.2 What you will learn

This tutorial will show you how to:

- Create a data overlapped box plot
- Customize box plot settings
- Change the layer background
6.11.2.3 Steps

This tutorial is associated with :<Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the Box Plot folder in Project Explorer (PE).
2. Activate the BoxData worksheet, select the January(Y), February (Y), and March (Y) columns and plot them as a Box Chart using Plot > Statistical: Box Chart.
3. Double-click on one of the box charts to bring up the Plot Details dialog. In the Group tab select None from the Border Color drop-down list and use Apply to save the changes. This prevents the border colors of the box plots from automatically incrementing.
4. In the Box Tab, set as shown below to enable the data plot to the left of box:

5. The Data tab shows up because data plot is also included in the plot. In this tab, change the settings as shown below to create a distribution curve and change the binning options:

The Counts column in the Bin Worksheet can be used for fitting.
6. In the Pattern tab adjust the settings as shown below. To create a custom color, expand the Color option, click the vacant color under the Custom controls to open the Colors dialog. In the Custom tab of this dialog box, enter the Red, Green and Blue values to define your favorite color as below:

7. In the Lines Tab set the line style for Whisker. The style of caps is set to "Auto" so it follows the Whisker style, and the style for Median Line and Distribution Curve follows the box style set in the Pattern tab:

8. The next step is to customize the data symbols in the Symbol tab:

9. The style of the Percentile points is also changed in the Percentile tab:

10. The next step is to change the background color. In the same Plot Details dialog, select Layer $\mathbf{1}$ in the left panel to activate the tabs of layer level. If the left panel is not expanded use the $\quad \lll$ button on the bottom left of the dialog to expand it. In the Background tab, expand the Color option, click the vacant color under the Custom controls to open the Colors dialog. In the Custom tab of this dialog box, enter the Red, Green and Blue values to define your favorite color. Here, let us make the color(R:177, G:237, B:254). Click OK to accept the setting and close the dialog.
11. In order to customize the axes, double-click on the Y Axis to open a Axes dialog box and on the Scale tab, set the following axis scale specifications:

12. Go to the Title tab, select Left' icon in the left panel, change the Y axis title to Discharge $[f t \mid+(3) / s e c]:$

13. On the Title tab, choose Bottom icon in the left panel. Then check the Show check box, and change the X axis title to Month

14. Open the Grids tab, select Horizontal icon in the left panel, enable the Major Grid Lines and set their styles as below:

15. Click OK to save the settings and close the dialog. Select View: Show: Frame menu to add the frame to this graph.
16. The legend can be deleted if desired by selecting it and pressing the delete key.
17. Right-click the layer and select Add/Modify Layer Title from the menu that appears. Enter the text Water Discharge at Station 120011 in the edit box. Existing layer titles and axes titles can be modified by double clicking on them till the text cursor appears.

6.11.3Grouped Box Chart with Color Indexed Data Points

6.11.3.1 Summary

Origin can be used to create grouped box plots from raw data with data points and distribution curves.

Minimum Origin Version Required: 2015 SR0

6.11.3.2 What you will learn

This tutorial will demonstrate how to:

- Create a grouped box plot from raw data
- Add a data plot with indexed symbol color
- Add and customize a distribution curve
- Customize the table-axes

6.11.3.3 Steps

6.11.3.3.1 Creating the Box Plot from Raw Data

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the folder Grouped Box with Index Color DataPoint.
2. Activate the workbook Book 5.
3. Highlight col(E) $-\operatorname{col}(\mathrm{J})$:

- Book5								- 回 $\mathrm{x}^{\text {a }}$	
	A(X)	$B(Y)$	$\mathrm{E}(\mathrm{Y}) \downarrow$	D(Y)	H(Y)	G(Y)	K(Y)	$\mathrm{J}(\mathrm{Y})$	A
Long Name	ID	Machine	CC	MI	CC	MI	CC	MI	
Units									三
Comments			SEG 1	SEG 1	SEG 2	SEG 2	SEG 4	SEG 4	
Filter									
1	AW390-0004	A386	4452.104	3071.058	4450.663	2589.701	5455.25	2979.168	
2	AW390-0006	A386	6292.571	4381.999	4904.638	3202.871	5190.99	3454.301	
3	AW390-0060	A386	10878.101	10025.173	9108.109	--	14491.19	10921.643	
4	AW310-0139	A386	11236.832	6416.926	16297.672	10051.399	14981.875	8422.052	
5	AW200-0040	A386	13334.318	9335.14	13429.485	9453.363	12235.172	8046.704	
6	AW220-0009	A386	7562.084	-	7909.844	4473.576	10180.23	7816.758	
7	AW170-0015	A386	8144.457	6306.148	9991.454	7582.644	10140.814	7416.709	
8	AW098-0011	A386	1969.712	954.747	3752.383	1617.506	3237.382	1147.074	
9	AW098-0047	A386	8094.329	5437.389	8912.438	6785.827	8785.203	5694.113	
10	AW098-0127	A386	6629.159	3712.809	4808.346	4007.431	4957.694	2748.815	
11	AW080-0020	A386	4798.724	4063.268	3556.263	3416.191	4933.238	-	
12	AW080-0032	A386	3890.026	1969.526	6330.462	4160.389	6933.1	3504.334	
13	AW/080-0058	А 386	6647061	372853	6982513	3753.326	6073.886	4310.772	
	A386_CC.MI	C334_CC				-	II		

4. On the 2D Graphs toolbar click the small triangle at the bottom of the sixth button to reveal the fly out menu. Select Grouped Box Charts - Raw Data as shown below:

5. In the Plotting: plotgboxraw dialog, set the Group Number to 2, the 1st Group Row to Comments and the 2nd Group Row to Long Name. This will create a box chart with the column data arranged in three groups of two, with X axis row names derived from the Comments and the Long Names on the worksheet:

6. Click the OK button. The grouped box chart from raw data is created with two grouping levels as shown below:

7. To add data points in the graph, double click the plot to open the Plot Details dialog. Expand the Layer1 option on the left panel and select the first plot under it.
8. On the Box tab, set Type to Box[Right] + Data [Left]. Click the Apply button. This will add two new tabs to the dialog: Data and Symbol

9. To add a Distribution Curve, on the Data tab, set Distribution Curve Type to Normal. Set Bins

Alignment to Right to orient the curve.

10. Click the OK button. The data points and distribution curves will appear on the graph as shown below:

6.11.3.3.2 Customizing the Boxes and Statistical Markers

1. Double click on the any one of the boxes to re-open the Plot Details dialog.
2. On the Group tab set both Border Color and Box Color to increment By One so each box in subgroup has a different color.
3. Click the ${ }^{-}$button on the Details section of Border Color. In the Increment Editor dialog that opens, click the first color and change it to be Red. Change the second color to Gray. Click OK.
4. Click the ${ }^{-}$button on the Details section of the Box Color to open the Increment Editor dialog. Click 1st color and click Define Custom Color button.

5. Set RGB values in Red, Green, Blue boxes on bottom right to be $\mathbf{2 5 5}, \mathbf{5 1}$ and $\mathbf{5 1}$, and click $\mathbf{O K}$ to close dialog.
6. Do the same for the 2nd color. Set Define RGB value to be 143, $\mathbf{1 4 3}$ and $\mathbf{1 4 3}$, and click OK to close dialog. Then click OK to close Increment Editor dialog and apply settings.
7. This step is to customize the descriptive statistic markers whether to show on the plot such as the $\mathbf{9 9 \%}$, 1\%, Max and Min marks.
Go to the Percentile tab, and set the Edge Color to White and click Apply button. Since background of the graph is also white, Max, Min, 99\%, 1\% will look like disappeared in graph.

On Percentile tab, users can also hide a Marker by setting the Type as None(the last shape) in the dropdown list.
8. On the Lines tab set the Color for the Whisker and the Caps to Gray and Median Line to White. Click OK. The plot should appear as shown below:

6.11.3.3.3 Customizing Data Symbols and Distribution Curves

1. Double click any box in the graph to open the Plot Details dialog.
2. On the Symbol tab. Set the Size to 5, the Shape to $\mathbf{2}$ Circle and the Interior to Open.
3. Click the Edge Color dropdown list and choose Indexing: Col(B):Machines. The symbol's edge colors will be indexed to column B. All symbols with Machine value $\mathbf{A 3 8 6}$ will be one color and the ones with C334will be a different color:

4. When symbol color is indexed, another tab Color List will appear in the dialog. To set a user defined color increment list, go to the Color List tab. Enable the Use custom increment list box and set the first two Color Values as Blue and Dark Cyan.

Group	Symbol	Color List	Pattem
	Spac		
V Use custom increment list			

Right-click for more options, drag and move rows to rearrange

5. To customize the distribution curve color, on the Lines tab, set the Distribution Curve Color to Gray.
6. Click OK to close the dialog.

6.11.3.3.4 Customizing the Axes

For grouped plots support multi-row tick label tables. The corresponding axis icons in the Tick Labels tab of Axis dialog starts from the last table row, e.g. Bottom 1, Bottom 2, ..., Bottom N. This means the first row from the bottom will correspond to Bottom1 and so forth.

1. To move the tick label row with SEG 1, SEG 2 and SEG 3 to the top X axis, double click on this tick label row.
2. This opens the Axis Dialog with the Bottom 1 axis icon selected. Right click the Bottom $\mathbf{1}$ icon on the left panel and choose Move to Opposite.

3. Click the Apply button. The SEG 1, SEG 2 and SEG $\mathbf{3}$ tick label row will now appear at the top X axis on the graph, and as the axis icon is renamed as Top 1 on the left panel in the dialog.
4. The previous Bottom $\mathbf{2}$ icon will become the Bottom $\mathbf{1}$ icon. Select the Bottom $\mathbf{1}$ icon. Go to the Table tab. Set the Number of Rows to 3. Click the Apply button. Three identical bottom tick label tables will appear on the graph and they are Bottom 1, Bottom 2 and Bottom 3.
5. To fill first bottom tick label row with light gray, select the Bottom $\mathbf{3}$ icon on the left panel, make sure you are still at the Table tab and clear the Auto check box to enable separate control of tick label table layout. Set Fill Color as LT Gray and deselect the Inside Border check box under Table Layout node.
6. The second row derives the labels from $\operatorname{col}(\mathrm{C})$ of the second worksheet A386_CC.MI. Select the Bottom 2 icon and go to the Display tab, set the Type to Text from dataset and set the Dataset Name from the drop down as [Book5]"A386_CC.MI"!C"N".
7. Go to the Format tab and clear the Auto check box, change the Color to White. Then go to the Table tab and set as the following:

8. Select the icon Bottom 1, go to the Display tab, set the Type to Text from dataset and then set the Dataset Nameas [Book5]"C334_CC.MI"!C"N" since it uses col(C) from the third worksheet C334_CC.MI.
9. Go to the Table tab and set the table layout as below:

10. Select the Top 1 icon, go to the Table tab and set the table layout for top axis as below:

11. Then go to the Format tab, set Font Size to 22 and change the tick labels to Bold:

12. For the Y Axis change to the following settings:

- Scale tab (Vertical icon): Set Increment to 5000
- Tick Labels tab >> Display tab (Left icon): Set Display to Scientific 10^3

13. Click OK to close the dialog.
14. Select Y axis title Range and press the Delete key to remove it.

6.11.3.3.5 Updating the Legend and Adding Text Objects

1. Right click the box chart legend and select Legend: Box Chart Components... to open the

Enhanced Box Legend: legendbox dialog. Deselect all the components except for Data:

2. Click the OK button. The legend will show only the data symbols. Double click the legend text to go into in-place edit mode. Delete the first row of the legend. Select and drag to move the legend object to a better location.
3. To remove the black line around the legend, right click the legend object and choose Properties.... In the Object Properties dialog, go to Frame tab to set Frame to None.
4. Origin doesn't support tick label table titles yet. But users can add text objects manually. Right click on the white space to the left of the second bottom tick label row and choose Add Text... from the context menu that appears. Type NA386=. Then, still in in-place edit mode, highlight A386 and click the \mathbf{x}_{2} button on the Format toolbar to change it into subscript. Select and drag to adjust the positioning.
5. Add another text object NC334= to the left of the third tick label row and change C334 into subscript.

The final graph should appear as shown below:

You can click to select table labels and nudge them using the arrow keys on your keyboard.

6.11.4I Shaped Box Plot

6.11.4.1 Summary

Origin's box plot is highly customizable. This tutorial shows how to create a I-Shaped box chart with overlapping data points and customized percentiles.

Minimum Origin Version Required: 2015 SRO

6.11.4.2 What you will learn

- Customize box plot settings
- Customize the axis dialog for box plots
- Add a line object to a box plot

6.11.4.3 Steps to Create a I-Shaped Box Chart with Data Point

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to folder I-Shaped Box.
2. Activate workbook Book1, Sheet1. Highlight columns A through K and then select Plot > Statistical: Box Chart. Next, select and delete the legend object from the graph.
3. Double-click on one of the plot boxes to bring up the Plot Details dialog box. Go to the Box tab and set Type to Box + Data Overlap, Style to I-shaped Box and Whisker Range to Min-Max, and check Outliers box.

4. Go to the Data tab and set Data Width (\%) to 0.

The Counts column in the Bin Worksheet can be used for fitting.
5. Click OK to apply the settings.

1. Double-click on one of the plot boxes to bring up the Plot Details dialog box again. Go to the Group tab and set Border Color Increment to None.

2. Go to the Symbol tab, set symbol Shape as $\mathbf{1}$ Square and Interior as Open, then set both Edge Color and Fill Color to 15 Orange. Clear Follow line transparency and set the Transparency slider to 80%.

3. Go to the Pattern tab and set Border Color to Purple and Width to 1.5.

4. Go to the Spacing tab and set Gap Between Boxes(in \%) to 0 .
5. Go to the Percentile tab and duplicate the settings as shown below for Type and check Custom Percentiles at <P, 100-P> box.

6. Go to the Lines tab and duplicate settings as shown below.

7. Click OK to apply the settings.

6.11.4.5 Further Customizations to Axes

1. Double-click on the X axis to open the Axis Dialog box. Go to the Scale tab and set Minor Ticks

Count to 1 .

Select multiple axes to customize together.

2. Go to the Format tab under Tick Labels page and hold Ctrl key to select both Bottom and Left icons on left panel and set label Color to Black.

3. Go to the Grids tab and click to select only Vertical icon on left panel and duplicate Minor Grid Lines settings as shown below.

Select multiple axes to customize together.

4. Go to Line and Ticks tab and click on the Top icon on left panel and check the Show Line and Ticks box to show top axis.
5. Hold Ctrl key to select both Bottom and Top icons on left panel, duplicate settings as shown below and click Apply to see your changes.

6. To customize the Y Axis, go to Scale tab and click Vertical icon on left panel and duplicate the settings as shown below.

Select multiple axes to customize together.

7. Go to the Title tab and type Temperature ($\backslash+(\mathbf{0}) \mathbf{F}$) into the Text box.
8. Go to Grids tab and check the Opposite box under Additional Lines node.

9. Go to Line and Ticks tab and set Color under Line node to be Gray.

Select multiple axes to customize together.

$$
\text { Apply To... } \begin{aligned}
& \text { OK } \\
& \hline
\end{aligned}
$$

10. Click OK to apply your settings.

6.11.4.6 Adding a Line to Mark the Mean

1. Highlight all the columns in Book1. The global mean value will be calculated automatically and shown on the Status bar.

Average $=55.435$ Sum $=56710$ Count $=1023$ AU : ON
2. Activate the graph window and select Insert: Straight Line from the menu. In addline dialog, duplicate settings as shown below.

Axis scale is $[20,90]$
Line Format

Run script "label -rc LineName;" to delete unselectable line and its label.
3. Right-click on an empty portion of the graph and select Add/Modify Layer Title. Type Weather History for Boston, Fall (Sep, Oct, Nov)
4. Drag and re-position the axis and layer titles as needed.

There are another two approaches to add such a horizontal line at specified Y value in Axis dialog:

- Go to the Grid tab, select Vertical in the left panel and then enter the Y value in the $\mathbf{Y}=$ text box under the Additional Lines branch. Please note, this option only adds the line, you need add a special tick or just a simple text object to mark this line.Additional Lines
\square
- Go to the Reference Lines tab, select Horizontal icon in left panel, add a reference line at $Y=55.435$ with the label, click Details button to set the style of this line. You might need use the Style toolbar to change the color of the text label.

6.11.5 Marginal Distribution Curve

6.11.5.1 Summary

Graphs in Origin are highly customizable. This tutorial will show how to customize the marginal histogram to display distribution curves instead of columns.

Minimum Origin Version Required: 2015 SRO

6.11.5.2 What you will learn

- Create marginal histogram
- Use filter lock to create plots with different filter conditions.
- Group plots manually

6.11.5.3 Steps to Use the Filter Lock

Origin9.1 includes a special feature that allows you to set up different data filters in a single source worksheet and to, for instance, graph data for each filter condition without destroying the previous plot. This is made possible by copying filtered data to a new sheet and placing a "filter lock" on the filtered data.

1. Import <Origin EXE Folder>\Samples\Statistics\automobile.dat to a new blank workbook.
2. Highlight col(A), right click and select Filter: Add or Remove Filter.
3. Click the filter icon in the column header and select Between....
4. In the Between dialog, set From to 1992, To to 1995 and press OK.
5. Highlight Col("Power") and Col("Weight"), right-click and select Copy Columns to....
6. In the colcopy dialog, enter 1992~1995!<new> in the Destination Columns text box as shown below and click OK.

7．In the newly created sheet，click the green lock in the $\operatorname{Col}(\mathrm{A})$ heading and select Worksheet Filters： Lock．

A（Y）看	口rvi峝
Power	Recalculate
kw	Change Parameters．．．
	Delete
132	Go to Source
158	Recalculate Mode：Manual
132	Recalculate Mode：Auto
12	Recalculate Mode：None
95	Show Info（colcopy）
138	Generate Script
124	Copy Operation
116	Repeat this for All Y columns
128	Worksheet Filters：Lock
94	Worksheet Filters：Push Back
148	Worksheet Filters：Delete

8．Go back to the＂automobile＂sheet and repeat steps $4 \sim 7$ twice more with Col（＂Year＂）＇s filter conditions set to 1996～1999 and 2000～2004，respectively．You need to type a sheet name in colcopy dialog manually each time．The filter conditions are locked with each sheet，you can push them back using Worksheet Filters：Push Back．

6．11．5．4 Steps to Create a Plot with Marginal Distribution Curves

1．Go to sheet＂1992～1995＂，highlight all columns and select Plot＞Statistical：Marginal Histograms

2. Double-click any on any bar in the top histogram to open the Plot Details dialog. Go to the Data tab and set Distribution Curve: Type as Normal. This is for Layer 2.

The Counts column in the Bin Worksheet can be used for fitting.
3. Go to the Pattern tab and reproduce the settings shown below to hide bin bars.

4. Go to the Line tab and set Color to Black. Click Apply to see the changes.

5. Repeat steps $2 \sim 4$ for Layer3 (right histogram).

6.11.5.5 Steps to Plot Grouped Marginal Distribution Curves

1. Select Graph: Plot Setup from menu.

In order to show all three panels in Plot Setup dialog, please expand Plot
Type panel by clicking $\hat{\wedge}$ and expand Available Data panel by clicking ㅅ ${ }^{\text {again. }}$

Please refer to Plotting using Plot Setup for more information.
2. Select Layer $\mathbf{1}$ in lower panel. Set controls as shown below and click Add.

Plot	Range	Show	Plot Type	Legend
- L Laver 1	\square Resı ∇			

3. Add the "Power" histogram to layer2.

4. Add the "Weight" histogram to Layer3.
5. Repeat steps $2 \sim 4$, to add $2000 \sim 2004$ data to each layer. The plot list should look like the following.

Plot List: Drag entries in 1st column to reorder or to move between layers. Right click for other options.		Replace	Ad	d
Plot	Range	Show	Plot Type	Legend
F-L- Layer 1	\square Rescale	\checkmark		
... $\mathrm{Imm}_{\text {[}}$ [automobile.dat]1992~1995! 'Power' (X), 'Weight' (Y)	[${ }^{\mathrm{x}} .116^{x}$]	V	Scatter	Weight
Iman [automobile.dat]1996~1999! 'Power' (X), 'Weight' (Y)	[$\left.1^{*}: 112^{\times}\right] 39<X<121,739<Y<2281$	V	Scatter	Weight
Whe [automobile.dat]2000~2004! 'Power' (X), 'Weight' (Y)	[$\left.1^{x}: 112^{x}\right] 33<X<85,724<Y<1847$	V	Scatter	Weight
\square ■ Layer 2	\square Rescale	\square		
- Iman [automobile.dat]1992~1995! 'Power' (Y)	[${ }^{\text {x. }} 116^{*}$]	V	Histogram	Power
Wm [automobile.dat]1996~1999! 'Power' (Y)	[1*: 112^{x}] $39<Y<121$	V	Histogram	Power
Wm [automobile dat]2000~2004! 'Power' $(Y$ ')	[${ }^{*}$: 112^{\times}] $33<Y<85$	V	Histogram	Power
■! ب- Layer 3	\square Rescale	V		
- man $^{\text {[automobile.dat]1992~1995! 'Weight' }}$ (Y)	[${ }^{\text {x. }} 1116^{x}$]	V	Histogram	Weight
Wh [automobile.dat]1996~1999! 'Weight' (Y)	[1*:112x] $739<Y<2281$	V	Histogram	Weight
- Whe [automobile.dat]2000~2004! 'Weight' (Y)	[$\left.1^{*}: 112^{\times}\right] 724<Y<1847$	-	Histogram	Weight

6. Click OK to close the Plot Setup dialog box and rescale the graph.

6.11.5.6 Steps to Group the Plots

1. Right-click the layer icon $\mathbf{1}$ at the upper-left corner of the graph window and select Layer Contents....
2. Highlight all three plots and click Group, then click OK.

3. Repeat step 2 for layer2 and layer3.

4. Double click the bottom axis to open the Axis Dialog for layer 1, then go to the Scale tab, and set the axis scale for the Horizontal(X axis) and Vertical(Y axis) as below respectively:

5. Click OK to close axis dialog. Double click on the graph to open the Plot Details dialog box and select the first dataplot in layer 1 to go to Group tab. Set Symbol Type as None and duplicate the following settings:

6. Click Ok to close the dialog. Go to the Symbol tab and duplicate the following settings.

Hint: To skip points, you need to use the "Drop Lines" tab
4. Go to Layer 2, Data tab and set the bin scale to be the same as the X scale, then click Apply.

5. Go to the Group tab for plots in Layer 2 and set the Edit Mode to Independent so that we can individually customize the plot styles, click Apply.

6. Go to the Pattern tab and hide bars for all three dataplots in Layer2 as what we did in Steps to Create a Plot with Marginal Distribution Curves, Step3.
7. Go to Line tab of the 1992~1995 data plot and set as below.

8. Repeat step 7 for the other two plots in Layer2 and set line color to the corresponding symbol color in Layer1.
9. Repeat steps $5 \sim 8$ for Layer3, click OK to close Plot Details dialog and apply settings.
10. Activate Layer1 and select Graph: Legend: Data Plots from the menu.
11. Right click the legend object and click Properties..., set Background to Black Line, and font Size to be 18. Click OK.
12. Use Format: Page to open the Plot Details - Page Properties dialog, go to Legends/Titles tab and set as the following so that worksheet name will be used as legend text:

13. Drag and move the legend to a new position as needed. At this stage the graph should look like below:

6.11.5.8 Steps to Reposition the Graph Layers

1. Double click bottom axis to open Axis Dialog for layer 1, go to the Grids tab, hold Ctrl key to multiple select Vertical and Horizontal icon and set the following:

2. Click OK to close dialog. Open the Axis Dialog for layer 2. Go to the Line and Ticks tab, make sure Bottom axis icon is selected and clear the Show Line and Ticks check box to hide the bottom axis line. Do the same for the axis line of Left in layer 3.
3. Open the Layer Management dialog box, highlight Layer2 then go to the Size/Position tab, select Move and set Top to be -35. Click Apply.

4. Set Left for Layer3 to be 102. Click Apply. Then click OK to close the dialog box.

6.11.6Overlapping Box Chart

6.11.6.1 Summary

All Origin graphs are created from a graph template. Templates serve to recall previous customizations but they also serve as a starting point for new customizations. This tutorial will show you how to create the following highly-customized box chart:

6.11.6.2 What you will learn

- Customize box plot settings
- Customize the axis dialog for box plots
- Merge and link several graphs
- Exchange $\mathrm{X}-\mathrm{Y}$ axis

6.11.6.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

6.11.6.3.1 Create the First Box Chart

1. Open the Tutorial Data.opj and browse to folder Overlapped Box Chart.
2. Activate workbook Book1B and Sheet1. Highlight columns B through F, then click Plot>Statistical: Box Chart. A box chart is created.
3. Select and delete the legend object from the graph.
4. Double-click on any box in the plot to open the Plot Details dialog box. Go to the Group tab and set the Increment for Border Color to None (other elements should already be set to None).

5. Go to the Pattern tab and duplicate settings as shown below.

6. Go to the Spacing tab and set Gap Between Boxes (in\%) to be 40 .

Group	Pattern	Spacing	Box	Percentile

7. Go to Box tab and duplicate settings as shown below.

8. Go to Percentile tab and clear all symbols. Click OK to close the dialog.

6.11.6.3.2 Create the Overlapped Box Chart

1. Right click the graph window title bar and select Duplicate. Repeat twice more. You should now have four identical graph windows.

2. Double-click any box in Graph2 to open Plot Details. Go to the Box tab and set the Coef value to be 0.95, Box Width (\%) to be 15 and no Whisker.

3. Repeat step2 for Graph3 with Coef $=0.75$, Box Width (\%) $=40$ and no whiskers .
4. Repeat step2 for Graph4 with Coef $=0.5$, Box Width (\%) $=70$ and no whiskers.

5. Select Graph: Merge Graph Windows to open the merge_graph dialog box. Duplicate the settings as shown below and click OK.

Merge	All in Active Folder（Open）	\bullet
Graphs	Graph1 Graph2	－\ldots ~-1
Keep Source Graphs	V	
Rearrange Layout	V	
\square Arrange Settings		
Number of Rows	1	
Number of Columns	1	
Add Extra Layer（s）for Grid	\square	
Keep Layer Aspect Ratio	\square	
Treat Each Source Graph as a Unit	－	
Link Source Graphs	\square	
Set Layer Width by Common Scale	\square	
Set Layer Height by Common Scale	\square	
Show Axes Frame	\square	
田 Spacing（in \％of Page Dimension）		
\square Page Setup		
Orientation	Landscape	
Width	12	
Height	8	
Unit	inch -	
包 Scale Elements		
团 Add Label		

6．Select Graph：Layer Management from the menu to open the dialog box．

7．Select Layer2 and go to the Link tab．Duplicate settings as shown below and click Apply．

8. Go to the Axes tab, clear all checkboxes and click Apply.

9. Repeat Steps 7~8 for layer3 and Layer4. Click OK to close the dialog box.

6.11.6.3.3 Do Further Customizations

1. Double-click the Y axis to open Axis Dialog box. Go to the Scale tab and duplicate settings as shown below for the Y axis (Vertical).

2. Go to the Tick labels tab and duplicate settings as shown below.

3. Go to the Grids tab and duplicate settings as shown below.

4. Go to the Line and Ticks tab, hold Ctrl key to select both Bottom and Left icons, then select Use Same Options for Bottom and Top, and change the line and ticks setting as below.

5. Go to the Tick labels tab again. Duplicate settings as shown below for X axis, after this, click $\mathbf{O K}$ to close the Axis dialog and apply all settings:

国 X Axis - Layer 1

国 X Axis - Layer 1

6. Right-click the Y axis title and select Properties.... Duplicate settings as shown below and click OK.

7. Activate Layer1 by clicking on the layer icon at the upper-left corner of the graph window. Select Graph: Exchange X-Y Axes.
8. Resize and/or reposition the graph layer as needed, so that everything fits comfortably within the graph window.

6.11.7Two-Level Grouped Box Chart

6.11.7.1 Summary

Origin's box chart is advanced and customizable, this tutorials shows how to create a two- level grouped box chart from indexed data in Origin.

Minimum Origin Version Required: 2015 SR0

6.11.7.2 What you will learn

This tutorial will demonstrate how to:

- Use the data filter to select worksheet data.
- Stack column for box chart.
- Controlling the categorical values.
- Create a grouped box chart from indexed data.
- Customize box chart settings.
- Customize the axis dialog for box charts.
- Add a graph into box chart.

6.11.7.3 Data Preparation

This tutorial is associated with <Origin EXE Folder>\Samples \Tutorial Data.opj, so you should open Tutorial Data.opj and browse to the folder Two-Level Grouped Box Chart at first.

6.11.7.3.1 Using data filter to select worksheet data

In the following steps, you can select the data you want to analyze by data filter:

1. Active the worksheet US Mean Temperature and then highlight Column B.
2. Click the Add/Remove Data Filter button ∇ on the Worksheet Data toolbar to add empty data filter to Column B.
3. Click the Filter icon on the column header of Column B, clear the check boxes before Select All, and check CA, FL and TX again.
4. Click OK to apply the filter.

6.11.7.3.2 Stacking columns to convert data into index mode

In the following steps, you can convert data from the raw mode into index mode:

1. Highlight Column E to Column P (from January to December), and then select Worksheet: Stack Columns from the main menu to open the Stack Columns dialog
2. Check the box before Include Other Column(s), click the Select from Worksheet button, and select Column \mathbf{A} and \mathbf{B} in the worksheet.
3. Change the Group Column Long Name to "Month" and Data Column Long Name to "Temperature"

4. Click OK to launch the new worksheet StackCols1
5. Click the Lock icon on the column header, and select Recalculate Mode: None in the context menu.

	A(Y) 㗜	
Long Name	City	Recalculate
Units		Change Parameters...
Comments		Delete
$F(x)=$		
Sparklines		Go to Source
1	\#\#\#\#\#\#\#\#	
2	PADUCAF \downarrow	Recalculate Mode: Manual
3	\#\#\#\#\#\#\#\#\#	Recalculate Mode: Auto
4	\#\#\#\#\#\#\#	Recalcruate Mode: None
5	\#\#\#\#\#\#\#\#	Recalc Late Mode: None
6	\#\#\#\#\#\#\#	Show Info (wstackcol)
7	\#\#\#\#\#\#\#	Save Theme As...
8	\#\#\#\#\#\#\#\#\#	Save Theme As...
9	\#\#\#\#\#\#\#	Generate Script
10	\#\#\#\#\#\#\#\#\#	
11	YUMA, AZ	Copy Operation
12	\#\#\#\#\#\#\#	Repeat this for All Y columns
13	\#\#\#\#\#\#\#\#\#1 ${ }^{\text {ck }}$	Lumgrue -rict

6.11.7.3.3 Controlling the categorical values

In the following steps, you can customize the order of values shown in the graph but not change the source data:

1. Highlight Column B in Worksheet StackCols1, and then right click to select Set as Categorical.

(5) OriginPro 2016 64-bit - Fil20160602-DOC2801 Add a te					PlotCutCopyCopy Columns toPaste		
						Ctri+X	
					,		
						Ctri+V	
		A(Y)	$\mathrm{B}(\mathrm{Y})$	C)			
	Long Name	City	State			Insert	
	Units						
	Comments				Delete		
	$F(x)=$				Clear	Delete	
	Sparklines				Remove Links		
	Filter						
					Set As	*	
	Categories		Unsorted	Uns	Set As Categorical		
	1	EUREKA	CA	Janu			
	2	REDDING	CA	Janu	Set Column Values...	Ctri+Q	
	3	\#\#\#\#\#\#\#	CA	Janu	Set Multiple Columns Values...	Ctril + hift + Q	

2. Double click the Categories cell "unsorted" of Column B to open the Categories dialog.
3. Uncheck the <auto> checkbox, and then specify the order of items into: CA-TX- FL by using Move to Top button $\boldsymbol{\square}$, Move up button \boldsymbol{A}, Move Down button $\boldsymbol{\nabla}$ and Move to Bottom
button $\boldsymbol{\square}$.

4. Redo step2 and step3 in Column C to specify the order of items into: January to December.

6.11.7.4 Create a grouped box chart from indexed data

1. Highlight Column D in Worksheet StackCols1, and then select Plot > Categorical : Grouped Box Chart - Indexed Data... in the main menu.
2. In the open dialog Plotting: gboxindexed, click the triangle button at the top right corner in Groupe Column(s) section, and then select $\mathbf{C}(\mathbf{Y})$: Month and $\mathbf{B}(\mathbf{Y})$: State in order in the context menu item.

3. Click OK to create a grouped box chart with two levels.

6.11.7.5 Customize box chart settings

1. Select the graph layer (click somewhere in the lower-middle portion of the layer seems to work best), and then drag the control handle to resize it as you want (put the cursor on the control handle, and drag it
when the cursor becomes a two-headed arrow).

2. Select Graph:Fit Page to Layers in the main menu to open the dialog, and then select Height Only in the drop-down list of Adjust Direction to match the page width to that of the bounding box.

The graph will look like as below:

3. Double click on any one of the boxes to open Plot Details dialog, go to Group tab. For both Border Color and Boxed Color, set Increment to By One and Subgroup to With Subgroup, so each subgroup has a different color. Click the color scale on the Details section, and select S01 Gray Scale in
the drop down list for both Border Color and Boxed Color.

4. Go to Pattern tab, uncheck the checkbox Follow the line transparency and set transparency to 30%.

5. Go to Spacing tab to set the gap value between and within subgroup.

Group	Symbol	Pattern	Spacing	Box	Percentile
Lines				Connect Lines	
Gap Between Subgroups (in \%) 35 Gap Within Subgroups (\%, Negative for Overlap) 20					

6. Go to Box tab to set the range of box and whisker.

7. Go to Percentile tab, clear the check box before the $\mathbf{9 9 \%}$, $\mathbf{1 \%}$, Max and Min, and then select the shape and size of Mean marker.

8. Go to Line tab to customize the caps of whisker and uncheck the Median checkbox.

9. Click OK button to apply the setting.
10. Right-click the legend, and select Legend: Box Chart Components... in the context menu. In the ' Enhanced Box Legend: legendbox dialog, select State in the Box Indentifier dropdown list.

The graph will look like as below:

6.11.7.6 Customize the axis dialog for box charts

1. For the \mathbf{X} Axis, change as the following steps:

- Double click X Axis to open the Axis Dialog, and then select Bottom1 on the left panel
- Go to Tick Labels tab, set the font size of Bottom1 with 14 in Format tab, and duplicate settings as shown below in Table tab.

- Select Bottom2 on the left panel, uncheck the <Auto> checkbox and set the font size of Bottom2 with 11 in Format tab, and duplicate settings as shown below in Table tab.

The elements of table layout are shown as below:

- Go to Line and Tick tab, and change the style of major ticks into In.

2. For the \mathbf{Y} Axis, change scale, title, font size of label tick and the style of ticks as shown below:

Select multiple axes to customize together.

3. Hide the top and right axis of the plot:

Press CTRL and select both Top and Right in the left panel, and then go to Line and Ticks tab to
uncheck Show Line and Ticks.

4. Click OK to apply your setting.
5. Select Legend and press Delete to remove it, the graph should appear as below

6.11.7.7 Add a graphical symbol of the box into box chart

If you want to add a graphical symbol of to tell the meaning of each line in box, you can follow these steps:

1. Active Workbook US Mean Temperature, right click the label of worksheet below and select Add to add a new worksheet into workbook.
2. Enter 1 to 5 in each row respectively in Column A.

	$A(X)$	$\mathrm{B}(\mathrm{Y})$
Long Name		
Units		
Comments		
$\mathrm{F}(\mathrm{x})=$		
1	1	
2	2	
3	3	
4	4	
5	5	
6		
7		
8		
9		
10		
11		
12		

3. Highlight Column A and then select Plot > Statistical: Box Chart to create a simple box chart.

4. Double click the plot to open the Plot Details dialog.
5. To object Graph2, set the width and height of page on Print/Dimension tab.

6. To object Layer1, go to Size/Speed tab and set the size of Layer1.

7. To object box, go to Pattern tab and set as shown below.

8. Go to Percentile and Line tab, and select the same setting of grouped box chart Graph1.

9. Go to Box tab, check the box before Box Label, Whisker Label and Mean Value Label, and shown them in Percentile, and then change the width of box into 20%, besides set the range of box and
whisker.

10. Click OK to apply your setting.
11. Select and delete X axis, Y axis, Y axis title Range and Legend of Graph2.

12. Press CTRL + C in Graph2, and then press CTRL + V in Graph1 to copy the graphical symbol into the box chart.
13. Select the graphical symbol in Graph1, and then resize it and move it to a nice location.

At last, you will get the final graph.

6.11.8Unbalanced Grouped Box Chart

6.11.8.1 Summary

Origin can be used to create unbalanced grouped box plots from raw data with custom table axis.
Female Tertiary education (ISCED 5 and 6) Enrollment

Minimum Origin Version Required: 2015 SRO
6.11.8.2 What you will learn

This tutorial will demonstrate how to:

- Create a unbalanced grouped box plot from raw data
- Add a top axis table row with additional grouping information
- Customize the table-axes

6.11.8.3 Steps

6.11.8.3.1 Creating the Box Plot from Raw Data

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the folder Unbalanced Grouped Box Chart.
2. Activate the workbook Book 3.
3. Highlight all the columns except col (A), select Plot> Categorical: Grouped Box Charts - Raw Data menu to open the Plotting: plotgboxraw dialog. In the dialog, set the Group Number to 2, the 1st Group Row to Continents and the 2nd Group Row to Country. This will create a box chart with the column data arranged in three groups, with X axis row names derived from the two selected label rows on the worksheet:

4. Click the OK button. Select the legend and delete it and the grouped box chart from raw data is created with two grouping levels as shown below:

6.11.8.3.2 Customizing the axis table to display unbalanced groupings

1. The color and sub-group gap need some work. So, begin by changing all boxes to gray. Select Format: Plot from the menu. In the Plot Details dialog box, click the Group tab. Set Border Color Increment to None and Subgroup to None, so that box border color does not increment by dataset.

2. Go to the Pattern tab and duplicate the settings as shown below:

3. Go to the Spacing tab and set Gap Between Subgroups (in\%) to $\mathbf{0}$ to remove the gap between sub-groupings.

Group	Pattem	Spacing	Box	Percentile
\begin{tabular}{\|l	lr	}		
\hline				
\end{tabular}				
Gap Between Subgroups (in \%) 0 \checkmark				
Gap Within Subgroups	20	\checkmark		

4. Click OK to apply the settings. Now our unbalanced grouped box chart is correctly drawn (we will adjust the labels later).

6.11.8.3.3 Add a top axis table row

We will now add an axis table top of the graph to display extra grouping information.

1. Open the Axis Dialog again (Format: Axes: X-Axis). Go to Tick Labels tab and click to highlight the Bottom 1 icon only on the left panel.
2. Go to Table tab in Tick Labels page and change Number of Rows to $\mathbf{3}$.

3. Click to select the newly added Bottom $\mathbf{3}$ icon on the left panel and go to Display tab to set the Display list to Rank (note that this is another worksheet label row).

4. Click Apply to see the changes. A new table row is added to the bottom X axis. Next, we will move it to the top of the graph.

5. Right click the Bottom $\mathbf{3}$ icon on the left panel and select Move to Opposite.

6. Click $\mathbf{O K}$ to apply the change.

6.11.8.3.4 Further customization

Now, let's do some further customization so that our graph looks like the one pictured in the introduction to this tutorial.

1. Double click on the grouping table on the bottom of graph to bring up Axis Dialog, go to Tick Labels tab and click to select Bottom $\mathbf{1}$ icon only again.
2. Go to Table tab, clear the Far Parallel Border check box for Bottom 1.

3. Click to highlight the Bottom 2 icon on left panel, uncheck Auto box and clear the Inside Border and Outside Border check boxes.
4. Click to highlight the Top 1 icon on left panel and clear the Far Parallel Border, Inside Border and Outside Border check boxes. Select the Tick at Beginning of Cell and Tick at End of Cell check boxes.

5. Click Apply and then go to Line and Ticks tab and set Style under Major Ticks node to be In \& Out.

Select multiple axes to customize together.

6. Go to Grids tab and customize both major and minor grid lines settings as Color $=$ Black, Style $=$ Dot and Thickness $=\mathbf{0 . 5}$.

7. Click Apply and go to Scale tab, click Vertical icon on left panel and change scale Type to Log10, and adjust the other settings as shown below.

Select multiple axes to customize together.

8. Go to Tick Labels tab and enter a Suffix of \% to apply this character to each of the Y axis labels.

9. Click $\mathbf{O K}$ to apply the above changes.

10. Click Format: Page and set Width = $\mathbf{1 4 . 0}$ (you can leave the Height setting, as it is).
11. Double-click on the Country labels in the graph and set font Size $=\mathbf{1 4}$.
12. To add a graph title, click the Text tool, click somewhere in the heading of the graph and enter Female Tertiary Education (ISCED 5 and 6) Enrollment, and change Y axis title to be Enrollment Rate.

6.11.9Grouped Box Plot

6.11.9.1 Summary

In Origin, a grouped box chart can be created from either indexed data or raw data. The indexed data is arranged as one data column and one or more group columns, while the raw data is arranged as multiple data columns grouped according to the column label row(s).

Once a grouped box plot has been created there are many options to customize the box plots and the axes. The customization options are the same for grouped box plots created from raw data as well as those created using indexed data.

Minimum Origin Version Required: 2015 SRO

6.11.9.2 What You Will Learn

This tutorial will show you how to:

- Create a grouped box plot from indexed data
- Create a grouped box plot from raw data
- Customize the box plot using the Plot Details dialog
- Customize the table-style axis tick labels

6.11.9.3 Steps

This tutorial with the Grouped Box Plot and Axis Tick Table folder in the project <Origin EXE Folder>\Samples\Tutorial Data.opj.

Note: You can also access this sample graph by double-clicking on its thumbnail under the Box Plots -
Grouped graph sample in the Learning Center dialog(select Help: Learning Center menu or press F11).

6.11.9.3.1 Create Grouped Box Plot from Indexed Data

1. Open the Tutorial Data project, browse to the folder Grouped Box Plot and Axis Tick Table and activate the workbook Book4G-CC.MI-Index.
2. The data in the CC.MI-Index worksheet is indexed data. Column E is the data column and columns C and D can be used as grouping columns.
3. Highlight column E and select Plot > Categorical : Grouped Box Charts - Indexed Data to open the plot_gboxindexed dialog.
4. Beside Group Column(s), click the triangle button at the top right corner and click the context menu item Select Columns. This opens the Column Browser for selecting grouping ranges.
5. In the column browser, highlight columns C and D simultaneously by holding down the Ctrl key while selecting them. Click the Add button to add them to the bottom panel. Click OK to apply the selection and close the column browser.
6. Make sure the dialog settings the same as the image below:

7. Click OK to create a grouped box plot, the plot will resemble the image below:

For another short tutorial on creating grouped box plots from indexed data, see Example 2.

6.11.9.3.2 Create Grouped Box Plot from Raw Data

In the previous section, when the grouped box plot was created, an Output Data worksheet was generated as well. The data in this worksheet is arranged as raw data. A box plot graph will created from the raw data as well.

1. Highlight all the columns in the worksheet Output Data. Select Plot > Categorical : Grouped Box Charts - Raw Data from the main menu to open the plotgboxraw dialog.
2. We will use the labels in the SEG and Type label rows to group our data into 2 subgroups: Set Group Number to 2, 1st Group Row to SEG and 2nd Row Group to Type.
3. Enable, Sort by Group Labels and accept the default Graph Theme.

4. Click OK to create another grouped box plot, the plot should resemble the image below:

6.11.9.3.3 Customization by Plot Details Dialog

Both the graphs created in the previous two sections can be customized in the same manner. In the following sections, the graph created from the indexed data will be used as an example for customization.

1. Activate the graph window created from the indexed data. Select and delete the legend object.
2. Select Format:Plot to open the Plot Details dialog.
3. On the Box tab, check the Outliers box. Note that Outliers in Line will also be checked automatically. Outlier points will be shown in the graph.Click Apply to apply settings first and the Symbol tab will appear.
4. To customize Symbol style select the Symbol tab and set the following:

5. On the Spacing tab change Gap Between Subgroups (in \%) to 5.
6. On the Lines tab change the line colors as shown below:

7. On the Percentile tab in order to set the Max/99\%/1\%/Min to none, select the last option in the symbol map. Set the rest of the options as shown below:

8. On the Group tab, for the Border Color row, set the Increment as By One and Subgroup as Within Subgroup .
9. Next, click the ... button on the right end of the Details column to open the Increment Editor. Click the first color to expand the color chooser, then click the last vacant color under Custom control to open the Colors dialog. In the dialog that opens, you can define a custom color by entering the HSL values (Hue=0, Sat=240, Lum=180). OK to close the dialog. Follow the same procedure for the second color in the Increment Editor dialog with the settings Hue=160, Sat=240, Lum=164. OK out of the Increment Editor:

10. In regard to the Box Color, select the first color list we just defined under the Details drop-down list, and then select By One for Increment cell and Within Subgroup for Subgroup cell:

11. Click OK to apply all the previous settings and close the Plot Details dialog. The graph should resemble the image below:

6.11.9.3.4 Customization by Axis Dialog

1. Continue with the graph from the previous section. Select Format:Axes:X Axis to open the Axis dialog.
2. Go to the Tick Labels tab, right click on the Bottom 1 icon and select Move to Opposite to move it to the top axis.

3. Now the previous Bottom 1 becomes Top 1, and Bottom 2 becomes Bottom 1.
4. Click the new Bottom $\mathbf{1}$ icon and set the tick label format and table layout as shown below:

5. Click the Top $\mathbf{1}$ icon and set the following:
[X Axis - Layer 1

6. Click the Left icon (for Y axis) and change the display format for the Y tick labels:

7. To turn on major and minor grid lines, go to the Grids tab and set as following for X (Vertical) and Y (Horizontal) grids respectively:

8. Click OK to apply the settings and close the Axis dialog. The final graph should appear as shown below:

You can click to select table labels and nudge them using the arrow keys on your keyboard.

6.11.10 Notched Boxes with Variable Width Control

6.11.10.1 Summary

Origin's box plot is highly customizable. This tutorial shows how to create a notched box plot and control the box width by another dataset.

US Weekly Retail Gasoline Prices

Minimum Origin Version Required: 2015 SR0
6.11.10.2 What you will learn

- Customize box plot settings
- Use a dataset to control the box width
- Customize the axis dialog for box plots
- Add a fill area plot to a box plot as background

6.11.10.3 Steps to Control Box Width by Variable

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Origin Central. (Select Help: Origin Central menu or press F11 key, and then select Graph Sample tab, select Box Charts under the drop-down list)

1. Open the Tutorial Data.opj and browse to the Box Variable Width folder.
2. Activate workbook Book7, highlight columns A~F and then select Plot > Statistical: Box Chart. Next, select and delete the legend object from the graph.
3. Double-click on one of the boxes to open the Plot Details dialog and go to the Box tab. Set Style to Notched Box. Select the Box Width by Parameter box and then set Box Width (\%) to Number of Vehicles (in million) and enter 1.2 for Scaling Factor. Select the Outliers box. Outliers in Line is automatically checked.

4. Click OK to close the dialog. Go to the Object Manager, which is docked to the right edge of Origin workspace, uncheck the last plot. And the click on the Rescale button ${ }^{\natural}$ to rescale the graph.

The graph will look as below.

6.11.10.4 More Box Style Customization Steps

The following steps can further customize the box plot.

1. To use the same color for each box, double-click on any box to open the Plot Details dialog box. Go to the Pattern tab. Set Border Color as Orange. Set Width as 1.5.
2. To fill the boxes with color, expand Fill Color drop down list, and in the Single tab choose a lighter orange as below:

3. Note that checking Outliers checkbox in Box tab added a Symbol tab. Use controls on this tab to customize the outlier symbol as shown below:

4. To hide the 99% and 1% symbols, go to the Percentile tab and clear the symbol for both $\mathbf{9 9 \%}$ and $\mathbf{1 \%}$. Select the 2nd symbol in the first row for Mean:

5. Click OK button to accept all the changes.

6.11.10.5 More Axis Customization Steps

1. To show solid grid lines between each boxes, double click on the X axis to open the Axis dialog box. Go to the Scale tab with Horizontal icon selected and set the Count of Minor Ticks to 1:

2. Select the Grids tab and select the Vertical icon. Check Show under Minor Grid Lines branch and set the Style as Solid.

3. Go to the Line and Ticks tab and set the tick styles for X axis (Bottom):

4. Hold Ctrl key and multiple select the Top and Right icons. Check the Show Line and Ticks box to also display line and ticks of top X and right Y axis, and set the tick style to None:

5. Go to the Scale tab again and select Vertical icon. Set the following:

6. Go to the Tick Labels tab, make sure Left icon is selected and enter a prefix of $\$$.

7. Go to the Title tab, make sure Left icon is selected and change the text of Y axis title to Gasoline Prices.
8. Click OK to close the Axis dialog.
9. To add a title and footnote in the graph, right click in white area of the graph and select Add/Modify Layer Title context menu. Type US Weekly Retail Gasoline Prices. Select the title and use the Format toolbar to set font size as 26. Right click below the X axis tick labels and choose Add Text... context menu. In in-place edit mode, click \boldsymbol{I} button on Format toolbar and then type Box width indicates number of vehicles in each area as a footnote. It will show in italics.

6.11.10.6 Steps to Add National Average Line and Min\&Max Range

Now, we are going to add three reference lines at Y axis to show the national average and minimum-maximum range of national gasoline price.

1. Double-click on Y axis to open the Axis dialog again. Go to Reference Lines tab, click Details... button to open the Reference Lines dialog.

2. Click Add button at the bottom of Reference Lines dialog to add a reference line. Select this new line, set Value Type to Statistics, and enter Mean(plotdata($6, Y$)) in the At Axis Value box(You can click the arrow at the end of this box to select a built-in pattern). Change the lint style to Royal and Dash, and
check Show box under the Label node.

Select multiple reference lines to customize together

3. Click Add button again to add second reference line. With this line selected at the Reference Lines at panel, set Value Type to Statistics, and enter min(plotdata(6, Y)) in the At Axis Value box. Set Line

Style to Royal and Solid.

4. Click Add button again to add third reference line. With this line selected at the Reference Lines at panel, set Value Type to Statistics, and enter max(plotdata(6, Y)) in the At Axis Value box. Set Line Style to Royal and Solid.
5. Click OK button to close the dialog and add the reference lines to the line table.

6．Enter National Average at the Label Text cell of first added line．And select the Fill To line for the second and third reference line as below：

At Axis Value	\square Line	Fill To	\square Label	Label Text	Label Lor＊
Axis Begin		None -	\square	＜value as entered＞-	End
Axis End	\square	None	\square	＜value as entered＞	End
mean（plotdata（6， Y$)$ ）	∇	None	V	National Average	End
\min（plotdata（6， Y$)$ ）	V	max（plotdata（6，Y））	\square	＜value as entered＞	End
$\max ($ plotdata（6， V$)$ ）	V	\min（plotdata（6， V$)$ ）	\square	＜value as entered＞	End
1	同	Alanの III	圆	c．al．on ar antamad．	cmal $^{\text {a }}$

7．Click Apply button to add the reference lines to the graph．Click Details．．．button again to open the Reference Lines dialog，select the second line at right panel，and then set Fill Color under Pattern node to Cyan and Transparency to 90 ．Click OK button．

8．Click OK button again to close the dialog．Go back to the graph，right－click on the label of the mean line to select Properties．．．from context menu to open the Text Object dialog．Enter the text below and do the format settings：

9. Click OK button. At the end, you will get the final graph.

US Weekly Retail Gasoline Prices

6.11.11 Simple Dot Chart

6.11.11.1 Summary

Dot chart is a statistical chart which consists of data points plotted on a simple scale. It is often used as a substitute for the pie chart, as it allows for quantities to be compared easily. This tutorial will teach you how to create a simple dot chart plot:

- Content

Minimum Origin Version Required: Origin 2015 SR0

6.11.11.2 What you will learn

This tutorial will show you how to:

- Create a scatter graph
- Change the X-Y Axis
- Use the Plot Details dialog to customize your graph

6.11.11.3 Steps

Start with the following data which represents various elements in a compound:

Element	Content
C	36
Cl	2
H	28

N	10
O	12
P	7
S	5

1. Create a new workbook using the New Workbook icon in the Standard toolbar, and input the data:

\#\# Book1		$\square \square$		\times
	$\mathrm{A}(\times)$	B()		\wedge
Long Name	Element	Conte		
1	C			
2	Cl		2	
3	H			
4	N			
5	0			
6	P		7	
7	8		5	
8				
9				
10				
11				\checkmark
4 Sheet1		$1 \leqslant$	\geqslant	:

2. Highlight $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$. Select the Plot > Basic 2D: Scatter menu item from the main menu to create a scatter plot as shown below:

3. Select Graph: Exchange X-Y Axis from the menu.

4. Double-click on the graph to bring up the Plot Details dialog, change the symbols and the symbol color using the different tabs as shown below:

5. Click the OK button to save the changes and close the dialog. The graph should appear as shown below:

6. The next step is to reset the X and Y Axes. Double-click the horizontal axis to open the Axis dialog. On the Scale page, set From as $\mathbf{0}$ and To as 40. Set the Increment as $\mathbf{1 0}$.

7. Go to the Line and Ticks page, select the Left icon in the left panel, and set both Major Ticks and Minor Ticks to None. Click OK to save the changes.

8. The completed Dot chart should appear as shown below:

6.11.12 Multi-Data Dot Chart

6.11.12.1 Summary

A Dot Chart is a statistical chart which consists of data points plotted on a simple scale. It is often used as a substitute for the pie chart because it can make comparing quantities easy. This tutorial will teach you how to create the Multi-Data Dot Chart.

Minimum Origin Version Required: Origin 2015 SR0

6.11.12.2 What you will learn

This tutorial will show you how to:

- Create a scatter graph
- Change the X-Y Axis
- Use Layer Management
- Customize the axes
- Add objects on the graph

6.11.12.3 Steps

The following data concerning the element content of several areas at different times can be used to create a multi-data dot chart:

Sulphate	0.346	0.560	0.333	0.887	0.310	0.899
Nitrate	0.382	0.780	0.456	0.732	0.456	0.732
Chloride	0.441	0.880	0.120	0.656	0.221	0.673
Ammonium	0.481	0.900	0.256	0.890	0.434	0.825

1. Create a new workbook using the New Workbook icon on the Standard toolbar and input the data.

\# ${ }^{\text {\# }}$ Book1						$\square \square$		\times
	A(X)	B (Y)	C(Y)	D(Y)	$E(Y)$	$F(Y)$	G(Y)	ヘ
Long Name								
Units								
Comments								
1	Sulphate	0.346	0.56	0.333	0.887	0.31	0.899	
2	Nitrate	0.382	0.78	0.456	0.732	0.309	0.785	
3	Chloride	0.441	0.88	0.12	0.656	0.221	0.673	
4	Ammonium	0.481	0.9	0.256	0.89	0.434	0.825	
5								\checkmark
					$1 \leqslant$	IIII	\geq	\because

2. Hover the cursor over the very first cell of the col(B) till it turns into a downward arrow. Left-clicking highlights col(B) and dragging highlights col(C). Select Plot > Basic 2D: Scatter from the main menu to create a graph, and select Graph: Exchange X-Y Axis. An alternate way of creating scatter graphs is using the scatter icon in the 2D Graphs toolbar.
3. Repeat step 2 twice to create two more graphs with $\operatorname{col}(\mathrm{D})$ and $\operatorname{col}(E)$, as well as $\operatorname{col}(F)$ and $\operatorname{col}(G)$.
4. To Merge the three graphs, select Graph: Merge Graph Windows: Open dialog. In the dialog box that opens expand Arrange Settings, set the Number of Rows as $\mathbf{3}$ and the Number of Columns as 1. The Preview window on the right shows how the three graphs will be arranged and which layers they will be on. Click the OK button to save. This creates a new graph which contains three layers each containing a separate graph.

5. To clean up the graph, delete the legends and axis titles in the graphs by selecting them and pressing the Delete key.

6. Select Graph: Layer Management from the main menu. Select Layer 2 on the left. In the right panel Link tab set Link to as $\mathbf{1}$. This links the Y axis of the second layer containing the second graph to the first layer containing the first graph. Set the \mathbf{Y} Axis Link as Straight ($\mathbf{1}$ to $\mathbf{1}$), this will ensure that the axis for the two graphs is the same. Click the Apply button. Check the When dragged to reposition, also reposition parent layer box. This setting will ensure that when one axis is moved, the other follows accordingly.

7. Select Layer 3 on the left and repeat the previous step. Click the $\mathbf{O K}$ button to save changes.
8. In order to reset the X and Y Axes, make sure Layer 1 is the active layer by clicking on $\mathbf{1}$ at the top left corner of the graph. Double-click on the horizontal axis of the graph layer. On the Scale page when Horizontal icon is selected, set the values shown below (since the layer axes were linked in the last step, these changes are applied to all three axes):

9. Go to the Line and Ticks page, select Top icon in the left panel, check the Show Line and Ticks check box to show the top Y axis. And then set Major Ticks as Out and Minor Ticks as None.

10. Select Bottom icon in the left panel, in the Line and Ticks page, set Major Ticks and Minor Ticks as None to remove the ticks.

11. Go to Tick Labels page in the right panel, select Top icon in the left panel, check Show check box.

12. Go to the Special Ticks page, select Top icon in the left panel, choose Hide for both Axis Begin and Axis End.

13. Go the Tick Labels page, select Top icon in the left panel, clear the Show check box.

14. Go the Tick Labels page, select Bottom icon in the left panel, clear the Show check box.

15. Go to the Line and Ticks page, select Left icon in the left panel, check Use Same Options for Left and Right check box. And then set both Major Ticks and Minor Ticks as None:

16. Go to the Grids page and select Horizontal in the left panel, check Show check under the Major Grid Lines branch.

17. Click the OK button to apply the settings and close the Axis dialog. The graph should now appear as shown below:

18. Right click on Layer 1 and choose Copy Format:All Style Formats. Right click on the graph page and choose Paste Format to copy and paste the style from Layer 1 to the whole page.

19. Double click on the top axis in Layer 2, go to the Line and Ticks page, select Top icon in the left panel, set Major Ticks and Minor Ticks as None. Do the same for the top axis of Layer 3
20. In the Axis dialog of Layer 3, go to the Line and Ticks page, select Bottom icon in the left panel, set Major Ticks to Out.
21. On the Tick Labels page, select Bottom icon in the left panel, check Show check box.
22. Go to the Special Ticks page, select Bottom in the left panel, and choose the Hide option for both Axis Begin and Axis End. Click OK.

23. The graph should appear as shown below:

24. Double-click the graph to bring up the Plot Details dialog. Change the settings as shown below.

Setting the Edit Mode as Independent ensures that the symbols can be customized separately for each data set on one layer. For Symbol shape, uncheck the Custom Construction check box, click the down arrow button to select different symbol shape. For symbol color, in the Symbol tab click on the Symbol Color option and select Individual Color to set one color to all the symbols as in this tutorial:

25. Repeat the previous step (step 24) for the Layer 2 and Layer 3. Click the OK button and the graph will appear as shown below:

26. Select \square_{Δ} in the Tools toolbar to draw three rectangles on the graphs. For each rectangle:

1. Double-click on the rectangle to bring up the Object Properties dialog.
2. In the Fill tab, set the desired Fill Color which will designate the color of the rectangle:

3. In the Dimensions tab, adjust the size and position of the rectangle:

4. Select the Text Tool \mathbf{T} in the Tools toolbar and click inside the rectangles to add the desired text.
5. To create a legend for the symbols, select Graph: Legend: Data Plots from the main menu. Move the legend to a suitable place, right-click on it and select Properties. Change the settings as below:

6. Activate the top X axis of Layer 1 to move it to a suitable place.

The complete multi-data dot chart graph should appear as shown below:

6.11.13 Add multiple fitted curves in a Histogram

6.11.13.1 Summary

Origin allows you to fit the peaks from the result of frequency count. Also, fitted curves can added into the new layer in the Histogram.

6.11.13.2 What you will learn

- Plotting the Histogram
- Using Frequency Count to do statistics
- Using Multiple Peak Fit tool to find peaks and do fitting
- Adding new layers

6.11.13.3 Steps

Copy and paste the sample data into Origin and set the column as Y (Highlight the column and choose Column: Set As: Y from the Origin menu). Plot this data as a Histogram by clicking Plot > Basic 2D: Histogram from the menu.

6.11.13.3.1 Frequency Count

1. Highlight the sample data, then open the Frequency Count dialog by selecting Statistics: Descriptive Statistcs: Frequency Count.
2. Click OK to finish. A new result sheet will be generated.

6.11.13.3.2 Fit peaks

1. Select Col(Counts) in FreqCounts1 sheet and then open the Multiple Peak Fit dialog from Analysis: Peak and Baseline: Multiple Peak Fit.
2. In the dialog that opens, choose Gaussian for Peak Function and click OK.
3. A graph window is generated automatically for you to pick peaks from the graph. Double click at the peak center to pick up a peak. Pick two peaks one by one this way.

Note: you can single click at the peak center and then use Left and Right arrow keys on the keyboard to slightly adjust the center. Once done, press Enter key to confirm.
4. We need to fix the baseline at $Y=0$. To do this, click Open NLFit button to open Nonlinear Curve Fit dialog. Go to Parameters tab. Set Value of parameter y0 to 0 and check Fixed cehckbox. Click Fit button to perform the fitting.

If your baseline is complicated, or if you would like Origin to auto find peaks by specified method, please use Peak Analyzer (open from Analysis: Peaks and Baseline: Peak Analyzer). Note that Peak Analyzer provides powerful controls appropriate not just in two cases mentioned.
5. Two sheets nlfitpeaks1 and nlfitpeaksCurve1 are added to the source workbook containing the fitting report and the fitted curve data.

6.11.13.3.3 Add the fitted curves

1. Activate the Histogram graph and add a layer by selecting Insert: New Layer(Axes): Right-Y from the main menu.
2. Double click the Layer2 icon to open the Layer Content dialog.
3. Hold Ctrl key to select col("Fit Peak 1") and col("Fit Peak 2") in sheet nlfitpeaksCurve1 in the left panel, click the triangle button next to \mathbf{A} button and select Line from the fly-out menu, and then click $->$ button to add it to the right panel.
4. Click OK. Two fitted curves had been added to the Histogram.
5. Double-click the graph to open the Plot Details dialog. Select RightY from the left panel, then open the Link Axes Scales tab in the right panel and select Straight(1 to 1) for both X Axis Link and \mathbf{Y} axis Link. Click OK to close the dialog.
6. The fitted curves are added into the Histogram with the proper scale. The following is the result graph, with the right Y -axis removed.

6.11.13.3.4 Sample Data

| 0.631 |
| :--- | :--- |
| 0.642 |
| 0.652 |
| 0.662 |
| 0.669 |
| 0.676 |
| 0.677 |

Tutorials for Origin

0.691
0.696
0.697
0.699
0.699
0.7
0.7
0.708
0.712
0.718
0.731
0.744
0.749
0.751
0.752
0.753
0.758
0.758

0.759
0.761
0.761
0.763
0.763
0.763
0.765
0.767
0.768
0.768
0.769
0.769
0.77
0.771
0.771
0.772
0.774
0.775

Tutorials for Origin

0.775
0.776
0.776
0.776
0.777
0.778
0.779
0.78
0.78
0.781
0.784
0.784
0.785
0.785
0.789
0.789
0.791
0.794

0.795
0.796
0.798
0.798
0.803
0.82
0.831

6.11.14 Weibull Probability Plot

6.11.14.1 Summary

The probability plot shows a graph with observed cumulative percentage on X axis and expected cumulative percentage on Y axis. The Weibull probability plot is used to test whether or not a dataset follows Weibull distribution. And its X scale type and Y scale type are Log10 and Double Log Reciprocal respectively. If all the scatter points are close to the reference line, we can say that the dataset follows the Weibull distribution.

Minimum Origin Version Required: Origin 2016 SR0
6.11.14.2 What you will learn

- How to create a Weibull probability plot
- How to add the fill area between the percentiles lines

6.11.14.3 Steps

You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Statistical Graphs)

1. Download the data from here. Highlight column A and right-click to select Set As: \mathbf{Y} from the context menu.

2. Keep this column highlighted, select Plot > Statistical : Probability Plot from the Origin main menu to open the plot_prob dialog. In this dialog, change Distribution to Weibull and then click the OK button
to create a Weibull probability plot with column A.

3. Double-click on the Lower Percentiles line to open the Plot Details dialog. Go to the Line tab, set Color to Red, Transparency to $\mathbf{8 0 \%}$, then check Fill Area Under Curve check box and select Fill to next
data plot - One Color in the below drop-down list.

4. Go to Pattern tab, set Fill Color to Red. And make sure the Follow line transparency is checked.

5. Go to the Line tab of Upper Percentiles line set Color to Red, Transparency to $\mathbf{8 0 \%}$. Click OK to apply the setting and close the dialog.

6. Double click on the X axis on the graph to open the Axis dialog. Go to Scale tab for Horizontal axis, change scale from $\mathbf{1 0}$ to 100, and set the increment value of Major Ticks to $\mathbf{2 0}$.

Select multiple axes to customize together.

7. Go to Scale tab for Vertical axis, change scale from 1 to 99.99 . Click $\mathbf{O K}$ to apply the setting and close the dialog.

Select multiple axes to customize together.

The final graph should look like this:

6.11.15 Q-Q Plot

6.11.15.1 Summary

The Q-Q plot is a graphic method that tests whether or not a dataset follows a given distribution. The Q-Q plot has independent values on the X axis, and dependent values on the Y axis. If all the plotted points are close to the reference line, then we conclude that the dataset follows the given distribution.

Minimum Origin Version Required: Origin 2016 SR0
6.11.15.2 What You Will Learn

- How to create a Q-Q plot
- How to mask a suspected outlier in the source data and recalculate the $\mathrm{Q}-\mathrm{Q}$ plot

6.11.15.3 Create a Q-Q Plot

You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press $\mathbf{F 1 1}$ key, and then open Graph Sample: Statistical Graphs)

2. In the QQplot workbook, activate the $\mathbf{Q}-\mathbf{Q}$ plot worksheet, highlight column B, right click, and from the context menu, select Plot > Statistical: Q-Q Plot.... In the Plotting:plot_prob dialog, make sure that
the Score Method drop-down is set to Benard. Click OK.

Plotting: plot_prob		? x
Dialog Theme *		-
Description		
Input Data	[QQplot1]'Q-Q plot'!2	7
\square Distribution		
Distribution	Normal -	
Estimate from Data	V	
mu	58.9792224688995	
sigma	9.78098257002928	
Score Method	Benard \quad -	
Confidence Band	V	
Confidence Level[\%]	95	
Exchange X - Y Axes	\square	
Output Range	[<inpul>]<new>	친
	OK	Cancel

3. Double-click on the Lower Percentiles line to open the Plot Details dialog. Go to the Line tab, set Color to Red, Transparency to $\mathbf{8 0 \%}$, then check Fill Area Under Curve check box and select Fill to next
data plot - One Color in the below drop-down list.

4. Go to Pattern tab, set Fill Color to Red. And make sure the Follow line transparency is checked.

5. Go to the Line tab of Upper Percentiles line set Color to Red, Transparency to $\mathbf{8 0 \%}$. Click OK to apply the setting and close the dialog.

Your graph should look as shown below.

6.11.15.4 Mask a Suspected Outlier

1. Click on the green lock icon to make sure the Recalculate Mode is Auto.

2. Click on the Data Reader tool and click to select the suspected data point in the Q-Q Plot.

The Data Info window shows the value of the outlier point.
3. Activate the $\mathbf{Q}-\mathbf{Q}$ plot worksheet and highlight column \mathbf{B}.

\# QQplot-Q-Q plot.dat *			$\square \square$
	A(X)	B(Y)	-
Long Name	Subject	Weight	
Units		Kg	
Comments			
$F(x)=$			三
Sparklines		Urunis	
1	1	90.38459	
2	2	63.89506	
3	3	57.65785	
4	4	64.56395	
5	5	79.82768	
6	6	55.60663	
7	7	71.53605	
8	8	55.70162	
9	9	33.19531	
10	10	61.86922	
11	11	65.65194	
12	12	54.50959	
13	13	67.3124	
14	14	64.44892	
15	15	54.45029	
16	16	70.97196	
17	17	64.63769	
18	18	46.89357	
19	19	66.43104	
20	20	54.95324	\pm
			\| +1 II $+\| \|$

4. From the Menu Bar, click on Window:Command Window and at the prompt, enter the script shown below.

The outlier point will be shown in red in the $\mathbf{Q} \mathbf{- Q}$ plot worksheet, and it will not be included in the graph.

\# QQplot - Q-Q plot.dat *			$\square \square$	
	A(X)	$\mathrm{B}(\mathrm{Y})$		
Long Name	Subject	Weight		
Units		Kg	\equiv	
Comments				
$F(x)=$				
Sparklines	$>$	Unomus		
1	1	90.38459		
2	2	63.89506		
3	3	57.65785		
4	4	64.56395		
5	5	79.82768		
6	6	55.60663		
7	7	71.53605		
	8	55.70162		
9	9	33.19531		
10	10	61.86922		
11	11	65.65194		
12	12	54.50959		
13	13	67.3124		
A			$\\| \cdot \mathrm{m}+1 \mid$	

6.11.16 Scatter Matrix

6.11.16.1 Summary

A scatter matrix consists of several pair-wise scatter plots of variables presented in a matrix format. It can be used to determine whether the variables are correlated and whether the correlation is positive or negative. This tutorial will show you how to create a Scatter Matrix plot.

Minimum Origin Version Required: Origin 2016 SRO
6.11.16.2 What you will learn

- How to create a Scatter Matrix plot with a histogram
- How to customize Scatter Matrix plot
- How to set a grouping range for showing the color index
- How to specify to hide scatter plots on the bottom/top of the diagonal

6.11.16.3 Steps

6.11.16.3.1 Creating Scatter Matrix plot

1. Start with an empty worksheet, select Data: Import from File: Single ASCII... to open the Import Single ASCII dialog, browse to the \Samples\Statistics subfolder of the Origin program folder, and import the file Fisher's Iris Data.dat.
2. Highlight columns (A) to (D) but not col(E), and select Plot > Statistical : Scatter Matrix from the main menu.
3. In the dialog, select Histogram from the Show in Diagonal Cells drop-down list, and select Alternate from Show Tick and Label drop-down list.

Plotting: plot_matrix	8
Dialog Theme	LLast used>
Description	

Options
Confidence Ellipse
Confidence Level in \%

Linear Fit
\boxminus Additional Statistics

Pearson's I
Adj. R-Square
Exclude Missing Value Listwise
\boxminus Graph Templates
Scatter
Box
Histogram
Output Results

Cancel
4. Click OK to close the dialog. The PlotData1 sheet for the scatter matrix plot is generated in the same workbook as the original data. It contains the data for the different graphs in the scatter matrix and can be accessed by clicking on the second tab labelled PlotData1 at the bottom of the workbook. The graph
should appear as below:

You have the option of performing a linear fit on each scatter plot and calculating adjusted R-squared and, additionally, Pearson's correlation coefficient (Pearson's r). Beginning with Origin 2019, these statistics are outputted to a sheet in the active book and named as ScatterMatrixStatsN.

Label each plot in the scatter matrix with Adj. R-Square and/or Pearson's r values by checking the boxes under Additional Statistics.

6.11.16.3.2 Customizing Scatter Matrix plot

There are multiple layers in the Scatter Matrix graph. This section will explain how to customize the background color, the type and color of the data plots and the axis tick labels of the scatter matrix. Starting with Origin 2016, by default, if you change the plot style or axis setting of one layer, all other layers will follow (for independent editing, see the tip at the end of this section).

1. Double click on the scatter data to open the Plot Details dialog. To change the symbol color click on the Symbol Color drop-down menu and select a color from the Individual Color option. Specify the type and color of the symbol as shown in the following image, and click OK.

This change will be applied to all scatter data plots in this graph.

2. To change the background color of the entire window, select Format: Page to open the Plot Details dialog. This dialog can also be accessed by double-clicking inside the Scatter Matrix window. In the

Display tab, click on the Color drop-down and click on an empty color well beneath Custom. This opens the Colors dialog box where you can define custom colors.
3. In the Colors dialog, specify the color as $\mathrm{Red}=235$, Green $=235$, $\mathrm{Bl} / \mathrm{ue}=255$ and click OK.

4. To change the background color of the scatter plot layers without changing the background color of the histograms or the rest of the graph, double-click on a scatter plot to open the Plot Details dialog. Click the Background tab, and set Color to White.

Then click OK in the dialog. This change will be applied to all layers with scatter data plots.

5. Double-click on any tick label in the graph to open the Axis dialog for that layer. Go to the Tick Labels tab, then the Format tab, specify Size to $\mathbf{3 6}$ for the Top axis. Click Apply.
6. Click the Apply To... button to open the Apply To dialog, set the following to apply the previous customization of tick label size to all the other axes in this window. Click OK, then OK to close the Plot

Details dialog box.

7. The graph will appear as shown below:

6.11.16.3.3 Add Grouping Range

Currently, our scatter plots show pair-wise comparisons of variables Sepal Length, Sepal Width, etc. What is not apparent from our scatter plots is that measurements were made on three species of iris. Since all scatter points look the same, we cannot distinguish between species. What we will do is to use the Species column in our original worksheet -- the column that we left out when making the graph -- to color each scatter point so that we can see the effect of species in our pairwise comparisons.

1. To add species information to our plot, click on the green lock icon on the upper-left corner of the graph window. Select Change Parameters to bring up the Plotting: plot_matrix dialog.
2. Click the triangular button beside Grouping Range and choose $\mathbf{E}(\mathbf{Y})$: Species, then click $\mathbf{O K}$.
3. Click the OK button in the Plotting: plot_matrix dialog. The graph will appear as shown below:
4.

6.11.16.3.4 Customizing Matrix Display

One Scatter Matrix display option is to hide half of the scatter plots (since they merely repeat the same information shown by the other half of the scatter plots).

1. To hide the layers below the diagonal in the Scatter Matrix graph, click on the green lock icon on the upper-left corner. Select Change Parameters to bring up the Plotting: plot_matrix dialog.
2. Under the Matrix Profile branch of the dialog:

- Select Upper Triangular from the Matrix Display drop-down list
- Select All from Show Tick and Label drop-down list
- Enter $\mathbf{2}$ in the Gap (in \% of Page Dimension) text box

The complete graph should appear as shown below:

6.11.17 Histogram with Distribution Curve overlay

6.11.17.1 Summary

After you plot a Histogram, Origin allows you to overlay a distribution curve on the binned data by selecting Normal, Lognormal, Poisson, Exponential, Laplace, or Lorentz from the Type drop-down list in the Data tab of the Plot Details dialog.

6.11.17.2 What You Will Learn

- How to create a Histogram
- How to add the Distribution Curve
- How to create the Bin worksheet with distribution curve data.

6.11.17.3 Steps

1. From the Main Menu, select Data: Import from File: Single ASCII...: Sample: Graphing:

Histogram2.dat.
2. Highlight column B, and from the Main Menu select Plot > Statistical: Histogram.

3. From the Main Menu, select Format: Plot.... From the Plot Details - Plot Properties dialog box select the Data tab.
4. From the Distribution Curve: Type list, select Normal and click Apply. Select the Add Distribution Curves check box and click Go. The Plot Details - Plot Properties dialog box closes and a worksheet of binned data (Histogram2_B Bins) is added to the workbook.

5. In the Histogram2_B Bins worksheet, the box at the intersection of row Comments and column $\mathbf{B}(\mathbf{Y} 2)$ shows the Mean and SD values for the data. Right-click on the box, and from the drop down menu select Copy.

6. Right click within the histogram plot frame (but not directly on the plot) and from the context menu select Add Text.... Right click within the Text Box and select Paste. Click inside the Text Box, select all numbers to the right of the tenths place for Mean and for SD, and hit the Delete key. Place your cursor after Mean= $\mathbf{6 0 . 7}$ and hit the Enter key. The final graph should appear as below.

Note: If data fit the chosen distribution well, the overlay curve will also approximately agree with the histogram well.
7.

6.12 Polar

6.12.1 Polar

- Polar Contour
- Polar Plot with Error Bar
- Polar Crop
- Polar Graph with Custom Radial Axes
- Polar Graph with Multiple Layers
- Polar Graph with Columns and Stack Columns
- Polar Graph with Custom Angular Scale

6.12.2Polar Contour

6.12.2.1 Summary

This tutorial will show you how to create a Polar Contour graph from both XYZ worksheet data and matrix data.

Minimum Origin Version Required: 2015 SRO
6.12.2.2 What will you learn

- Create a Polar Contour graph from both XYZ data and matrix data
- Customize the graph using the Plot Details dialog box

6.12.2.3 Steps

6.12.2.3.1 Plot Polar Contour from XYZ data

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj. You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Polar Charts)

1. Open the Tutorial Data project and browse to folder Polar Contour in Project Explorer.
2. Activate Book2BA containing the temperature and location data and select column C. Select Plot > Specialized : Polar Contour theta(X)r(Y) from the menu to create a polar contour graph. The graph should look like this:

3. Next, we will customize the contour graph using the Plot Details dialog box. Double-click on the contour plot to bring up the Plot Details dialog then select the Color Map/Contours tab and click the Fill
heading. Edit dialog box settings as shown in the following:

4. Click the Contouring Info tab and select the Layer Boundary radio button.

Click OK to close the Plot Details dialog box.
5. Next, we will customize the graph axes. Double-click on the axes to open the Axis dialog box, then...

- Go toScale tab and make sure Angular is chosen in the left panel. Under the Major Ticks tree node, set the Type to By Increment and Value to 60

- Go to Tick Labels tab and select Angular - Outer in the left panel. In the right panel, go to Display tab, select Tick-indexed dataset in Type drop-down list and then select [Book3B]Sheet1!B"Longitude" from the Dataset Name drop-down list.

- Go to Scale tab, and select Radial in the left panel. In the right panel set From and To to $\mathbf{0}$ and 7. Also under the Major Ticks tree node, set the Type to By Increment and Value to 2 .

- Go to Tick Labels tab. Pressing Ctrl key and select both Radial - Outer 1 and Radial - Outer 2 in the left panel. In the right panel, go to Display tab, select Tick-indexed datasetin Type drop-down list, then select [Book3B]Sheet1!A"Latitude" from the Dataset Name drop-down list.

- Go to Grids tab, and make sure Radial is selected in the left panel. Edit the dialog box settings as in the following image. Click OK to close the Axis dialog box.

6. Double-click on the Color Scale to open the Color Scale Control dialog box and edit settings as follows - In the Labels page, set font size to $\mathbf{2 0}$.

- In the Layout page, uncheck Reverse Order check box, and set Color Bar Thickness to $\mathbf{1 0 0}$.

- In the Title page, enter $(\backslash+(0) F)$ in the Title, which is supposed to be displayed as (${ }^{\circ} F$) as the unit for temperature. And set the Position to Bottom.

- In the Line and Ticks page, uncheck Show Line and Ticks on Right and Show Border check box. Then Click OK to save the setting and close the dialog.

Note: The text used for Title is $(\backslash+(O) F)$, which is supposed to be displayed as $\left({ }^{\circ} F\right)$ as the unit for temperature.
7. Add the graph title Temperature Contour Map, axis title Latitude to the graph. The graph should look like this:

6.12.2.3.2 Plot Polar Contour from Matrix data

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj. You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Contour)

1. Open the Tutorial Data project and browse to folder Contour from Matrix in Project Explorer.
2. Activate MBook1. Select Plot > Specialized : Polar Contour theta(X)r(Y) from the menu or click the Polar Contour theta(X) $\mathbf{r}(\mathbf{Y})$ button on the 3D And Contour Graphs toolbar.

3. Double click the axes to open the Axis dialog, we also can customize the Radial Axes for this polar graph.

- Click on the Radial Axes Configuration button on the right-top of this dialog to open the dialog. In the dialog, choose $\mathbf{0}$ under the Angles List drop-down list.

○ Go to Show tab, and choose Radial - Inner Axis 1 in the left panel. From the Angle At dropdown list, select End Angle and set Flow Direction to Negative.

- Choose Angular - Outer in the left panel. On the Show tab, in the Axes Start at (deg.) box, enter -30. Click OK to save settings and close the dialog.

4. Double click on the graph to open Plot Details dialog. Go to Colormap / Contours tab, click on the Level header to open the Set Levels dialog. Set levels as in the following image and click OK:

Click on the Fill header to open the Fill dialog. Make sure colors as in the following image:

5. Select the Layer1 icon in the left panel of Plot Details and click on the Size/Speed tab. Set the Layer Area as the following image:

Click OK to save settings and close the dialog.
6. Double-click on the Color Scale object to open the Color Scale Control dialog.

- In the Levels page, check the Hide Head and Tail Levels check box.

- In the Layout page, uncheck Reverse Order and set Color Bar Thickness to 400.

- In the Title page, uncheck Show check box.
[旦 Color Scale Control - Layer 1

- In the Line and Ticks page, uncheck Show Line and Ticks on Right and Show Border. Click OK to save settings and close the dialog.

E- Color Scale Control - Layer 1			8
Levels Labels	Use Same Options for Right and Left \square		
Layout	Show Line and Ticks on Right	\square	
$\begin{array}{\|l\|} \hline- \text { Line and Ticks } \\ \text { Right } \end{array}$	Show Line and Ticks on Left	\square	
	Show Border	\square	
Left	Border Color		
	Border Thickness	1	

7. Click on the Color Scale object and use the anchor points to resize it from vertical direction. The resulting graph should look like this:

Polar contour graphs from matrix data support filling color to contour lines or to the matrix grid. For more information, see these two topics:

- Customizing Polar Contour Graphs from Matrix Data
- Color Fill Control Group

6.12.3Polar Plot with Error Bar

6.12.3.1 Summary

This tutorial will demonstrate how to create a Polar graph with error bars:

6.12.3.2 What you will learn

This tutorial will teach you how to:

- Create a Polar graph with error bars
- Customize the graph using the Plot Details and Axis dialogs

6.12.3.3 Steps

1. Import the data file PolarPlotwithErrorBar.dat under <Origin EXE Folder>\Samples\Graphing \backslash path (Minimum Origin Version: 2015 SR0), or you can download this data file directly and import into Origin.
2. Hover your cursor over $\operatorname{col}(\mathrm{C})$ till it appears as a downward pointing arrow and click to highlight column C . Right-clicking produces a menu where this column can be set as \mathbf{Y} error.
3. In order to plot the Polar graph of the data with error bars highlight all the columns. In the main menu select Plot $\boldsymbol{>}$ Specialized : Polar theta(X) $\mathbf{r}(\mathbf{Y})$ or click the Polar theta(X)r(Y) $\xlongequal{\mathbf{l}(\mathrm{O})}$ button on the 2D Graphs toolbar.

4. Double-click inside the plot to open the Plot Details dialog. In the Error Bar tab change the Color to Magenta and remove the negative error bars by deselecting the Minus box as shown below:

5. If the left panel of Plot Details is hidden, click the button with the two arrows on the bottom left of the dialog box. The left panel presents a tree-view display of the layer and data the user is modifying. It also displays a Plot Type list at the bottom. Use the Plot Type list to change the plot from Line to

Scatter. This will change the tabs on the right panel and add a Symbol tab. In the Symbol tab, change the symbol style, color, and transparency as shown below. To select the symbol color, use the Individual Color option in the Symbol Color button. Click OK to close the dialog.

6. The next step is to modify the radial axes grid lines. These are the circular grid lines between the inner and outer angular axes. Double-click the vertical axis on the left side of the graph, (i.e. the Radial Axis) to open the Axis dialog. In the Grids page, choose Radial on the left panel. Change the Major Grids Line Style to Dash, and then clear the Minor Grids Show check box as shown below:

7. Use the same procedure to modify the angular axes grid lines, the grid lines that radiate out from near the center of the plot to the edges. In the Grids page, choose Angular on the left panel. Change the Major Grids Line Style to Dash, set Start at to Radial Start, and then clear the Minor Grids Show check box. OK to save changes.

Select multiple axes to customize together.
\square Cancel
8. The completed polar plot should appear as shown below:

6.12.4Polar Crop

6.12.4.1 Summary

This tutorial will demonstrate how to create a cropped polar graph:

Minimum Origin Version Required: 2015 SR0

6.12.4.2 What You Will Learn

This tutorial will show you how to:

- Customize the axes settings for a polar graph
- Crop the graph to show only a portion of the data

6.12.4.3 Steps to Create the Polar Graph and Customize the Axes

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj. You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Polar Graphs)

1. Open the Tutorial Data project, and browse to the folder Polar Crop in Project Explorer. Open the workbook Book1AK.
2. Highlight all the columns and choose Plot > Specialized: Polar theta(X)r(Y) from the main menu to create a polar graph:

3. Custom the Angular Axes

- The data is difficult to interpret since the range is too small to be adequately represented in a 360 degree plot (Origin sets units to degrees by default). Double-click on the axis to open the Axis Dialog. Go to Scale tab and choose Angular in the left panel. Expand Units Definition node and select the Units to Radians from the drop down. Change the Value option under Major Ticks to 0.25, Count under Minor Ticks to be 9.

Select multiple axes to customize together.

$$
\text { Crop... Apply To... } \quad \text { OK } \quad \text { Cancel } \quad \text { Apply }
$$

- To change the orientation of the plot, go to Show tab and make sure the Angular - Outer is selected in the left panel. Set Direction to Counter Clock-Wise and the Axis Start at(deg) to 270 as shown below:

4. Custom the Radial Axes scale

- Go to the Scale node and choose the Radial in the left panel. Change the To value to 5.01 (the 0.01 will show the last tick), the Value option under Major Ticks to $\mathbf{0 . 5}$ and the Count option under Minor Ticks to $\mathbf{0}$.

5. Add a Inner Radial Axis

- In the Show tab, click on the Add a radial axis button on the top of the left panel. Then the Radial - Inner Axis $\mathbf{1}$ is added in the left panel.
- To change the orientation of the new inner axis from vertical to horizontal, under Axis Position section, set the Reference as Clock Dial and the Clocks option as $\mathbf{3}$ O'Clock. Select the Negative radio button to shift the tick labels to the opposite side of the axis:

- To add tick labels on Inner Axis 1, go to Tick Label tab, under Display subtab and select Tickindexed string from the Type drop-down. Type $O A$ " " Lv1" " Lv2" "Lv3" "Lv4 in the Display edit box (Spaces within the double quotation marks are to indicate no text label at this tick, so that only every second tick is labelled). Set the Formatting options as shown below:

- Go to the Format subtab and change the tick label format as below:

- Go to Special Ticks set Axis Begin and Axis End to Hide. Click OK to close the dialog and these settings should create an axis as shown below:

6. Custom the position of Outer Radial Axes

O Double click on the axis to bring up Axis dialog again. Go to Show tab, and select Radial Outer $\mathbf{1}$ in the left panel. Set \% of Radius to -46.

- Go Special Ticks tab, set the Axis Begin option to Hide for Radial - Outer 1axis.

- Repeat the above two steps for Radial - Outer $\mathbf{2}$ and click OK to exit the dialog box.

6.12.4.4 Steps to Crop the Polar Graph

The crop tool allows you to magnify and emphasize any particular section of the polar plot.

1. Double click on any axis to open the Axis Dialog again. Click on the Crop... button to open the Miscellaneous dialog. Check the Enable box and set the values shown in the image below. Click OK to exit the dialog box.

2. The graph will now appear as shown below:

3. In order to change the layer size to match the sample project select Format: Layer from the main menu to open the Plot Details dialog. In the Size/Speed tab, set the following values:

$\begin{aligned} & \square \square \text { Graph1 } \\ & \pm \boxed{\square} \text { Layer1 } \end{aligned}$	Background	d S	peed	Display	Stack
	Layer Area				
	Left	4.99	Top	-4.51	Uni
	Width	80.0	Height	104.5	

4. Expand Layer1 and select the first data set. Use the Plot Type drop-down on the bottom left of the dialog to change the plot to scatter. Customize the symbol shape and color to resemble the final image (symbol color $=$ Navy, symbol shape $=$ filled circle, error bar color $=$ red).
5. To remove the negative error bars as in the sample, select the second dataset under Layer1. In the Error Bar tab on the right, clear the Minus box as shown below. The error bar color and thickness can also be adjusted here. OK to exit the dialog box.

6. The final graph should appear as shown below. Delete any unwanted legends and the axis title by selecting them and pressing the Delete key:

6.12.5Polar Graph with Custom Radial Axes

6.12.5.1 Summary

Origin's polar axis dialog allows for flexible customization of both angular and radial axes.

Minimum Origin Version Required: 2015 SR0
6.12.5.2 What You Will Learn

This tutorial will show you how to:

- create a polar graph
- hide angular axis
- customize radial axis

6.12.5.3 Steps

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

6.12.5.3.1 Create a Polar without Angular Axis

1. Open the Tutorial Data.opj file and browse to the Custom Radial Axis folder and activate workbook Book1E.
2. Highlight column B and select Plot > Specialized : Polar theta(X)r(Y) to generate a polar graph.
3. Select the legend object and delete it.

4. To hide the Outer axis (the outer circle) of the polar graph, double-click on any axis to open the Axis dialog. Go to Show tab, select Angular -Outer in the left panel, and clear Show check box.

Select multiple axes to customize together.
Crop...

Apply To... \square Cancel Apply
5. To hide all angular grid lines, go to Grids tab and make sure Angular is selected in the left panel. Clear the Show check boxes under Major Grid Lines and Minor Grid Lines section.

6. Go to Scale tab and select Radial in the left panel. Set the axis scale as shown below:

7. Go to the Grids tab and set as below:

6.12.5.3.2 Add Radial Axis on each Major Tick

1. To show radial axis on each major tick position of angular axis, click the 'Radial Axes Configuration button to open the dialog. In the dialog, check the Major Ticks option under the Axes Inside Polar section.

2. To hide axis titles, go to Title tab and choose Radial - Major Axes in the left panel. Uncheck the Show check box. Click Apply button.

3. There are 4 O's show in center of polar. To hide them, go to the Special Ticks tab. Select Hide from the Axis Begin drop-down list.

Click OK to close the dialog.

When radial axis is set to show on each major ticks, if you go to Scale tab of Radial and change major ticks, the radial axis will show in new major tick positions.

6.12.5.3.3 Use Configuration Dialog to Customize Radial Axis

Origin supports two kinds of radial axes. One is the frame border kind of axis around the polar graph. The other is inner axis from center of polar outwards.

1. Continue with the graph from the previous section, click on the Radial Axes Configuration button on the top of left panel. In Radial Axes Configuration dialog, under Axes Inside Polar branch, set Angles List as below, and click OK to close dialog.

2. Click Apply button. Four four radial inner axes show in the left panel.
3. Go to Title tab, select Radial - Inner Axis1 in the left panel. Then check Use Same Options for All Radial Axes check box and clear the Show check box to hide all the titles. Then this setting will be applied to four radial axes.

4. Go to Tick labels node and check Use Same Options for All Radial Axes. Under Format subtab, set Rotate(dge.) to be $\mathbf{0}$.

5. Go to the Special Ticks tab, and click Use Same Options for All Radial Axes check box. Set Axis Begin to Hide.
6. Go to Show tab, press Shift key to select Radial - Inner Axis $\mathbf{3}$ and Radial - Inner Axis 4 two axes, change Flow Direction to Negative under Axis Position section.

7. Go to Tick labels tab, enter a minus sign(-) in the Prefix edit box under the Display subtab.

Select multiple axes to customize together.

```
Crop...
```

Apply To...
8. Click OK button.

6.12.5.3.4 Further Customization

9. To change the line plot color to red and a little thicker, select the line plot and on Style toolbar, set Line/Boder Color as red, and set Line/Border Width to 1.5.

10. To add an equation to this graph as graph title, right-click on the graph and select Add/Modify Layer Title, then enter $\mathbf{r}=\mathbf{e x p}\left(\mathbf{q}^{*} \boldsymbol{\operatorname { c o t }}(\mathbf{7 9 . 5 p} / \mathbf{1 8 0})\right.$) into the edit box.
11. Origin supports rich text. So highlight \mathbf{q} in the text and click $\boldsymbol{\alpha} \boldsymbol{\beta}$ button on Style toolbar to turn it into θ. Also turn \mathbf{p} into π. The text will look as below.
$r=\exp \left(\theta^{*} \cot (79.5 \pi / 180)\right)$
12. To add shadow to the text and make the font bigger, right-click on the title and click Properties... to open the Object Properties dialog. In the Text tab, set font size to 26, and go to Frame tab to change Frame to Shadow. Click OK to save the setting.
13. Drag the equation to the desired position. The graph should look like the one in Summary.

6.12.6Polar Graph with Multiple Layers

6.12.6.1 Summary

The multi-layered graph allows the placement of several polar plots with different ranges on one graph page. This graph is generated by first creating 3 independent polar graphs, and then using the merge graph function to combine the three graph pages into one three-layer polar graph.

Minimum Origin Version Required: 2015 SR0

6.12.6.2 What You Will Learn

This tutorial will show you how to:

- Customize the Angular axis and Radial axis.
- Duplicate a graph with new data.
- Create multi-layered polar graph.
- Create one legend for the whole page.

6.12.6.3 Steps

This tutorial is associated with the Tutorial Data.opj file under the <Origin EXE Folder> \backslash Samples \backslash path.

6.12.6.3.1 Create a Polar Graph for the Measured Data

1. Open the Tutorial Data.opj file and browse to the folder Polar Graph with Multiple Layers. Double-click the workbook Book26 to open the workbook window.
2. Highlight Column A and Column B and select Plot > Specialized: Polar theta($\mathbf{X} \mathbf{)} \mathbf{r}(\mathbf{Y})$ from the main menu to create the polar graph.

3. Right-click on any tick label of the Angular axis to open the dialog. Go to the Scale tab for Angular axis. Set the Scale of the Angular Axes as From 60 To 150. Set the Value for increments under Major Ticks as 30. Click the Apply button to see the changes on the graph.

4. Go to Tick Labels tab and make sure Angular - Outer is selected in the left panel. Under Display subtab, type $\backslash \mathbf{(1 7 6)}$ in the Suffix text box to add the degree symbol to the Angular tick labels. For more details of supported text formatting commands, please refer to the escape sequences page.

5. Click the New Configuration... button to open the Radial Axes Configuration dialog.

- Check the Axes Inside Polar box and configure it as shown below:

1. Set the Angles List as Custom.
2. Set the Value text box as $\mathbf{6 0 1 5 0} \mathbf{1 5 0}$ to place an axis at 60 degrees and one at 150 degrees.

- Set the Axes Outside Polar options as shown below:

1. Select Upper from the Right option drop-down to place an axis at the upper right of the layer frame.
2. Set \%s of Radius as $\mathbf{0}$.

3. Click $\mathbf{O K}$ to apply the settings.
4. Go to Scale tab, and select Radial in the left panel. Set radial axis From as $\mathbf{2}$ and $\mathbf{T o}$ as $\mathbf{6}$. Change the increment Value for the Major Ticks to 1.

Select multiple axes to customize together.
Crop...
Apply To...
OK
Cancel
Apply
8. Go to Tick Labels tab and select Radial - Inner $\mathbf{2}$ in the left panel. Uncheck Show check box to hide the tick labels for this axis.

Select multiple axes to customize together.
Crop...
Apply To... \square Cancel Apply
9. Go to Title tab and select Radial - Outer 1 in the left panel. Uncheck Show check box to hide the title of the outside polar axis. Click the OK button.

10. Double-click the plot to open the Plot Details dialog. In the left panel of the Plot Details dialog, click the Graphn page to go to the page level of this dialog. In the Legends/Titles tab, deselect the check box Indicate Active Dataset, so that the red box around the legend symbol will be hidden.
11. Expand the Layer node on the left panel and select the graph under it. On the Line tab in the right panel, change Width to 4 and Color to Blue.

12. Click the OK button to apply customizations to the first polar graph.

6.12.6.3.2 Duplicate a Polar Graph with the Calculated Data

1. Right-click the header of the polar graph to open the shortcut menu. Select Duplicate (Batch

Plotting): Duplicate with New Columns... to open the Select Column dialog. Select the column C:Calculated and click OK to duplicate a polar graph with data from Column C.

2. Since the data range in Column C is quite different from Column B, the Reminder Message window will pop up, asking whether to rescale the axes of the new graph to show all data. Leave the Yes radio button selected and click OK.
3. Follow steps 3 from the last section to set the scale of the Angular Axes. Set From as $\mathbf{2 4 0}$ and To as $\mathbf{3 6 0}$ and the increment of the Major Ticks to 15.
4. On the Scale tab, choose Radial in the left panel and then set From as $\mathbf{2}$ and To as $\mathbf{6}$ and the increment of the Major Ticks as 1.
5. Go to Show tab

- Choose Radial - Inner 1 in the left panel. Under Axis Position section, set the Value (Degrees) as $\mathbf{2 4 0}$ to move the first inside polar axis to 240 degrees.
- Choose Radial - Inner 2 in the left panel. Set the Value (Degrees) as $\mathbf{3 6 0}$.
- Choose Radial - Outer $\mathbf{3}$ in the left panel. Select Left-Lower in Axis at drop-down list to move the outside axis to the lower left of the layer frame.

Click the OK button to finish customizing the axes.
6. Double click the plot to open the Plot Details dialog. Change the line Color to Red and Width to 4 in the Line tab. Click OK.

6.12.6.3.3 Create a Polar Graph to Show Full Range Grids

1. Open the workbook Book26.
2. Select Column D and click the Polar theta(X)r(Y) $\xrightarrow{1(\mathrm{D}}$ button in the 2D Toolbar to create an empty polar graph.
3. Repeat steps 3 in the Create the Polar graph for the Measured data section to set the scale of the Angular Axes as From 0 To $\mathbf{3 6 0}$ and the increment Value of the Major Ticks as $\mathbf{3 0}$.
4. Go to Show tab, select Angular - Outer on the left panel and uncheck show box. Then select Angular Inner on the left panel and check Show box.
5. Go to Tick Labels tab, select Angular - Inner in the left panel, and uncheck the Show check box to hide the tick labels of the inner Angular axis.
6. Go to Grids tab, make sure Angular is selected in the left panel. Uncheck the Show option in the Major Grid Lines and the Minor Grid Lines sections.
7. Go to Scale tab, select Radial in the left panel, and change the scale From $\mathbf{2}$ To $\mathbf{6}$ and set the increment Value of the Major Ticks as 1.
8. Go to Show tab, select Radial - Outer 1, and check Use Same Options for All Radial Axes. This will apply the settings on this page to Radial - Outer 2 axis as well. And then uncheck Show check box. Click the OK button.

6.12.6.3.4 Create the Multi-layered Graph with One Legend

1. With a graph window activated, select Graph: Merge Graph Window from the main menu.
2. Set the Merge option as Specified and make sure only Graph1, Graph2 and Graph3 (the three new graphs just created) are selected in the Graphs text box.
3. In the Arrange Settings section set both Number of Rows and Number of Columns to $\mathbf{1}$ to overlay the three graphs.
4. Check the box next to Link Source Graphs.
5. In the Page Setup section, set both Width and Height to $\mathbf{1 5}$.

6. The preview of the graph can be seen in the right panel.
7. Keep the rest of the default settings and click OK.
8. Right-click the legend and select Legend: Update Legend from the shortcut menu, to open the dialog.
9. Set the Update Mode to Reconstruct to create a new legend.
10. Set the Legend to One Legend for Whole Page to create only one legend for this multi-layered graph.
11. Set the Layer Order as Descending to place the Layer 2 legend above the Layer 1 legend.
12. Set the Auto Legend Translation Mode as @LA: Long Name to use the Long Name data for the legend. Click OK.

13. Right-click on the new legend and select Properties... to open the dialog.
14. Delete the first line in the lower text box.
15. On the Frame tab, set Frame to None. Click OK.
16. Drag the legend to the center of the inner Angular axis.
17. Use the Font Size 22 move them to an appropriate position.
18. Right-click one of the inner radial axis titles (Calculated or Measured) and select Properties... from the shortcut menu.
19. In the Object Properties dialog that opens, in the Frame tab, choose the None from Frame drop-down list. This clears the grid lines and other background from behind the axis title making it easier to read. Click OK.
20. Repeat the same operation for the other inner radial axis title.
21. The final graph should appear as shown below:

6.12.7Polar Graph with Columns and Stack Columns

6.12.7.1 Summary

By default, Origin polar graphs are line plots. Note, however, that you can convert an existing polar line plot to column/bars. Further, a grouped column plot in polar coordinate system can be stacked.

Minimum Origin Version Required: 2015 SRO

6.12.7.2 What You Will Learn

This tutorial will show you how to:

- plot polar graphs with columns
- control the column width using a dataset
- create a stacked column plot in the polar coordinate system
- customize the polar axes

6.12.7.3.1 Polar Graph with Columns

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj. You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Polar Graphs)

1. Open the Tutorial Data project and browse to the folder Column and Stack Column and activate Book18.
2. Highlight column B and select Plot > Specialized:Polar theta(X)r(Y) to create a line plot in the polar coordinate system. Click on the legend object and delete it from the graph.
3. Double-click on the line plot to open the Plot Details dialog box. Make sure the left panel is expanded and set Plot Type to Column/Bar. This will change the line plot to a column plot.
4. In the Pattern tab, under the Fill section, set Color to Color Mapping: $\mathbf{C o l}(\mathbf{D})$. This will map column colors in the plot using the row value in column D of the worksheet (note that a Colormap tab is added to Plot Details. Click on this tab to see how values are mapped to fill color).
5. Set the Transparency in this tab to 70\%, and Width of border to 2 :

6. Go to the Spacing tab, select Col(C):"Size" from the Width(in \%) drop-down menu and type in $\mathbf{8}$ as Scaling Factor. This causes values in column C to determine the width of the columns in the plot.

7. Go to Colormap tab, click Level head. Set the level from $\mathbf{0}$ to $\mathbf{1}$ and Increment to $\mathbf{0 . 2}$ in the Set Levels dialog,

8. Go to Size/ Speed tab under Layer1 level, and set Layer Area as following:

Click OK to close the Plot Details dialog.
9. Now we will customize the graph Angular Axes.

- Double-click on an axis (Angular or Radial) to open the Axis dialog. Go to the Scale tab under the Angular tree node and set the Value under Major Ticks to 45, and set the Count under Minor Ticks to 2.
- Go to Format tab under Tick Labels tab of Angular -Outer tree node. Check Bold check-box.
- Go to Grids tab under Angular tree node. Change Style of Major Grid Lines to Dash.
- Go to Line and Ticks tab under Angular -Outer tree node. Change Thickness of Line to $\mathbf{1 . 5}$.

10. In the Axis dialog, we also can customize the Radial Axes for this polar graph.

- Click on the Radial Axes Configuration button on the right-top of this dialog to open the dialog. In the dialog, choose $\mathbf{0} \mathbf{9 0 1 8 0 1 2 7 0}$ under the Angles List drop-down list.

- Go to the Scale tab under the Radial tree node. Set scale from $\mathbf{0}$ to $\mathbf{1}$.
- Go to the Format tab under Tick Labels tab, and then
- select the Radial - Inner1, change Size to 12, check Bold box, and set Rotate (deg.) to 0 .
- select the Radial - Inner2, change Size to 12, and check Bold box.
- select both Radial - Inner3 and Radial - Inner4, then uncheck Show.

○ Go to the Display tab under Tick Labels tab of Radial - Inner1 tree node. Choose Custom in Display drop-down list, and enter .2* in Custom Format text box.

- Go to the Title tab and highlight all radial axes node. Uncheck Show check box.

○ Go to the Grids tab under Radial tree node. Uncheck Show check box under Minor Grid Lines.
Click OK to save the setting and close the dialog.
○ Go to Line and Ticks tab, select all radial axes. Change Thickness of Line to 1.5. And set Style to In \& Out, Length to 5 for both Major Ticks and Minor Ticks.

- Go to Special Ticks tab of Radial - Inner 1, then set Axis Begin value to Show, Axis End value to Hide. Choose Radial-Inner 2, set both Axis Begin and Axis End value to Hide. Click OK to apply the setting and close the dialog.

11. Select Insert: Color Scale to add the color scale legend. To customize the color scale legend, double click on the color scale to open the dialog.

- In the Color Scale Control dialog, go to Level page, and check the Hide Head and Tail Levels
- Go to Lables page, check Set Decimal Places check box and enter 1 in the Decimal Places text box.
- Go to Layout page, select Separated in the Layout drop-down list. Click OK to apply the setting and close the dialog.

12. Click on the Enable/Disable Anti-Aliasing button This polar column plot should look something like this:

6.12.7.3.2 Polar Graph with Stack Columns

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Column and Stack Column and activate Book3F.
2. Highlight columns B through D and select Plot > Specialized:Polar theta(X)r(Y) to create a grouped line plot in the polar coordinate system.
3. Double-click on the line plot to open the Plot Details dialog box. Make sure the left panel is expanded and set Plot Type to Column/Bar and click Apply to change the plot to a grouped column plot.
4. On the Group tab, click the ... button to the right of Fill Color. This opens the Increment Editor. Right-click on the first Background Color, black, and delete it from the increment list:

5. Click OK to apply the new increment list and close the Increment Editor.
6. Go to the Spacing tab and set Gap Between Bars (in \%) to $\mathbf{3 0}$.
7. In the left panel of the Plot Details dialog, click Layer 1 (take care not to clear the check box) to see the Layer Properties. Go to the Stack tab and recreate the following settings so that the columns will be stacked and normalized to 100\%:

8. Go to the Display tab and select the check box Grid on Top of Data to draw grid lines on top of data plot. Clear the \mathbf{X} Axes check box under Show Elements to hide the Angular axis and its associated grid lines in the graph:

Background	Size/Speed	Display	Stack
Scale Elements Scale With Layer Frame Fixed Factor: Show Elements \square X Axes V Y Axes Z Axes V Labels Data Frame			
Data Drawing Options Clip Data to Frame Clipping Margins (\%) ∇ Data on Top of Axes Horizontal 0 ∇ Grid on Top of Data Vertical 0			
Polar PlotsShow Negative Radius Points in Opposite Quadrant Must also set radius to Fixed from 0			

9. Click OK to apply the settings and close the Plot Details dialog box.
10. Click the $\stackrel{\downarrow}{\longleftrightarrow}$ button in the Graph toolbar to rescale the radial axis of the graph from 0-1 to 0-100 (Or you can press CTRL+R).
11. We have created a 100% Stack Column graph in polar coordinate system, and now we will customize its axes. Double-click on any axis to open the Axis dialog. Click on the Radial Axes Configuration button to open the dialog box. Recreate the following settings to display only one Radial axis at 120 degrees on the polar graph. Click OK.

12. Go to Show tab and you will see the Radial - Inner 1 in the left panel. Select it, and change the Flow Direction to Negative so that the tick label will be displayed outside the data plot.

13. Go to the Scale tab and make sure Radial is selected in the left panel. Set From: $\mathbf{1 0}$ and To: $\mathbf{1 0 0}$. Under Major Ticks section, choose By Custom Positon in the Type drop-down list, and enter $\mathbf{4 0} 80$ in the 'Postion text box. Set Count to $\mathbf{0}$ for minor ticks

14. Go to the Grids tab. For Radial Axes, set the major grid lines as following image:

15. Go to the Tick Labels tab, add a \% suffix under Display subtab. Add set a horizontal offset under Format subtab.

16. Go to the Title page and clear the Show check box to hide the axis title.
17. Click OK to close the Axis dialog box. Your graph should look something like this:

6.12.8Polar Graph with Custom Angular Scale

6.12.8.1 Summary

Normally, the polar angular axis unit reads in degrees, radians or gradians. However, Origin's polar graph also supports use of custom units.

Minimum Origin Version Required: 2018b

6.12.8.2 What You Will Learn

This tutorial will show you how to:

- use a dataset to control symbol size and color in a polar graph.
- use a custom unit for the angular axes.
- display tick labels as quarters.
- add and custom the bubble scale

6.12.8.3 Steps

You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Polar Graphs)

1. Highlight column B and select Plot > Specialized :Symbol theta \mathbf{r} to create a symbol plot in polar coordinate system.
2. Double-click on any axis to open the Axis dialog. Go to the Scale tab and select Angular in the left panel. In this right panel, expand Units Definition node, and choose Radians as Units. Make sure the
scale from $\mathbf{0}$ to $\mathbf{2}$ PI. Then change the Value of increment to $\mathbf{0 . 2 5}$

3. Go to the Show tab for Angular-Outer axis, then change the Direction to Clockwise and set Rotate (deg.) to 90.

Select multiple axes to customize together.
Crop...
Apply To... OK

Cancel
Apply
4. Go to the Scale tab and select 'Radial in the left panel. Then set the scale from $\mathbf{0}$ to $\mathbf{1 . 2}$, and change the Value of increment to $\mathbf{0 . 4}$.

Select multiple axes to customize together.

5. Go to Tick Lables tab for the Angular- Outer axis. Open Display subtab, set Display to Custom and enter \# \# / 4 as Custom Format to show the tick labels as fractions.

6. Select Radial- Outer 1 axis. Choose Format subpage, and check the Bold check box. Then click the Apply To... button. In the pop-up dialog, make sure Apply From is Outer 1 and Apply to is All Axes, then check the Bold under the Tick Labels. Click OK.

In Axis dialog, click OK to apply settings and close the Axis dialog.
7. Double-click on the line plot to open the Plot Details dialog, in the Symbol tab, recreate the following settings, in the sequence shown in the screenshot:

Click OK to apply the settings and close the Plot Details dialog.
8. Select Bubble Scale in the Insert main menu to add a bubble scale in this graph.
9. Right-click on the bubble scale, and choose Propertise... to open the control dialog. Go to the Levels page, set the level from $\mathbf{0}$ to $\mathbf{1}$, and change the Value of increment to $\mathbf{0 . 2 5}$.

10. Go to Labels page, check the Set Decimal Places check box and enter $\mathbf{1}$ in the Decimal Places text box.

11. Go to Layout page, choose Nested in Layout drop-down list. Select Black Edge and No Fill as Bubble style and change the Label Offset from Symbol Center to 150. Check the Show Leader Line check box, then expand the node to check the Auto Reoisition to Avoid Overlapping check box. Click OK to apply the setting and close the dialog.

Manually move the legend object and Radial axis, and click the Enable\Disable Anti-Aliasing button
to smooth the graph. The final graph should look like this:

6.13 3D Graphs

6.13.13D Graphs

- 3D Pie Chart
- 3D Vector
- 3D Scatter Plot with Line Projections of Core Drilling Locations
- 3D Bar and Symbol
- Surface with Missing Values
- Creating Intersecting Surface Plots from Worksheets
- Intersecting Color Surfaces
- Surface with Symbols and Droplines
- Colormap from Second Matrix
- Color Map Surface Graph
- Parametric Surface with Colormap from Data
- Stacked 3D Surface Plots
- Multiple Surfaces in Same Layer
- 3D Scatter with Colormap
- 3D Scatter with Droplines
- Surface With Transparent Plane
- 3D Bar on Flatten Surface
- 3D Bar with Labels
- 3D Surface with Point Label
- Transparent Parametric Surfaces combined with Scatter Plot
- Convert Data from Spherical Coordinate to XYZ and Make a 3D Plot
- Flattened Colormap Surfaces with Increasing Z Offset
- 3D Ternary Colormap Surface with Contour Lines Projection

6.13.23D Pie Chart

6.13.2.1 Summary

Origin's 3D Pie Chart gives you complete control over the look of the plot. Set the thickness of the pie slice, displacement, view angle, and size and rotation of the chart. You can even choose to explode the view of one or more pie slices.

6.13.2.2 What you will learn

- Create a 3D pie chart and change the plot colors.
- Modify the pie chart view angle.
- Explode the view of pie slices.
- Label pie slices, add leader lines and drag to re-position labels.

6.13.2.3 Steps

You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Statistical Graphs)
 as Demographic and Percent.
2. Highlight the 2nd column and create a 3D Pie Chart by clicking Plot > Basic 2D: 3D Color Pie Chart.
3. Double-click the pie chart to bring up the Plot Details dialog. On the Pattern tab, in the Fill group, click the Color drop-down and then on the By Points tab of the Color Chooser, click on the Color List drop-down.

4. Choose the System Color List, then move the Increment from slider to the right one color position, then click Apply.

5. Click the Pie Geometry tab and duplicate the following settings:

Pattem Pie Geometry Labels	Color List
3D View View Angle (deg) ($90=2 \mathrm{D}$ View) Thickness (\% of radius) Rotation Starting Azimuth (deg) Counter Clockwise Radius/Center Rescale Radius (\% of frame) Horizontal Offset (\% of frame) \square	Pie Sections Explode Wedge: Displacement (\% of radius)

6. Click on the Labels tab and in the Position group, clear the Associate with Wedge check box. Enable Show Leader Line if Offset Exceeds (\%) and enter an offset of 2.

7. Click OK to close Plot Details. Drag the graph legend to the left side of the pie. Drag wedge labels to reposition them, noting that the leader line follows the label. Your graph should now look something like this:

6.13.33D Vector

6.13.3.1 Summary

Origin can plot 3D Vectors from two different data structures: $\mathbf{X Y Z} \mathbf{X Y Z}$ and $\mathbf{X Y Z} \mathbf{d X d Y d Z}$.
$X Y Z d X d Y d Z$ defines the tail and head data for the vector, while XYZ dXdYdZ provides the vector's tail data and the distance between tail and head projections on X, Y, and Z axes.

6.13.3.2 What you will learn

- Create a 3D Vector from XYZ dXdYdZ worksheet data.
- Customize the 3D Vector

6.13.3.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press $\mathbf{F 1 1}$ key , and then open Graph Sample: 3D Symbol Bar and Wall)

1. Open Tutorial Data.opj and browse to the 3D Vector folder in Project Explorer (PE).
2. Select workbook Book2. Click in the upper left corner of the worksheet to select all data.
3. On the main menu, select Plot > 3D : 3D Vector XYZ dXdYdZ. This will create a 3D Vector graph with our built-in template.

4. Double-click on the vector plot to open the Plot Details dialog box. Ensure that the Original vector plot has been selected in the left panel of the dialog box. Select the 3D Vector tab

- In the 3D Vector tab of Plot Details dialog box, set the parameters as shown in the following graph. Click the Color button and select Dark Green from the menu.

Click OK to apply these settings and close the dialog box.
5. Go to Lighting tab in Format: Layer dialog, Set the lighting attribute follows graph below:

6. Rotate the graph to a proper perspective. The final graph should look something like this:

6.13.43D Scatter Plot with Line Projections of Core Drilling Locations

6.13.4.1 Summary

This tutorial will demonstrate how to create a 3D scatter plot and show the projections of the plots.

Minimum Origin Version Required: Origin 2015 SRO

6.13.4.2 Steps

This tutorial is associated with the Tutorial Data.opj file under <Origin EXE Folder>|Samples \mid.

1. Open the Tutorial Data.opj file and browse to the folder 3D Scatter with Line Projections, activate the workbook 3DScatterPlot.
2. Activate the The_First_Curve_of_3D_Scatter worksheet. The column designation for the three columns is already set as XYZ so you could directly create a 3D scatter plot. Highlight column C and select Plot > 3D: 3D Scatter to create the plot.
3. Activate The Second Curve of 3D Scatter worksheet. Highlight column C. Move the mouse cursor to the right edge of the selection area until the shape of the cursor changes to
 Hold down the left mouse button and drag the highlighted data into the newly created graph window. The resulting graph should appear as shown below:

4. Double-click on the Z axis to open the Axis dialog, go to the Scale tab with \mathbf{Z} icon on left panel selected and reverse the Z axis by exchanging From and To values.

国 Z Axis - Layer 1

\checkmark Use Only One Axis For Each Direction

5. Click OK to close dialog. Select Format: Layer from the main menu to open the Plot Details dialog. Alternatively you can double-click on the plot to bring up the dialog. If the left panel is not visible, use the \ll button on the bottom left of the dialog box to open it up. Expand the Layer1 node. Choose the first plot and select All Together from the Edit Dependencies page. This applies the same settings to the original data and all the projections.

Plot Details - Plot Properties

Graph1 Layer 1 - - 4 [A.3DScatter]The_First_Curve_of_3D_Scatter! A Original XY Projection ZXProjection YZ Projection D. - [A.3DScatter]The_Second_Curve_of_3D_Scatte

Edit Control
 Edit Dependencies
 (O) All Together
 Fully Independent
 Original Independent of Projections

Shift in Z by percent of scale range, $0=b$
6. Expand the first plot node and select Original and $\mathbf{X Y} / \mathbf{X Y} / \mathbf{Y Z}$ Projection check box.
7. Set the dialog options to those shown in the screenshot below. To set the color, click on the Color button and choose the desired option from the Individual Color drop down. Since the All Together radio button was selected in the previous step, these settings automatically apply to the projections as well.

Line	Symbol	Drop Lines	Error Bar
3D Vector			

8. Select the Symbol tab and change the Shape to Cube:

9. In a similar fashion, select the second plot and set the dialog options to match those in the screenshots below:

```
Plot Details - Plot Properties
```


Edit Control

- Fully Independent

Original Independent of Projections
\square Shift in Z by percent of scale range, $0=b_{1}$

```
4.B Graph1
    \Delta-\ Layer1
    \ [A3DScatter]The_First_Curve_of_3D_Scatter! A
    4 -L [A3DScatter]The_Second_Curve_of_3D_Scatte
        |\nabla Original
            | ZXProjection
            |
```


10. The final graph should appear as shown below:
Graph1

6.13.53D Bar and Symbol

6.13.5.1 Summary

This graph is a combination of a 3D bar plot showing the changes in HPI (Home Price Index) and a 3D scatter plot showing the Unemployment Rate. The data is of several Census Divisions during different years. Colormapping is introduced to both plots based on the Z values.

Minimum Origin Version Required: Origin 2015 SRO

6.13.5.2 What you will learn

This tutorial will show you how to:

- Plot a 3D bar graph.
- Add a scatter plot to a 3D bar graph.

6.13.5.3 Steps

1. Open the Home Price Index Changes \& Unemployment Rate.opj file by selecting File: Open and navigate to <origin exe folder> \Samples\Graphing
2. Activate book Home Price Index Changes \& Unemployment Rate, highlight columns $A(X), B(Y)$, and $C(Z)$, and then select Plot > 3D :3D Bars to plot a 3D bar graph.
1

3. Right-click on the layer icon and choose Plot Setup from the context menu. In the Plot Setup dialog, set columns A, B, and G1 as X, Y, and Z respectively. Then click the Add button to add this plot to the current
layer. After that, click the OK button to close the Plot Setup dialog.

4. Double-click on the plot to open the Plot Details dialog. In this dialog, select the second plot in the left panel and set the Plot Type as 3D Scatter/Trajectory/Vector.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\stackrel{\text { 세․ }}{ }$ and expand Available Data panel by clicking
시 again.

Please refer to Plotting using Plot Setup for more information.
5. Select Original in the left panel, then go to the Symbol tab in the right panel, select Col("Unemployment rate") for both Size and Color, and set the Scaling Factor of size as $\mathbf{2}$.

6. Go to the Colormap tab, set Level and Fill as shown below.

\square Plot Details - Plot Properties

7. Go to the Label tab, check the Enable check box, set Label From as $\operatorname{Col}(F)$ and Position as above.

8. Go to the Numeric Format tab, select Decimal Places and set it to 0 .

9. Select Layer1 in the left panel. In the right panel, go to the Planes tab, uncheck $\mathbf{Y Z}$ and $\mathbf{Z X}$, select At Position= for the Position dropdown list and enter 0 for the Percent/Value blank box.

10. Go to the Axis tab in the right panel, do settings as below:

11. Select the first plot under Layer1 in the left panel, go to the Pattern tab, use Col("Changes in HPI") as the colormapping for both bar border and shape fill.

12. Go to the Outline tab, set the Width(in\%) to 30 as below.

13. Go to the Numeric Format tab, select Decimal Places and set it to 0 .

Pattern	Spacing	Colormap	Error Bar	Numeric Formats
Numeric Formats				
Forma	Decin	al:1000	\checkmark	
Divide	by Factor			
(-) De	cimal Plac	s 0	0 v	
$\bigcirc \mathrm{Sig}$	nificant Dig		$3 \vee$	
Prefix				
Suffix				

14. Go to the Colormap tab, click Level... header to open the Set Levels dialog. Do settings as below.

15. Click OK button to close the Set Levels dialog. Click Fill... and select the Pumpkin Patch as the palette. Click OK to close the Fill dialog.

16. Click the OK button to close the Plot Details dialog.
17. With the graph window active, select Insert: Color Scale from the main menu to add a color scale for the first plot. Double-click on the color scale to open the Color Scale Control dialog. In this dialog, apply settings below.

18. Click OK button to close the Color Scale Control dialog. Then right-click the layer icon to activate the other plot from the context menu, then select Insert: Color Scale from the main menu to add another
color scale. Double-click on this color scale to open the Color Scale Control dialog. In this dialog, do the settings as the previous step does.
19. Add titles Changes in HPI and Unemployment Rate for these two color scales. Finally, you will get the graph given below.

6.13.5.4 Controlling the Categorical Values

1. In the following steps, we want to customize the order of values shown in the graph but not change the source data. Right click on window title of source data book, select View: Categories, a new column label named Categories will be added to the head of the worksheet. Double click the "unsorted" to open the Categories dialog :

\# Book4K	\square 回 $x^{\text {a }}$		
	$\mathrm{A}(\mathrm{X})$	$\mathrm{B}(\mathrm{Y})$	E ${ }^{*}$
Long Name	Census Division	Year	Seasonall)
Units	Double click to open the Categories dialog		
Comments			
Sparklines	过		
Categories	Unsorted	Unsorted	
10	West North Centra	2004	
11	East North Central	2004	
12	Middle Atlantic.	2004	

2. Uncheck the <auto> checkbox, then you can specify the order of the items by using

\square

	Category
1	Pacific Census Division
2	Mountain Census Division
3	West South Central
4	East South Central
5	South Atlantic
6	West North Centra
7	East North Central
8	Middle Atlantic
9	New England

Cancel

Save >

Load >

Copy

Paste

Scan
3. Double click the Categories cell of column B,"Unsorted", to open the Categories dialog. Select Ascending in the Sort list, click OK to close the dialog.

4. The 3D bar graph will be updated automatically with the new order of Categorical data.

6.13.6Surface with Missing Values

6.13.6.1 Summary

In this tutorial, a 3D color map surface graph as shown below will be created from a matrix with missing values. It will also demonstrate how gridlines can be skipped by customization.

Minimum Origin Version Required: Origin 2015 SR0

6.13.6.2 What you will learn

This tutorial will show you how to:

- Create a 3D surface plot from a matrix by ignoring missing values
- Skip gridlines on a 3D surface plot
- Set contour lines
- Set contour levels and fill colors

6.13.6.3 Steps

1. Start with a new worksheet and import the file \Samples\Graphing\Surface With Missing Values.dat. Hover the cursor over the cell in the top left corner of the worksheet till it appears as a slanting black arrow and click to highlight. Select Plot > 3D: 3D Colormap Surface from the Origin main menu to create a graph. This is a virtual matrix so the plotvm dialog (plot virtual matrix dialog) will appear. Use the system default settings as below:

2. The graph should appear as shown below:

3. Double click on the graph to pull up the Plot Details dialog. If the left panel is not expanded use the << button on the bottom left of the dialog to open it. Expand the tree node on the left panel to make sure that the box under Layer1 is selected. The next few steps will customize the graph using the settings in the Plot Details dialog. Activate the Colormap / Contours tab on the right panel. Click the Level heading to open the Set Levels dialog and set the dialog as shown in the following image.:

Plot Details - Plot Properties

4. Click on the Fill heading to open the Fill dialog. In this dialog, choose the Load Palette radio button and then click the Select Palette button to choose the Reef palette. Ensure the Link to Palette check box has been enabled. Click the OK button to return to the Plot Details dialog.

5. Click on the Line heading to open the Contour Lines dialog. Check Color check box under Apply to AII, and set Color to LT Gray. Click the OK button to return to the Plot Details dialog.

6. Activate the Mesh tab on the right panel. Deselect the box before Enable as the following screenshot shows. Click Apply. This will remove the mesh lines on the graph:

7. Click on the Layer1 on the left panel, and select Lighting tab on the right panel. Select Direction in Mode. Click OK to save the setting and close the dialog.

8. Double click on the axis title object(s) to modify them to X and Y for X and Y axis respectively.
9. Click the layer spacer to active the 3D transform control toolbar, then select the Rotate button to rotate the 3D graph to a desired orientation:

10. The final graph should appear as shown below:

6.13.7Creating Intersecting Surface Plots from Worksheets

6.13.7.1 Summary

Many plot types, such as 3D Surface, 3D Bars, and Contour, can be created from data contained in a matrix object or from data arranged in a block of cells in a worksheet. The latter arrangement is referred to as a Virtual Matrix. Whereas a typical matrix object only supports a linear mapping of X and Y coordinates, a virtual matrix supports nonlinear mapping as well. In this tutorial, we show you how to create intersecting color map surface plots from virtual matrix data.

Minimum Origin Version Required: Origin 2015 SR0

6.13.7.2 What you will learn

This tutorial will show you how to:

- Create a Color Map Surface plot using virtual matrix data from a worksheet
- Add one surface graph to another to create intersecting surface plots
- Set transparency

6.13.7.3 Steps

6.13.7.3.1 Create Surface Plots from Virtual Matrix Data

This section will demonstrate how to create surface plots from data in a worksheet.

1. Start a new project.
2. Click the Import Multiple ASCII button $\xlongequal{\substack{\text { 䁖 }}}$ on the Standard toolbar.
3. In the dialog that opens, navigate to the \Samples \Graphing folder and select both VSurface 1.dat and VSurface 2.dat by holding down the Ctrl key and clicking Add File(s)
4. Select the Show Options Dialog check box.

5. Press the $\mathbf{O K}$ button.
6. In the impASC dialog, modify the settings according to the following image, so that the two data files will be imported as two worksheets with name VSurface1 and VSurface2 in one workbook:

7. Click OK to import these two data files.

囲 Book1					$\square \square$	x	
	$A(X)$	$B(Y)$	C1(Y)	C2(Y)	C3(Y)	-	
Long Name \quad P \quad O							
Units							
Comments							
$F(x)=$							
Sparklines		Lasmons	1 Nomos	Lomen		1	
1		11	12	13	15		
2	1	1.01	0.04	-0.09	-0.28		
3	1.29	1.52	1.29	-0.11	-1.55		
4	1.58	-0.29	-0.91	0.88	0.67		
5	1.87	-0.97	1.52	1.12	0.17		
6	2.16	-0.17	-0.37	0.42	2.22		
7	2.45	0.66	1.01	-0.37	1.01		
8	2.74	-1.14	-0.15	2.17	0.8		
9	3.03	-0.07	0.09	0.28	0.7		
10	3.32	1.4	0.3	1.94	1.16	-	
V VSurf	1 VSur	face 27		$\\| \cdot \square$	---	$1 \mid=$	

The data has X coordinate values in the top row and Y coordinate values in the first column. Note that the X coordinates have nonlinear spacing.
8. With the "VSurface 1" sheet active, hover the cursor over the cell in the top left corner of the worksheet till it appears as a slanting black arrow and click to highlight. .
9. Select the menu item Plot > 3D :3D Colormap Surface to open the plotvm dialog.
10. Note:This dialog opens every time a 3D or Contour plot menu item is invoked with a group of worksheet cells selected. The dialog allows you to define where the X and the Y coordinate values are located.
11. In this dialog, adjust the settings as shown in the image below:

12. Click OK to generate a Color Map Surface plot and a virtual matrix as shown below:

13. Repeat the last step to plot another Color Map Surface plot using data from the VSurface 2 worksheet. This time VSurface 2 will be automatically used as Z title in the plotvm dialog.

6.13.7.3.2 Add Another Surface Plot to Layer

This section will demonstrate how to add a surface plot to a graph layer that already contains another surface plot.

1. Activate Graph1, right-click on the Layer 1 icon $\mathbf{1}$ on the top left corner of the graph and select Layer Contents from the context menu.
2. In the Layer Contents dialog that opens, select VSurface $\mathbf{2}$ from the Available Data panel on the left and add it to the Layer Contents box on the right using the arrow that points to the right in the center of the dialog box (The arrow below it can be used to shift selected items from Layer Contents to Available Data).

3. Click $\mathbf{O K}$ to add the second surface, the graph will now appear as shown below:

Note the two surfaces are displayed with proper intersection.

6.13.7.3.3 Set Surface Transparency

The next step is to set the transparency of the second surface so that parts of the first surface are visible in this intersection plot.

1. Double click on the second colormap surface to open the Plot Details dialog.
2. In the Surface tab, move the Transparency slider to 40% and click Apply, then OK.

Plot Details - Plot Properties

Shift in Z by percent of scale range, $0=$ bottom, $100=$ top

Parametric Surface
\times Matrix

Y Matrix

The completed graph should appear as the the image shown below:

6.13.8Intersecting Color Surfaces

6.13.8.1 Summary

Origin supports multiple intersecting surfaces.
Minimum Origin Version Required: Origin 9.0 SRO
6.13.8.2 What you will learn

This tutorial will show you:

- How to create intersecting color surfaces from different matrix objects.
- How to customize the colormap surface plot.
- How to construct additional color scale for multiple colormap surfaces.

6.13.8.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Intersecting Surfaces in Project Explorer.
2. Active the MBook36 matrix. Note that the matrix displays two thumbnail images above the data, one for each matrix object in the matrix.

> To plot intersecting surfaces, each matrix object must have identical dimensions and XY Mapping. This requirement is automatically fulfilled when the two objects are contained in the same matrix.
3. Select either thumbnail image. From the main menu, select Plot > 3D : Multiple Colormap Surfaces. This will generate an intersecting surface plot of every matrix object in the matrix sheet.
4. Open the Layer Properties dialog by double-clicking on the graph layer, or by selecting Format:

Layer... from the main menu. Go to the Lighting tab, and change the Mode to Directional to turn on the lighting effect.

Click on Apply button, you can find the graph showing as this:

5. Expand the Layer $\mathbf{1}$ branch in the left panel, select [MBook36]MSheet1!_1(Z)[1*:400*] to open the Plot Properties dialog. In the right panel, go to the Colormap/Contour tab, uncheck the Enable Contours check box to turn off contour lines
6. Click the Fill... column header to open the Fill dialog box. Click the default Rainbow palette to open the palette menu. On the palette menu, select Pastel. Click OK to close the Fill dialog box.

7. Select [MBook36]MSheet1!_2(Z)[1*:400*] in the left panel. Uncheck the Enable Contours check box. And click Apply to see the modifications so far. Do the same for
[MBook36]MSheet1!_1(Z)[1*:400*].
8. Keep [MBook36]MSheet1!_2(Z)[1*:400*] selected, and go to the Mesh tab and clear the check box before Enable to turn off the mesh lines. Do the same for [MBook36]MSheet1!_1(Z)[1*:400*]. Click OK to close the Plot Details dialog box and update the graph.
9. Now we will construct the an additional color scale for the second surface, change that plot to be active by click Data:2 [MBook36]MSheet1!_2(Z)[1*:400*], then click Insert: Color Scale to create color scale for this plot.
10. Double click on the newly added color scale object to open the Color Scale Control, change the settings according to the screenshots below, then drag and put the color scale object to a desired place on the layer:

11. You can use the 3D rotation button \square to rotate the graph and gain an overhead perspective. This button is a part of the 3D annotation toolbar which can be brought out by clicking the graph layer once

Your final graph should look something like this:

6.13.9Surface with Symbols and Droplines

6.13.9.1 Summary

Origin supports transparency in most graph types. This feature permits the visibility of parts of a graph that would otherwise be obscured by overlapping plots. In this tutorial, we will add a fitted surface to a scatter plot, set transparency to make data points "behind" the surface visible, and add drop lines and error bars for data points.

Surface with Symbols and Droplines
Surface with Symbols and Error Bar

Minimum Origin Version Required: 8.5 SR0

6.13.9.2 What you will learn

- Create a 3D scatter plot from worksheet data and add a color fill surface to it.
- Draw drop lines or error bars for data points.
- Set surface transparency.

6.13.9.3 Steps

6.13.9.3.1 Create a surface graph with symbols and droplines

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder Surface with symbols and droplines.
2. Active the worksheet $X Y Z$ RandomGauA, highlight the $X Y Z$ to plot a 3D scatter by selecting Plot > 3D: 3D Scatter from the main menu.

3. Now we will add a 3D Color Fill Surface plot to this 3D scatter graph. In the top left corner of the graph window, double-click the layer $\mathbf{1}$ icon to open the Layer Contents dialog.
4. In the Layer Contents dialog box, select Matrices in Folder from the dropdown menu in the upper left. In the left panel, select MBook 3, Click the triangle button next to \mathbf{A} and select 3D - Surface.

[^7]
5. Click OK button to apply the change and close the Layer Contents dialog. Double-click the graph to open the Plot Details dialog box. In the left panel of this dialog, expand all items and select Original (or choose Plot from the Format menu). In the right panel, on the Symbol page set Size as 9 and Color as Olive from Individual Color fly-out menu and click Apply.

6. In the left panel, select the surface plot, and then go to the Fill tab in the right panel, change the Fill piece by piece as Red. Set Transparency to $\mathbf{6 0}$ and click Apply.

7. Go to the Mesh tab, set the Line Width as $\mathbf{1}$ and Set Total Number of Majors as $X=9$ and $Y=9$, and Major Line Color as Black and click Apply.

8. Now we will draw the drop lines. In the left panel, select the scatter plot (Original). In the right panel, select the Drop Lines tab. Select the Parallel to Z Axis check box, change the drop line Width to $\mathbf{2}$ and set the Drop to to Surface.

9. Click OK to close the dialog and delete the legend. Your final graph should look like this:

6.13.9.3.2 Create a surface with symbols and error bar

1. Follow steps 1 through 8 above and click OK to create a 3D surface graph with a scatter plot.
2. Add a new column in the worksheet "XYZRandomGauA". Select the column and right-click. In the Fill Column with context menu, click Uniform Random Numbers.
3. Double click on the newly created graph to open the Plot Details dialog. Expand the node to select the plot (Original) in the left panel. On the Error Bar tab, select the Enable check box, and select Col(D) from the Error Data dropdown menu.

4. Click OK to close the dialog and delete the legend. Your final graph should look like this:

6.13.10 Colormap from Second Matrix

6.13.10.1 Summary

Origin can represent four-dimensional data by color-mapping a surface plot using a second matrix.

Minimum Origin Version Required: Origin 2015 SR0

6.13.10.2 What you will learn

- Create a Color Fill Surface from a matrix.
- Color map a surface plot using a second matrix.
- Customize color map levels and palette.
- Control lighting on the graph (From Origin 9 SRO)

6.13.10.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>|Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Surface with Colormap from Another Matrix in Project Explorer.
2. Active the MBook1D matrix, You should see two image thumbnails above the matrix data, just under the title bar. (If you do not see image thumbnails, right-click on the matrix title bar and select Show Image Thumbnails.) Select image thumbnail 1."
3. On the main menu, select Plot > 3D : 3D Color Fill Surface to generate a surface plot.

4. Double click on the plot to open the Plot Details dialog. In the left panel, select
(MBook1D)MSheet1. In the right panel, select the Fill tab. Choose Coutour Fill from Matrix. and select Mat(2) for front surface.

5. Go to Colormap/Contours tab, click the Level... title to open the Set Levels dialog. In this dialog, click Find Min/Max button and set the \#Major Levels and \#Minor Levels as 10 and 9.Click OK button to close the dialog.

6. Click the Fill... title to open the Fill dialog. select Load Palette and then click Select Palette button to select Rainbow palette. Click OK button to close this dialog.

7. Check the Enable Contours check box. And then click Line... to open the Contour Lines dialog. In this dialog, check the Show on Major Levels Only check box and set the Line Properties as below. Click OK button to close the dialog.

8. Go to the Mesh tab,uncheck the Enable box to disable the mesh lines.
9. Select Layer1 in the left panel, go to Lighting tab in the right panel. Select Directional under Mode. Set Horizontal and Vertical as 124 and 40 , and change the color of Diffuse as LT Gray and Specular as Gray. Then set the Shininess as 37.

10. Go to the Planes tab, set the color as Gray and select Front Corner for the Cube drop-down menu.

11. Go to Axis tab and do settings as below. Click OK button to close this dialog.

Background	Size/Speed	Display	Miscellaneous	Axis	Planes	Lighting
Link Axis L Orientation All in Ax All In Pla Titles in Ticks in Tick Lab Go to each control of R	\square \square \square ngth to Scale of Labels \& T es Plane ane of Screen Axes Plane Axes Plane bels in Axes P Tick Labels in axis node in Rotate settings	zimuth clination II (isometric) les \& Tick ane Axes Plan xes dialo	322.5 39.5 356.3 Off for separate			

12. Keep the graph window active. Select Insert: Color Scale to add a new color scale in the graph window.
13. Double-click anywhere on the color scale to open the Color Scale Control dialog box. Select Layout in the left panel, change Color bar thickness to $\mathbf{1 5 0}$ and check the Reverse Order check box.

14. Select Labels in the left panel, set the Font Size to 14 in the right panel as below:

Click OK to close the Color Scale Control dialog box.
15. Double-click the X, Y and Z axis title and enter " X distance", " Y distance" and "Height". Add a text object "Pressure(psi)" above the color scale.
16. Your final graph should look like this:

6.13.11 Color Map Surface Graph

6.13.11.1 Summary

This tutorial will show you how to create a 3D color map surface.

Full-body Warming System

Heat Transfer Profile

6.13.11.2 What will you learn

This tutorial will show you how to

- Create a 3D color map surface graph
- Customize the 3D surface graph

6.13.11.3 Steps

This tutorial is associated with this Graph Galley page.

1. Download the project by clicking the Download Project link at the top of this page.
2. Open the project in the zipped file. Highlight HFT data matrix and select Plot > 3D : 3D Colormap Surface with Projection to create a 3D graph.

3. Choose Format: Plot to go to the plot level of the Plot Details dialog.
4. Select the surface plot, go to the Mesh tab, uncheck the Enable box to turn off the mesh lines. Go to Colormap/Contours tab, click Line title to open the Contour Lines dialog. In this dialog, uncheck Show on Major Levels Only and select Hide All to hide all contour lines.

5. Select the projection plot in the left panel, go to Surface tab, Enter O as the following image shows to put the projection to the bottom of the graph.

6. Go to the Mesh tab, uncheck the Enable box to disable the mesh lines. Go to Colormap/Contours tab, hide all contour lines like the step4 does.
7. Click Layer 1 in the left panel, and then in the right panel select the Lighting tab. Change the setting as following to enable lighting effect:

Then Click OK to close the dialog.
8. Finally, change axis titles and add a graph title as the following graph.

Full-body Warming System

Heat Transfer Profile

6.13.12 Parametric Surface with Colormap from Data

6.13.12.1 Summary

This tutorial demonstrates how to create a 3D sphere using the data from three matrices. It also shows how the surface is filled to display the surface temperature contour using the data from a different matrix.

Minimum Origin Version Required: Origin 2015 SRO

6.13.12.2 What you will learn

This tutorial will show you how to:

- Create a parametric surface from matrix data
- Set contour fill from another matrix
- Customize the 3D parametric surface plot

6.13.12.3 Steps

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: 3D Function Plots)

1. Open Tutorial Data.opj and browse to the Parametric Surface with Colormap from Data folder in Project Explorer (PE).
2. Activate the matrix FUNCA:1/4, and highlight the data. Click the button on the 3D and Contour Graph toolbar to create a colormap surface as shown below. You can also create this colormap surface by selecting Plot > 3D: 3D Colormap Surface in the main menu.

3. Double click on the plot to bring up the Plot Details dialog. In the Surface tab check the Parametric Surface box and set X Matrix, Y Matrix as Mat(2), Mat(3) respectively.

Click OK to close the dialog.
4. In order to display the complete colormap surface in the axes area use the rescale ${ }^{\natural}$ button in the Graph toolbar. The colormap surface should appear as shown below:

5. Double click on the plot to open Plot Details dialog. This dialog box is used to customize the surface. In the Fill tab Front Surface section deselect the box before Self and set Contour fill from matrix as Mat(4). Click Apply.

6. Activate the Colormap / Contours tab. Click the Level heading to open the Set Levels dialog. Click Find Min/Max and set Major Levels, Minor Levels as 16, 8 respectively. Click OK.

7. Click Fill to open the Fill dialog. This dialog is used to customize the color scale. The Load Palette option allows the user to select from a list of possible palettes. Set Load Palette as Temperature. Click OK.

8. Click on the Mesh tab. Set Line Width as $\mathbf{0 . 0 5}$ by clicking on the font box and typing the value instead of using the drop down menu. Set Line Color in the Front section as LT Gray. Click Apply.

9. In the Numeric Formats tab choose the Decimal Places radio button and set its value as $\mathbf{0}$.

Click OK to apply the settings and close the Plot Details dialog. The graph should appear as shown below:

10. The next step is to modify the axes. Double click on the Z axis to open the Axis Dialog. Go to the Scale tab, select \mathbf{Z} icon. Set the value of From and To as $\mathbf{- 4 0 0}$ and $\mathbf{4 0 0}$ respectively.

EI Z Axis - Layer 1

V Use Only One Axis For Each Direction

11. Go to the Title tab, hold Ctrl key and click to select \mathbf{X}, \mathbf{Y} and \mathbf{Z} together. Deselect the Show check box to hide the axis title for all axes and click OK to close the dialog.

Use Only One Axis For Each Direction

12. Double click on the XY Plane to open Plot Details - Layer Properties. In order to hide the axes, in the Display tab, deselect the \mathbf{X} Axes, \mathbf{Y} Axes, \mathbf{Z} Axes boxes under the Show Elements section.

13. To hide the $Y Z$ and $Z X$ planes, click on the Planes tab, and deselect the boxes before $\mathbf{Y Z}, \mathbf{Z X}$. Set the Color of the remaining XY plane as LT Gray. Click OK to close the dialog.

14. The next step is to customize the color scale. Double click on it to open the Color Scale Control dialog, go to the Labels node and set the Font as Verdana.

[1. Color Scale Control

15. Go to the Line and Ticks node and hide the border and ticks:
[-1 Color Scale Control

16. Click OK to apply the setting and close the dialog. Select and drag to move the color scale object to the desired location.
17. Right click on the white area of the graph layer to bring up a context menu and choose Add/Modify Layer Title. Click else where to deselect the text box, then right-click on it and select Properties... from the shortcut menu to open the Object Properties dialog. Set the font as Verdana and type Surface Temperature ($\mathbf{(+ (0) C}$) in the content table. Click OK.

18. Click on the graph layer within the 3D frame (not the data plot), and click the Rotate button as shown in the image below, to activate the rotation mode. Other ways to rotate the 3D plot include using the red rotate button in the Tools toolbar, the various buttons in the 3D Rotation toolbar or by selecting in the plot, pressing the \mathbf{R} key and using the cursor.

Rotate the plot to get a better view. The graph should resemble the image shown below:

6.13.13 Stacked 3D Surface Plots

6.13.13.1 Summary

This tutorial shows how to create stacked 3D colormap surfaces from different matrix objects. The surfaces in the plot display the topology before and after volcanic eruption:

Minimum Origin Version Required: Origin 2015 SR0

6.13.13.2 What you will learn

This tutorial will show you how to:

- Create stacked 3D colormap surfaces.
- Customize axes display and layer properties.
- Resize and rotate a 3D plot.

6.13.13.3 Steps

6.13.13.3.1 Create Multiple Colormap Surfaces

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: 3D Surface)

1. Open Tutorial Data.opj and browse to the Stacked 3D Surface Plots folder in Project Explorer (PE).
2. Activate the matrix book Mbook1 which contains two matrix objects, then click Plot > 3D : Multiple

Colormap Surfaces to create two 3D surfaces from these two matrix objects as shown below:

3. Double click on the plot to open the Plot Details dialog. If the left panel is not open the use the arrow button on the bottom left of the dialogue. There are two surfaces under the Layer1 node on the left panel. To shift the "After eruption" surface in Z axis, activate the second plot under Layer1 on the left panel, and in the right panel, select the Surface tab. Check the Shift in \mathbf{Z} by percent of scale range box, and enter 70 in the text box.

4. In the Fill tab Front Surface section, deselect the Self box to fill contour by the same matrix object (Mat "Before") as the other surface used.

5. Select the Colormap / Contours tab. Click Level.. to bring up the Set Levels dialog. Set the parameters as shown in the following graph and click OK.

Then uncheck the Enable Contours checkbox to hide the contour lines. Click OK.

6. In the Mesh tab deselect the Enable box to disable the mesh line.
7. Repeat steps 5 to 6 for the first plot under the Layer1 node.
8. In this project the two surfaces use the same matrix as contour fill, so they can share one color scale.

To set the numeric format of the color scale, activate the first plot on the left panel of the Plot
Details dialog. Select the Numeric Formats tab on the right panel. Select Scientific: 10^3 from the drop down list next to the Format, and set Significant Digits as 2. Click OK.

To customize the color scale, double click on the color scale to open the Color Scale Control dialog. Check the Reverse Order box and set Color bar thickness as 100. Click OK.

6.13.13.3.2 Customize Axes Display

The next step is to change the the axes scale and tick labels' format in the Axes dialog. To open this dialog, select Format: Axes: X Axis...

1. Change the settings on the Scale tab:

- Set scale from $\mathbf{5 5 8 0 0 0}$ to $\mathbf{5 6 6 5 0 0}$ for the X Axis (click \mathbf{X} icon), from $\mathbf{5 1 0 8 2 0 0}$ to $\mathbf{5 1 2 1 8 0 0}$ for the Y Axis (click \mathbf{Y} icon), and from $\mathbf{0}$ to $\mathbf{1 0 0 0 0}$ for the \mathbf{Z} axis (click \mathbf{Z} icon).
- For the X axis, set Type of Major Ticks as By Counts and set Count as 5. For the Y and Z axis, set Type of Major Ticks as By Increment and set Value as 2000. To hide all the minor ticks, set Count of Minor Ticks as $\mathbf{0}$ for all axes.

2. Customize the Tick labels:

- First, ensure that the Use Only One Axis for For Each Direction is enabled in the top of the Axis dialog.
- Go to the Tick Labels tab, hold Ctrl key to select \mathbf{X}, \mathbf{Y} and \mathbf{Z} icons together so they will be customized together. Select Custom for Display and select $\mathbf{P} * \mathbf{3}$ from the drop down list of Custom Format to show the tick label as base-10 scientific notation with 3 significant digits. Click OK. For more information about the options in this drop down list, please refer to Custom Display Format.

6.13.13.3.3 Customize Layer Properties

1. Double click on the blank space outside the plots or click Format: Layer... from the menu to open the Plot Details - Layer Properties dialog.
2. Activate the Miscellaneous tab on the right panel. Check the box before Enable in the Clipping section, which will clip the image outside the axes area according to the settings in the Clipping section.

3. In the Planes tab set Color as LT Gray for all planes. Select Front Corner from the drop-down list in the Cube section to show the cube's border.

4. Select the Lighting tab. In the Mode section, choose Directional to enable lighting mode. Set Light Color as shown in the following graph. Click OK.

6.13.13.3.4 Resize and rotate the plot

1. Click on the cube (not the data plot) to activate the 3D toolbar. Click the Resize button
 a 3D Cartesian coordinate will show up. Place the cursor on Y axis, which will then be highlighted, at this moment drag-and drop the Y axis to stretch the plot in Y axis direction. Do the same to X direction and Z direction.
2. Click the rotate button
to activate rotation mode. A sphere will be displayed at the center of the plot. Rotate the plot to get a better view.

The 3D toolbar allows you to resize and rotate the plot freely. However, you can also achieve the same view as Graph1 in this sample project by setting the value in the Axis tab of the Layer
Properties dialog as shown in the following graph.

Background	Size/Speed	Display	Miscellaneous	Axis	Planes	Lighting
Length						
$\times 70.2$		Azimuth	32.4			
Y 125		Inclination	39.5			
Z 98.5		Roll	359.6			
Link Axis Length to Scale (isometric)			Off V			
-Orientation of Labels \& Titles \& Ticks						
- All in Axes Plane						
 Go to each control of	ne of Screen Axes Plane Axes Plane els in Axes P Tick Labels in axis node in otate settings.	ne Axes Plan xes dialog	for separate			

6.13.14 Multiple Surfaces in Same Layer

6.13.14.1 Summary

The four stacked surfaces shown below were created from the same matrix. The first layer from the top is a wire frame, the second layer is a flattened contour line plot, the third layer is a color filled surface with lighting effect, and the bottom layer is a flattened color filled contour plot.

Minimum Origin Version Required: Origin 2015 SR0
6.13.14.2 What You Will Learn

This tutorial will show you how to:

- Add multiple surface plots to a single graph layer
- Explore ways in which you can customize surface plots

6.13.14.3 Steps

6.13.14.3.1 Create a Graph with Multiple Surfaces

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key , and then open Graph Sample: 3D Surface)

1. Open Tutorial Data.opj and browse to the Multiple Surfaces in Same Layer folder in Project Explorer (PE).
2. Select the MBook8 worksheet and highlight all that data. From the Main Menu select Plot > 3D : 3D Colormap Surface. The graph window should appear as shown below:

3. With the new graph window active choose Graph: Layer Contents.... In the Layer Contents -

Layer 1 dialog box, select the MBook8 matrix in the left panel and click the Add plot button (the right-pointing arrow in the center of the dialog) three times. Click OK. This will add the same MBook8 data to the graph layer four times. Note that at this point there only a single plot, the following steps will change that.

4. Double-click on the plot to open the Plot Details - Plot Properties dialog box. Select the first plot in the left-hand panel and in the Surface tab check the Flat box, check Shift in \mathbf{Z} by percent... and enter $\mathbf{0}$ in the accompanying text box. Select the second plot, leave Flat unchecked, check Shift in
Z... and enter 23. Select the third plot, check Flat, check Shift in Z... enter 65. Select the fourth plot, leave Flat unchecked, check Shift in Z... and enter 82. Click OK.

5. Double-click on the \mathbf{Z} axis, and in the Axes Dialog box, go to the Scale tab, make sure \mathbf{Z} axis icon is selected and set From to $\mathbf{0}$, and To to 900 .

E- Z Axis - Layer 1

\checkmark Use Only One Axis For Each Direction

6. Go to the Tick Labels tab, hold Ctrl key to select \mathbf{X} and \mathbf{Y} icons together. In the Display tab, for Divide by Factor, enter 100000

7. Go to the Title tab, select the \mathbf{X} icon and enter \mathbf{X} Coordinate/ $\mathbf{1 0 \backslash + (5)}$ meter as the text for X title. Select the \mathbf{Y} icon and enter \mathbf{Y} Coordinate/ $\mathbf{1 0 \backslash + (5)}$ meter as title text.

[- X Axis - Layer 1

\checkmark Use Only One Axis For Each Direction

8. Go to the Grids tab, hold Ctrl key to select \mathbf{X}, \mathbf{Y} and \mathbf{Z} icons together. Under Major Grid Lines clear the Show check box to hide the grid lines for all axes.

国 X Axis - Layer 1
V Use Only One Axis For Each Direction

Show	Scale	Tick Labels	Title	Grids	Line and Ticks	Spec

$\mathrm{x} \quad \square$ Major Grid Lines

Thickness $\quad 0.5 \quad=$
\square Minor Grid Lines
Show \square
Color \quad LT Gray

Thickness
$0.2 \quad-$Additional Lines
Opposite
$Y=0$
9. Click the OK button. The graph should now display four separate surfaces as shown below:

6.13.14.3.2 Customize the flattened color filled contour plot

1. Double-click on "Surface 1" to open the Plot Details dialog. Select the Colormap/Contours tab and click on the Fill... header to open the Fill dialog. In the Fill dialog, select Load Palette then click Select Palette and select the Reef palette. Click OK to close the Fill dialog.

2. In the Colormap/Contours tab, clear the Enable Contours check box.

3. Select the Mesh tab and clear the Enable check box.

4. Click Apply to update your graph.
6.13.14.3.3 Customize the color filled surface
5. Select the second data set (do not clear the accompanying check box), click the Fill tab, select Fill piece by piece and choose Dark Yellow from the drop-down.

\square Plot Details - Plot Properties

\square Graph2
\square Layer1
(V) [MBook8]MSheet1! 'Height"(Z) [1*:40000x]
 [MBook8]MSheet!! 'Height"(Z) [1*:40000*)
■ [MBook8]MSheet1! "Height"(Z) [1*:40000*][MBook8]MSheet1! "Height" Z] [$\left.1^{*}: 40000^{*}\right]$

\square Enable

Contour fill from matrix
2. Select the Colormap/Contours tab and clear the Enable Contours check box.

3. Select the Mesh tab and clear the Enable check box.

4. Click Apply to update your graph.

6.13.14.3.4 Customize a flattened contour line plot

1. Select the third data set, click the Fill tab and clear the Enable check box.

2. Select the Colormap/Contours tab click on the Line... header to open the Contour Lines dialog. In this dialog, select the Link Line to Colormap Color checkbox. Click OK to close the Contour Lines dialog.

3. Select the Mesh tab and set the Line Width to 1. In the Major Minor Lines section, choose the settings shown below and in the Line Color section select the Use Colormap check box .

4. Click Apply to update your graph.

6.13.14.3.5 Customize a wireframe surface

1. Select the fourth data set, click the Fill tab and clear the Enable check box.

Plot Details - Plot Propenties

```
GGraph2
    \square}\mathrm{ Layer1
        \checkmark [MBook8]MSheet1! 'Height"(Z) [1*:40000*]
        \square[MBook8]MSheet1! "Height"(Z) [1*:40000*]
        [MBook8]MSheet1! 'Height"(Z) [1*:40000*]
        [MBook8]MSheet1! "Height"[Z] [1*:40000*]
```

Surface Fill Colormap/Contours Mesh Error Bar
2. Select the Colormap/Contours tab and clear the Enable Contours check box.

3. Select the Mesh tab and set the Line Width to 1. In the Major Minor Lines section, choose the settings shown below and in the Line Color section set Major Line Color to Black .

4. Select Layer1 in the left panel. In the Lighting tab choose Directional for Mode and set the Direction group controls as shown below:

5. Select the Planes tab. Specify the colors of the $\mathbf{Y Z}$ and $\mathbf{Z X}$ planes as shown below (a custom color approximating "eggshell" for $\mathbf{Y Z}$ and LT Gray for $\mathbf{Z X}$ works well).

6. Click $\mathbf{O K}$ to update your graph.
7. Rotate the 3D graph if you want to. Your graph should resemble the image shown below.

6.13.15 3D Scatter with Colormap

6.13.15.1 Summary

This tutorial will demonstrate how to create a 3D scatter plot with Z colormap from XYZ data in a worksheet, set scatter size proportional to the data in a specified column, and create projections of the data on all three axis planes.

Minimum Origin Version Required: 2015 SRO

6.13.15.2 What you will learn

This tutorial will show you how to:

- Generate a 3D scatter plot with Z colormap
- Set the symbol size proportional to data in a specified column
- Add and customize the scatter projections on axis planes

6.13.15.3 Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press $\mathbf{F 1 1}$ key , and then open Graph Sample: 3D Symbol Bar and Wall)

1. Open Tutorial Data.opj and browse to the 3D Scatter with Colormap folder in Project Explorer (PE).
2. Activate the workbook A3DScatter, and highlight col(C). Select Plot > 3D: 3D Scatter to generate a scatter plot.
3. A Reminder Message window like the one shown below will pop up, stating that the graph might not be correctly displayed if the OpenGL version is less than 2.1. The OpenGL version of your video card is listed on the Reminder Message window. Click OK to close the window.

Note: Speed Mode might be turned on if the OpenGL version is too low.
4. Double click on the plot to open the Plot Detail dialog. If the left panel is not expanded use the
<<
button on the bottom left of the dialog to expand it. Expand the Layer1 option and select the Original level, this contains the original data. This dialog box is where the 3D scatter is customized.
5. In the Symbol tab, set Shape as Sphere. In order to use the sphere sizes to show the differences of Engine Displacement, select Size as $\operatorname{Col}(\mathbf{E})$: "Engine Displacement"), and set Scaling Factor as 0.005. Type manually into the edit box instead of using the drop down menu. For Color, click the drop-down menu, then choose the By Points tab of the Color Chooser. Click on Color Mapping and choose $\mathrm{Col}(\mathrm{C})$: "Power" to introduce a Z-value colormap. Set Transparency to 25%.

6. Select the Colormap tab. Click the Level... title to open the Set Levels dialog. Set From as $\mathbf{3 0}$.

Select Increment, and set it as 15. Set \# Minor Levels as 9. Click OK.

7. Click the Fill... title to open the Fill dialog. Select Limited Mixing. Click the default color of From and then click the square box under Custom section in the color setting panel to open the Colors dialog. In the Colors dialog, set the Red, Green and Blue option in the bottom right as 74, 74, 255. Do the same thing for To color and set the Red, Green and Blue option as 255, 100, 255. Click OK.

8. Click on the fill color of $\boldsymbol{< 3 0}$ level to open the Fill dialog. Set Fill Color as None. Click OK. Repeat the this step to set fill color of $\mathbf{> 1 6 8}$ level as None. This will ensure that there is no color for levels above and below the specified range.
Line \quad Symbol Drop Lines Colormap Error Bar 3 D Vector

Click column header or cell to edit

9. The next step is to add the data projections. In the left panel of the Plot Details dialog, select the option above Original, and select the Fully Independent radio button. This will ensure that when the projections have been enabled, each can be customized separately. Check the boxes for XY Projection, ZX Projection and YZ Projection to enable the scatter projections on all three planes.
10. To customize the colors of the projections, in the XY Projection level Symbol tab, set its color as Olive(the 12th common color). Set the symbol color of ZX Projection and YZ Projection as Red (the second common color) and Orange (the 15th common color) respectively. Click OK.

11. In order to remove the grid lines, double click on the X axis to open the Axes dialog. Select the Grids tab on the right panel, hold the CTRL key and select Y and Z axes to customize the settings together, then deselect the Show box under Major Grid Lines to hide the major grid lines of all axes.

Select multiple axes to customize together.
Apply To... O Cancel \quad Apply
12. The next step is to change the scale for the axes. On the Scale tab for each axis set the following; for X Axis, change the From, To value and the increment Value of major ticks to 5, 30,5 respectively, and then check the Reverse check box; for Y Axis, to 5, 40 and 10, and then check the Reverse check box; And for Z Axis, to 20, $\mathbf{1 8 0}$ and 20. Click OK.
13. To designate the color for the background of the entire window, open the Plot Details dialog again. In the left panel, select the Graph level above the Layer1 option. Select the Display tab. Set Color as LT Gray. Click OK.

14. Delete the legend object created by default, we are going to add a color scale legend instead.
15. In order to add a color scale legend, click the Add Color Scale Dutton in the Add Object to Graph toolbar. Double click on the color scale to bring up the Color Scale Control dialog. Set the color scale format according to the screenshots below:

Levels Labels	Background	None \rightarrow
Layout	Layo	Joined
Title\boxminus Line and Ticks\quad RightLeft		
	Arrangement	(0) Auto
		O Vertical
		- Horizontal
	Reverse Order	V
	Show Labels on Opposite Side	\square
	Follow Graph's Standard Font Size Setting	V
	\square Size and Label Offset (in \% of font height)	
	Color Bar Thickness	180
	Label Offset from Bar Edge	30
	Label Side Offset from Center	0

16. Right click on the page layer to bring out the context menu. Select Add/Modify Layer Title and type Symbol Size proportional to Engine Displacement in the text box that appears as the layer title.
17. The graph should appear as shown below. Rotate to explore all sides:

6.13 .16 3D Scatter with Droplines

This graph consists of a flat surface and an XYZ scatter with labels. The US Map is a matrix with 1's and 0's, displayed as a flat surface. The population data is an XYZ scatter plot with droplines.

Minimum Origin Version Required: Origin 9.0 SRO
6.13.16.1 What you will learn

This tutorial will show you how to:

- Plot a flat surface.
- Add a 3D scatter to the existing graph window.
- Turn on and customize the labels.

6.13.16.2 Steps

This tutorial is associated with <Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open Tutorial Data.opj and browse to the 3D Scatter with Droplines folder in Project Explorer (PE).
2. Activate MBook1B, select Plot > 3D: 3D Colormap Surface from the main menu. A graph window will be generated.

3. Double-click on the plot to open the Plot Details dialog. In the Surface tab, check the Flat check box.

Plot Details - Plot Properties

	Sufface	Fill	Colormap / Contours	Mesh	Error Bar	Side Walls
	DisplayFlatShift in Z by percent of scale range, $0=$ bottom, $100=$ top					

4. Go to the Colormap/Contours tab, click the Fill... header to open the Fill dialog. In this dialog, select Limited Mixing and set the From and To colors as shown below.

5. Click the OK button to close the Fill dialog.
6. Click the Level... header to bring up the Set Levels dialog. Set the levels as given below.

7. Click the $\mathbf{O K}$ button to close the Set Levels dialog.
8. Go to the Mesh tab, uncheck the Enable check box.

9. Click the OK button to close the dialog. On the graph window, right-click on the layer icon to select Layer Contents... from the context menu to open the Layer Contents dialog. In this dialog, select Worksheet in Folder from the top-left drop-down list, select col(D) in the left panel and select 3D Scatter/Trajectory/Vector as plot type, check the Rescale on Apply check box, and then click the arrow to add col(D) to the right panel as a 3D scatter plot.

10. Click OK button to close the Layer Contents dialog. The population data will be added to the graph as shown below.

11. Double-click on the 3D scatter plot to open the Plot Details dialog. Go to the Symbol tab, set the Size as 18 and set the color as colormap defined by col(Population).

12. Go to the Colormap tab, click on the Level... header to open the Level dialog. Set the level as given below.

| Line | Symbol | Drop Lines Colormap | Error Bar 3D Vector Label Numeric Formats |
| :--- | :--- | :--- | :--- | :--- | :--- |

Click column header or cell to edit

13. Click OK to close the Set Levels dialog. Click on the Fill... header to open the Fill dialog. In the Fill dialog, select Load Palette and then click the Select Palette button to select the Watermelon palette. Click OK to close the Fill dialog.

14. Go to the Label tab, apply settings given below.

15. Select Layer1 in the left panel and then go to the Size/Speed tab in the right panel. Uncheck the check boxes under Speed Mode, Skip Points if needed.

Plot Details - Layer Properties

16. Select Graph level in the left panel and then go to the Display tab, set the Color as $L T$ Gray.

17. Click OK to close the Plot Details dialog. Finally, you will get the graph given below.

6.13.17 Surface With Transparent Plane

This graph shows the topography of Lake Ontario. It is a combination of a 3D surface and a transparent plane.

Minimum Origin Version Required: 2015 SR0
6.13.17.1 What you will learn

This tutorial will show you how to:

- Plot a 3D color map surface graph
- Plot a transparent plane onto the existing 3D surface plot
- Set the lighting for a 3D surface plot

6.13.17.2 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder Surface With Transparent Plane in Project Explorer.
2. Activate MBook3L, and highlight all data. Select Plot > 3D : 3D Colormap Surface from the main menu. A graph window will be generated as shown below:

3. Right click on the layer icon $\mathbf{1}$ at the top right of the graph and select Layer Contents..., add MBook2 as a 3D surface into this layer by shifting it from the left panel to the right panel using the arrow button in the center of the dialog as shown below. Then click OK to close dialog.

4. Double-click on the graph to open the Plot Details dialog. If the left panel is not expanded use the

button. This dialog is where the 3D plot will be customized. Select Layer1 in the left panel, and in the Axis tab in the right panel apply the settings shown below:

5. Select the first plot in the left panel under the Layer1 option and in the Colormap/Coutours tab, click on the Level... header to open the Set Levels dialog. In this dialog, apply the settings below:

6. Use the OK button to close the Set Levels dialog. Click on the Fill... header to open the Fill dialog. In the Fill dialog, select Load Palette and click the Select Palette button to select the Watermelon palette. Click OK to close the Fill dialog.

7. To remove contours, in the Colormap/Coutours tab deselect the Enable Contours check box as shown below:

8. To remove the mesh, in the Mesh tab, deselect the Enable check box as shown below:

9. In the Side Walls tab, check the Enable box and set the X and Y side walls as shown below:

10. In the Numeric Formats tab, set Decimal Places to $\mathbf{0}$.
11. Select the second plot in the left panel and in the Surface tab, set the Transparency as 48:

12. Open the Fill tab of the Plot Details dialog, select Fill piece by piece and set the color as Blue.

Click Apply to review changes.

13. The next step is to set the lighting effect. Select Layer1 in the left panel and in the Lighting tab, apply the settings shown below:

14. In the Planes tab, deselect the $\mathbf{X Y}, \mathbf{Y Z}$ and $\mathbf{Z X}$ plane boxes. Click the $\mathbf{O K}$ button to close the Plot Details dialog.

15. The next step is to add a title. Right-click on the blank area of the graph window and select

Add/Modify Layer Title from the menu that appears, enter Lake Ontario as the layer title. Rightclick on the title and select Properties... from the menu to open the Object Properties dialog. In the Texttab, set font size to 31, then go to Frame tab and set Frame to Shadow.

16. To customize the color scale, double-click on the color scale to open the Color Scale Control dialog. Select Line and Ticks on the left panel, on the right panel, deselect Show Line and Ticks on the Right and Show Border to hide the line, ticks and border.

17. Select Layout on the left panel, modify Color Bar Thickness as 150 to change the width of the color scale, set Label Offset from Bar Edge as 0 to move the label closer to the color scale.

18. Select Title on the left panel, on the right select Show to display the title, and add (m) at the end of the Title text box to display the title as Elevation (m) for the color scale. Change Size under the Font branch as 18 . Click OK to apply the settings and close the dialog.

19. You can double click the color scale title to activate the in-place edit mode, place the cursor after $\%(? R, @ L A)$ and press ENTER on the keyboard to start a new line for (m). The complete graph should appear as shown below:

6.13.18 3D Bar on Flatten Surface

This graph is a combination of a flattened 3D surface of US Map with state divisions and 3D bars representing the city populations, the bars locate the longitude and latitude of the cities.

Minimum Origin Version Required: Origin 9.0 SRO

6.13.18.1 What you will learn

This tutorial will show you how to:

- Plot a flattened 3D surface.
- Add a 3D bar graph to an existing 3D surface graph.

6.13.18.2 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder 3D Bar on Flat Surface in Project Explorer.
2. Activate MBook1E, select Plot> 3D : 3D Colormap Surface from the main menu. A graph window will be generated

3. Double-click on the graph to open the Plot Details dialog. In the Surface tab, check Flat and Shift in Z, set the \mathbf{Z} offset to 0 and the Transparency to 50 .

4. Go to the Colormap/Contours tab, click on the Level... header to open the Set Levels dialog. In this dialog, set the Major Levels to 8, Minor Levels to 0 .

5. Click the OK button to close this dialog. Click on the Fill... header to open the Fill dialog. In the Fill dialog, select Load Palette, click Select Palette button to select Thermometer palette and uncheck the Link to Palette check box.
```
Plot Details - Plot Properties
```


6. Click $\mathbf{O K}$ button to close the Fill dialog. Click the fill cell of last level and set its color as White.

7. Uncheck the Enable Contours in the Colormap/Contours tab.

8. Go to Mesh tab, uncheck the Enable check box.

Surface Fill	Colormap / Contours Mesh Error Bar	Side Walls	Numeric Formats
\square Enable			

9. Select Layer1 in the left panel, go to the Planes tab in the right panel. Uncheck the $\mathbf{X Y}, \mathbf{Y Z}$, and $\mathbf{Z X}$ check boxes.

10. Click OK to close the Plot Details dialog. Right-click on the layer icon and choose Plot Setup from the menu. In the Plot Setup dialog, choose Worksheets in Folder for Available Data, 3D-Bars as Plot Type and USMetropolitan as the data source sheet. Set Longitude, Latitude, and Population as X, Y, Z respectively. Click Add to add the 3D bar graph to the current layer.

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\wedge}$ and expand Available Data panel by clicking 시 again.

Please refer to Plotting using Plot Setup for more information.
11. Click OK to close the Plot Setup dialog. Select Graph: Rescale to Show All to rescale the graph.
12. Double-click on the 3D bar graph to open the Plot Details dialog. In the Pattern tab, set the color of Border and Fill as red, and set Gradient Fill as shown below.

13. Click OK to close the Plot Details dialog. On the graph window, right-click on the layer icon and select Layer Contents... from the context menu to open the Layer Content dialog. In this dialog, select Worksheets in Folder for the top-left drop-down list, add $\operatorname{col}(\mathrm{C})$ and $\mathrm{Col}(\mathrm{D})$ in Sheet Label as a 3D bar graph and a 3D scatter respectively to the current layer.

14. Click OK to close the Layer Content dialog. Double-click on the 3D bar graph to open the Plot Details dialog. Select the third plot in the left panel, and go to the Pattern tab, apply the settings given below.

15. Go to the Outline tab, set the Width(in\%) to 15 as below.

16. Select the forth plot in the left panel, go to the Label tab and apply the settings below.

17. Finally, you will get the graph shown below.

6.13.19 3D Surface with Point Label

6.13.19.1 Summary

This tutorial will demonstrate how to add a 3D Scatter to a 3D Surface and include labels as shown below:

Mount Whitney:

Minimum Origin Version Required: Origin 2015 SR0
6.13.19.2 What you will learn

This tutorial will teach you how to:

- Create the 3D Surface with side walls
- Add a 3D scatter to the 3D Surface and include labels
- Change the label position in 3D graphs
- Add a line to connect the symbol and the label

6.13.19.3 Steps

6.13.19.3.1 Create the 3D Surface with side walls:

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key , and then open Graph Sample: 3D Surface)

1. Open Tutorial Data.opj and browse to the 3D Surface with Point Label folder in Project Explorer (PE).
2. Activate MBook4, and highlight everything. Select Plot > 3D : 3D Colormap Surface from the main menu. A 3D Colormap graph will be generated as shown below:

3. Select Format: Axes: \mathbf{Z} Axis... in the menu to open the Axes dialog. (Or double-click one of the axes on the graph). Set Z axis scale From: -500 and To: 8000. Click OK.

4. Select Format: Plot in the menu to open the Plot Details dialog. (Or double click anywhere on the graph). If the left panel is not expanded use the \ll button on the bottom left of the dialog to expand it and select the first option under Layer1. In order to create and customize side walls, in the Side Walls tab, check the Enable box. Change the color of \mathbf{X} and \mathbf{Y} side walls to Gray and LT Gray.

5. To adjust the color scale, in the Colormap/Contour tab, click on the Fill column header to open the dialog. Select the Limited Mixing option, and set From: Blue and To: Green as shown below. Click the OK button to close the Fill dialog.

6. In the Mesh tab, select color of Major Minor Lines as Black and select apply Apply.

7. The next step is to add and customize the lighting effect. In the same Plot Details dialog, expand the left panel and select Layer 1. In the Lighting tab, choose the Directional Mode, enter 279 and -3 in the Horizontal and Vertical boxes respectively. Set the Ambient color to LT Yellow.

8. To adjust the planes, in the Planes tab deselect the $\mathbf{Y Z}$ and $\mathbf{Z X}$ boxes to hide the two planes in the graph. Click the OK button.

6.13.19.3.2 Add the 3D scatter in the 3D Surface with labels:

1. In order to add symbols in the desired position on the 3D graph, select Graph: Layer Contents from the main menu to open the Layer Contents dialog (Or double click on the layer icon $\mathbf{1}$ on the top left of the graph). In the dialog that appears, select Worksheet in Folder from the drop-down on the top left.
2. Click on the Plot Type button shown below to specify 3D Scatter/ Trajectory/ Vector as the plot type:

3. To shift components from the left panel to the right panel, holding down the Ctrl key, select two Height columns in the left panel and click on the Add plot button \rightarrow. This will add the two columns to Layer1. Click the OK button.

Use the
Rotate Tool button on the Tools toolbar or hold down the \mathbf{R} key and use the mouse to rotate the graph. You can find two red symbols are added to the 3D surface and the graph will appear as shown below:

4. To add labels and leader lines to the two symbols, double click on either one to open the Plot Details dialog. Make sure the left panel of the Plot Details dialog box is expanded and displaying Original under the Position1 plot-level. In the Label tab check the Enable box. In the Label From drop-down list, select col("Label") as the label source. Specify the Offset, Position and Leader Line for the label as shown in the image below:

5. In the left panel, click on Original under the Position2 plot-level. In the Label tab repeat the above step making the selections given below.

Click on the OK Button. Labels and Lead Lines should now appear on the graph.

6.13.20 Transparent Parametric Surfaces combined with Scatter Plot

6.13.20.1 Summary

This tutorial will show you how to create 3D Scatter plots and combine them with 3D Parametric Surfaces.

Minimum Origin Version Required: Origin 2016 SR0
6.13.20.2 What you will learn

- How to create the 3D Scatter plot with symbol color indexing.
- How to plot 3D confidence ellipsoid by app
6.13.20.3 Steps

6.13.20.3.1 Create the 3D Scatter plot with color index

You can refer to this graph in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: 3D Symbol Bar and Wall)

1. Import the file <Origin EXE Path>\Statistics \Fisher's Iris Data.dat into a new workbook.
2. Select Plot > Templates: System Template Library from the main menu. In the System Templates dialog, expand the Graph Template -> 3D Symbols \& Bars \& Vectors node, then select gl3d. Click the Plot Setup... button at the bottom left corner of the dialog.
3. In the Plot Setup dialog, set column C, D, and A as the X, Y, and Z columns, respectively. Click the Show Plot List button (double downward-pointing arrows in the lower right corner of Plot Setup) to
expand the dialog (if it is not already expanded) and select the Add button, then click OK.

[- Plot Setup: Select Data to Create New Plot										Q
Plot Type:	Show(S) [Fisher'slrisD] 'Fisher's lris Data"									\rightleftarrows
3D Scatter/Trajectory/t	X	Y	Z	Column	Long Hame	Comments		ing Interval		Positi
3D - Surface	\square	\square	\square	〈autoX>	From/Step=					
3D - Bars	\square	\square	\checkmark	A	Sepal Length					
3D Scatter Bubble	\square	\square		B	Sepal "idth					
3D Scatter Color Mappei	\square		\square	C	Petal Length					
3D Scatter Bubble + Col	回			D	Petal "idth					
3D Error Bar	\square			E	Species					
Plot List: Drag entries in 1st column to reorder or to move between layers. Right click for other options.								Replace	dd	
Plot	Range	Show	Plot	Type		Legend				
-LL Layer 1	$\checkmark \mathrm{Re} \nabla$									
Group Style Holder 3D Scatter/Trajectory/Vector										
					Previ		OK	Cancel		Apply

In order to show all three panels in Plot Setup dialog, please expand Plot Type panel by clicking $\hat{\wedge}$ and expand Available Data panel by clicking ㅅ ${ }^{\text {again. }}$

Please refer to Plotting using Plot Setup for more information.
4. Select Format: Plot in the menu to open the Plot Details dialog. In the Symbol tab, set Color as Index: Col(Species).

5. Go to Color List tab, check the Use custom increment list check box, and custom the color list as the following image. Click OK.

6. Right-click on the graph legend and select Legend: Reconstruct Legend in the context menu.
7. Right-click on the graph legend and select Properties... to open the dialog. Set the font size to 22, and custom the text as following image:

The 3D Scatter graph will be generated as shown below:

8. To ensure that the legend is not overwritten during the next steps, select Format: Page in the menu to open the Plot Details dialog. Go to Legends/ Titles tab and choose None from the Legend Update

Mode drop-down list.

6.13.20.3.2 Add transparent parametric surfaces on the active graph

1. Download 3D Confidence Ellipsoid app in this file exchange page: 3D Confidence Ellipsoid
2. Drag- and-drop the app into Origin program to install it, then the 3D Confidential Ellipsoid icon will be listed in the Apps Gallery

3D
Confiden...
3. Active the graph and click this 3D Confidential Ellipsoid button in the Apps Gallery. This will open the Plot 3D Confidence Ellipsoid dialog. Accept the default settings and click OK. Three ellipsoid are added to the graph, each envelops the group of data with the same color.

[- Plot 3D Confidence Ellipsoid		98
Settings...		
Confidence Level [\%] Grid Size Elevation Grid Size Azimuth Grid Size	$\begin{aligned} & 95 \\ & \hline 31 \\ & \hline 31 \end{aligned}$	
	OK	Cancel

The final graph should appear as shown below:

6.13.21 Convert Data from Spherical Coordinate to XYZ and Make a 3D Plot

6.13.21.1 Summary

In this tutorial, we will look at what is involved in creating the 3D graph with spherical coordinate data, as well as using X-Function sph2cart to convert data in a workbook or matrix from spherical coordinate to Cartesian coordinates.

It is important to go over the Converting Algorithm for sph2cart, and notice that Origin use ϕ as the elevation and θ as the azimuth in the transform formula.
$x=r * \cos (\phi) * \cos (\theta) ;$
$y=r * \cos (\phi) * \sin (\theta) ;$
$z=r * \sin (\phi) ;$

6.13.21.2 What will you learn

- Convert data in a worksheet (virtual matrix) from spherical coordinate to Cartesian coordinates and make a 3D surface plot.
- Convert data in a matrix object from spherical coordinate to Cartesian coordinates and make a 3D surface plot.
- Convert data in three matrix objects from spherical coordinate to Cartesian coordinate and make a discrete 3D surface plot.
- Convert data in a worksheet(XYZ) from spherical coordinate to Cartesian coordinate(XYZ) and make a 3D space curve.

6.13.21.3 Steps

6.13.21.3.1 3D Surface plot with colormap for data in virtual matrix

Origin can create surface plot with data in virtual matrix (spherical coordinate) and add colormap for it. The following steps introduce the plot of a ellipsoid with colormap surface.

This tutorial is associated with <Origin EXE Folder>|Samples \Tutorial Data.opj.

1. Open the Tutorial Data.opj and browse to the folder: Spherical Coordinates.
2. Open the virtual matrix data spheriPlot in tutorial data, the structure of the virtual matrix is shown in graph below:

In this example, the azimuth θ is from 0 to 360 , and the elevation ϕ is from -90 to 90 . The unit used for angle is degree.
3. Open the Script Window, type in code below and run:
sph2cart -d;

Setting the sph2cart dialog follows graph below, then click OK. Three new matrix objects will be created which are corresponded to XYZ.

4. Then add an extra matrix object after the matrix Z in Matrix Layer to act as the colormap.

5. Copy the data in colormap matrix in Spherical Coordinates folder, paste the data to the new added matrix object.

6. Now, you will plot the Matrix into a 3D surface, active the matrix object Z, click Plot > 3D : 3D Colormap Surface

	1	2	3	4	5 D	Insert Add
1	-0.70711	-0.70711	-0.70711	-0.70711	-0.70国	
2	-0.7069	-0.7069	-0.7069	-0.7069	-0.7	
3	-0.70627	-0.70627	-0.70627	-0.70627	-0.7 C -	Rename
4	-0.70519	-0.70519	-0.70519	-0.70519	-0.70	Rename
5	-0.70367	-0.70367	-0.70367	-0.70367	-0.7C	Delete
6	-0.70171	-0.70171	-0.70171	-0.70171	-0.7C	
7	-0.69931	-0.69931	-0.69931	-0.69931	-0.6¢	Properties
8	-0.69642	-0.69642	-0.69642	-0.69642	-0.6s	
9	-0.69307	-0.69307	-0.69307	-0.69307	-0.6¢	
10	-0.68922	-0.68922	-0.68922	-0.68922	-0.68	2 Y
11	-0.68487	-0.68487	-0.68487	-0.68487	-0.68	3 Z
12	-0.67998	-0.67998	-0.67998	-0.67998	-0.67	
13	-0.67455	-0.67455	-0.67455	-0.67455	-0.67	4
14	-0.66855	-0.66855	-0.66855	-0.66855	$-0.6 €$	
- MSheet1/				$11 \cdot \square$	110	

Double click the surface to open the Plot Properties dialog. Set the Parametric Surface in dialog follows graph below, and click OK to apply the settings.

7. Click CTRL+R to rescale the axis, double click the axis to open the Axis dialog, change to scale for XYZ axis from -1.2 to 1.2 , click $\mathbf{O K}$ to close the dialog.

\square Use Only One Axis For Each Direction

Z

Select multiple axes to customize together.

You graph may looks like this:

8. Next we will apply the colormap to the ellipsoid, double click the surface to open the Plot Details dialog, go to the Fill tab, change the Contour fill from matrix into Mat(4).

Surface	Fill	Colormap / Contours	Mesh	Eror Bar	Side Walls
	Numeric Formats				

Enable

Front Surface
Fill piece by piece \quad \& $\operatorname{Map}: \operatorname{Mat}(3):$ "Z"

9. Go to the Colormap/Contours tab, you can click the table head to open the Set Levels, Fill and Contour Lines dialog. Set the Level by Find Min/Max, click OK to apply, and set Fill by load palette "Maple", click OK, then select "Hide All" to hide all lines, click Apply to apply the settings.

Go to the Mesh tab, deselect the Enable checkbox to close the mesh line, click OK to close the dialog.
10. the finished graph is similar to this:

The azimuth and elevation can be unevenly spaced in (r, θ, φ) space.

6.13.21.3.2 Convert data in a matrix object and make a 3D surface plot

1. Origin can construct a $R(\theta, \varphi)$ surface function under spherical coordinates. The azimuth, elevation and radius are placed in the same matrix. Before set matrix values form a spherical coordinates equation, you can refer to sph2cart for the transforming relations and definition of azimuth and elevation in our system.
2. Create a new a matrix, and select Matrix: Set Dimension and Labels in main menu. Set the Dimension 100×100, and map Column to X by $(0,2 \pi)$, map Column to Y by $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. X and Y are the Angle Data, where X is the azimuth which is across columns and Y is the elevation.

In this example, the azimuth θ is from 0 to 2π, and the elevation ϕ is from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. The unit used for angle is radian.

3. Select Matrix: Set Values in main menu. The formula entered in the Set Values dialog should be abs (sqrt (0.5)*0.25*(15/pi)^0.5*sin(pi/2-y)*sin(pi/2-y)*(sin(2*x)-cos(2*x)))

We set the matrix values by using spherical harmonics, Y_{l}^{m} is specific set of spherical harmonics, and the linear combinations of Y_{l}^{m} is corresponded to the d-orbitals of the hydrogen atom (i.e. $d_{x y}$).
$\left|d_{x y}\right|=\left|\sqrt{1 / 2}\left(Y_{2}^{-2}-Y_{2}^{2}\right)\right|$
Y_{2}^{2} and Y_{2}^{-2} in function (1) are:
$Y_{2}^{2}=\frac{1}{4} \sqrt{\frac{15}{\pi}} \sin ^{2}\left(\frac{\pi}{2}-\varphi\right) \cos (2 \theta)$
$Y_{2}^{-2}=\frac{1}{4} \sqrt{\frac{15}{\pi}} \sin ^{2}\left(\frac{\pi}{2}-\varphi\right) \sin (2 \theta)$

4. Next you can convert the matrix from spherical coordinates to Cartesian by using X-Function sph2cart. Select Window: Script Window in main menu, then enter the script below and click Enter to execute :
sph2cart -d

Set the sp2cart dialog follows graph below, the single matrix object is used as input data:

After clicking OK, the results well be created in a new Matrix Sheet (MSheet2).
5. Now, you will plot the Matrix into a 3D surface. With Matrix object \mathbf{Z} in MSheet2 active,

select Plot > 3D : 3D Colormap Surface in main menu.
6. Double click the surface to open the Plot Details dialog, set the parametric surface follows graph below, and click OK.

7. Click CTRL+R to rescale the axis, double click the axis to open the Axis dialog, change to scale for XYZ axis from -0.5 to 0.5 , set the vvalue for Major Ticks to 0.2 , click OK to close the dialog.

8. The graph created is similar to this:

9. Double click the surface to open the Plot Properties. Go to the Colormap/Contours tab, click the Level/Fill/Line button and set the dialogs separately.

Then go to the Mesh tab, deselect the Auto checkbox for Transparency and change the value to about 70\%.

Transparency	$70 \stackrel{\square}{\square} \%$ 回 Auto

You can refer to Parametric Surface tutorial for details about colormap setting. The finished Graph are shown below:

6.13.21.3.3 Convert data in three matrix objects and make a 3D surface plot

Origin can construct a $R(\theta, \varphi)$ surface function under spherical coordinates. The azimuth, elevation and radius are placed in the different matrix. The following steps shows how to construct multiple surfaces by using three matrix and use sph2cart to convert them into XYZ space.

1. Create a new matrix. Set the Matrix Dimension 98×33 in Matrix Dimension and Labels dialog, then click OK.
2. Click the D button on the right corner of the matrix and click Add to add another two matrix objects in MatrixBook.

3. The azimuth will be put into the first matrix object. With the first matrix object active (Click the D button and switch between $1 / 2 / 3$), click Matrix: Set Values in main menu. The matrix values for azimuth will be set in this way:

Column(j)	Data
0 to 32	$(0,2 \pi)$
34 to 65	$(0,2 \pi)$
66 to 98	$(0,2 \pi)$

4. Set the Matrix value use the expression below:
$(j==33| | j==66) ? 1 / 0:(p i / 32 * j *(j<33)+p i / 32 *(j-33) *(j>33 \& \& j<66)+p i / 32 *(j-$
$66) *(j>66))$

The value from 0 to 2π loop 3 times, and the Column (33),Column (66) should be missing values.
5. The elevation will be put into the second matrix object (select matrix 2 in graph in step 2). Set the values for elevation by using expression:
pi/32*(i-17)
6. The radius (expression below) will be put into the third matrix object.

$$
\operatorname{Col}(i, j)= \begin{cases}1 & \text { if } i \in[1,32] \\ 0.7 & \text { if } i \in[33,65] \\ 0.4 & \text { if } i \in[66,98]\end{cases}
$$

The way for setting the values for radius is also piecewise, you can refer to the step 3, 4, 5 and use the set value code below :

1* (j<33) + $0.7 *(j>33 \& \& j<66)+0.4^{*}(j>66)$
7. After setting values for three matrix, you can convert the data to $X Y Z$ space by using sph2cart. Open the Script Window, type in code below and run:
sph2cart -d;

Setting the sph2cart dialog follows graph below, then click OK. Three new matrix for XYZ will be created.

8. Create 3D surface graph by using XYZ matrix object created in new matrix layer. The steps are very similar to steps $5,6,7,8$ in above section Convert data in a matrix object and make a 3D surface plot.

The finished Graph is showed below:

6.13.21.3.4 Convert data in three columns and make a 3D space curve

Origin can create 3D space curve with unevenly spaced data in XYZ column (spherical coordinates). The following steps introduce the plot of a non-isometric spiral with a sphere shape.

1. Create a new workbook with three columns X, Y and Z. Set values from $\frac{\pi}{100}$ to 20π for X column by Fill Column With: A set of Numbers

Set value for Y column by Set Column Values

Set value for Z column by Set Column Values and set as constant value "4"

In this example, the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are corresponded to Azimuth, Elevation, Radius, respectively.
2. Open the Script Window, type in code below and run:
sph2cart -d;

Setting the sph2cart dialog follows graph below, then click OK. Three new columns for XYZ will be created.

3. Plot the new XYZ with Plot > 3D : 3D Scatter. Set Symbol size to 0 and connect Symbols with line,click OK.

4. Further adjust the scales and the perspective view, the finished graph is similar to graph below:

5. a 3D surface can be created with new created XYZ data as well by selecting Plot > 3D : 3D Colormap Surface with XYZ columns highlighted.

The azimuth and elevation in X and Y can be evenly or unevenly spaced in (r, θ, φ) space.
6.13.22 Flattened Colormap Surfaces with Increasing Z Offset
6.13.22.1 Summary

This tutorial will show you how to plot a stacked flattened colormap surface with Z offset.

6.13.22.2 What will you learn

- How to import mulitple matrix into Origin as the matrix object.
- How to plot Multiple Colormap Surfaces in a graph layer.

6.13.22.3 Steps

1. Create a new a matrix and select Data: Import from File: Image to Matrix to import myocyte1~myocyte8 under the \Sample\Image Processing and Analysis folder. In the ImpImage dialog, keep Mulit-File (except 1st) Import Mode as Start New Objects.

2. Click the OK button to import the files to matrix as matrix objects.

3. Select Plot > 3D : Multiple Colormap Surfaces from the main menu to plot a surface graph.

4. Select Format: Plot from the main menu to open the Plot Details dialog.
5. Select the first plot, check Flat and Shift in \mathbf{Z} by percent of scale range, and set the shift value as 0 . And go to the Mesh tab, uncheck the Enable check box to not show the grid lines.

6. Select the 2nd-8th plot in order, check Flat and Shift in \mathbf{Z} by percent of scale range, and set the shift value as $14,29,42,57,71,85$ and 100 . And go to the Mesh tab, uncheck the Enable check box to not show the grid lines. Click the OK button to close the dialog.

7. Rotate the graph to get a flattened colormap surface as shown below:

6.13.23 3D Ternary Colormap Surface with Contour Lines Projection

6.13.23.1 Summary

In this tutorial, a 3D ternary surface with Z colormap and its projection with contour lines are generated from XYZZ worksheet data.

Minimum Origin Version Required: Origin 2015 SR0
6.13.23.2 What you will learn

This tutorial will show you how to:

- Generate a 3D ternary surface plot with Z colormap.
- Project color-mapped contour lines onto the XYZ axis plane.

6.13.23.3 Steps

6.13.23.3.1 Creating 3D ternary surface

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder 3D Ternary Surface.
2. Activate the worksheet Ternary Surface in Book1F , and highlight col(C) and col(D). Select Plot > 3D :3D Ternary Colormap Surface to generate a colormap surface.
3. We will modify the plot to show the edges of the 3D prism. Double-click on the plot to open the Plot Details dialog box. Highlight Layer1 in the left panel (take care not to clear the check mark beside the Layer1 icon). Go to the Plane tab, set Prism to Whole Prism and enable Plane Border.

4. Expand the Layer1 node, highlight the dataplot icon and click the Fill tab. Check Enable box and select Colormap. Check the box beside Fill back surface and set color as LT Gray.

| Surface Fill Colormap / Contours | Mesh | Numeric Formats |
| :--- | :--- | :--- | :--- |

V Enable

Front SurfaceFill piece by piece

$$
\text { \&) } \square \text { Cyan } \quad-
$$

© Colormap

5. Click the Colormap / Contours tab. Click the Level heading and in the Set Level dialog box, set controls as follows, then click OK to close the dialog box.

6. To add contour lines on the ternary surface, check the box next to Enable Contours.

7. To customize the contour lines, click the Line heading to open the Contour Lines dialog. Under Line Properties, check the box before Color and Style and set the Color as Dark Gray and Style as Short Dash, then click OK.

8. Go to the Mesh tab, clear the Enable box, then click the OK button.

9. To customize the scale and the major ticks of the $X / Y / Z$ axes, click on a graph axis to open the Axis Dialog box. Expand the \mathbf{X}, Y and Z nodes, then press CTRL while selecting Scale for the \mathbf{X}, \mathbf{Y} and \mathbf{Z} axes. Set Major Ticks > Value to 0.2.

10. Expand the Zh axis node and select Scale. Duplicate the scale range and the Major Ticks > Value settings as shown below.

Z Axis - Layer 1

V Use Only One Axis For Each Direction

11. Click OK to close the Axis Dialog box.

6.13.23.3.2 Creating projection with contour lines

1. With the graph page active, select Graph: Layer Contents from the main menu to open the Layer Contents dialog. Select Worksheets in Folder from the drop-down.
2. To add another ternary surface to the graph, press CTRL and in the left panel, select the datasets XC and CRC299 of sheet "Ternary Surface", then click the Add plot button $\left.\rightarrow\right|_{\text {to }}$ add them to the right panel. Click OK.

3. Double-click on the plot to bring up the Plot Details dialog box. Under Layer1, click on the second plot, then click on the Surface tab. Under Display, choose Flat and Shift in Z by percent of scale range, $\mathbf{0}=$ bottom, $100=$ top.

4. On the Colormap / Contours tab, select Enable Contours. Click the Line heading and edit the Contours Lines dialog box settings as in the following image and then click OK.

5. On the Colormap / Contours tab, click the Level heading and in the Set Level dialog box, set \# Major Levels to $\mathbf{2 0}$ and \# of Minor Levels to 5. Click OK to close the dialog box.
6. Go to Fill tab and clear the Enable box.

Surface Fill	Colormap / Contours	Mesh	Numeric Formats

7. On the Mesh tab, clear the Enable box. Click OK to close the dialog box.
8. To change the grid lines on the axis planes dashed lines, double click the axis to bring up the Axis Dialog box. In the left panel, expand the \mathbf{X} node and select Grids. Press Select Others to choose grids for all the axis planes. Customize the Major Grid Lines section as follows:

X Axis - Layer 1

V Use Only One Axis For Each Direction

9. Rotate the plot by dragging a hotspot (hint: click once inside the graph frame - but not on the plot -- to activate the move/resize/rotate functions). Alternately, you can use the tools on the 3D Rotation toolbar.

6.14 Plot Functions with Parameters Defined in a Worksheet

6.14.1Summary

Origin can plot functions. It also can plot functions with parameters defined in a worksheet. The function graph can be updated automatically as the parameters in the worksheet change.

Minimum Origin Version Required: Origin 8.0 SR6

6.14.2What you will learn

This tutorial will show you how to:

- Define variables from a worksheet in the Set Values dialog box.
- Plot a function graph with parameters.
- Update a graph automatically when parameters are changed.

6.14.3Steps

Let us use this function as an example: $y=p 0+p 1 * x+p 2{ }^{*} x^{\wedge} 2$

1. Set up a worksheet with three parameters p0, p1, p2 stored in Column A, Column B, Column C as shown below.

2. Click on the Add New Columns button + 目 on the Standard toolbar to add a new column to the worksheet.

\#\#. Book1					$\square \square$	
	A(C)	B(0)	CM	D(\%)		\wedge
Long Name	p0	p1	p2			
Units						
Comments						
1	1	2	1			
2						v
4) ${ }^{\text {a }}$ Sheet1					>	

3. Highlight Column D and then select Column: Set Column Values. Select Auto from the

Recalculate drop-down. Type the script shown below to define the parameters in the Before
Formula Scripts edit box. Click the OK button to close the dialog box.

Note that there is a green lock icon $\operatorname{Ban}_{\text {on }}$ the top right corner of Column D which indicates that the Recalculate Mode is Auto.

4. Click on the New Function button $\mathbf{f x}_{\substack{\text { a }}}$ on the Standard toolbar(If there is not New Function button, select View: Toolbar to open the Customize dialog, and then go to Button Groups tab, select Standard group, and then drog the New Function button to Standard toolbar.). The Plot Details dialog opens.
5. In the Plot Details dialog, set the options as follows and click the $\mathbf{O K}$ button to close the dialog box.

Click on the Rescale button $\stackrel{\downarrow}{\longleftrightarrow}$ on the Graph toolbar to adjust the graph's scales.

6. The function graph can be updated automatically when the parameters in the first row of the worksheet change. Change the value in the first row of Column 2 from $\mathbf{2}$ to $\mathbf{3}$. Click outside this cell to finish editing.

The function graph updates to reflect this change.

6.14.4Scripts

The script used in the Before Formula Scripts edit box of the Set Values dialog box is:

```
p0=col(1)[1]; //Specify Column A for p0.
p1=col(2)[1]; //Specify Column B for p1.
p2=col(3)[1]; //Specify Column C for p2.
```

The function in the $\mathbf{F 1 (x)}$ edit box of the Plot Details dialog box is as follows:

```
p0+p1*x+p2* x^2
```


6.15 Windrose Graph

6.15.1Summary

Windrose graphs are used to present wind speed data and wind direction data collected over time at a particular location. This tutorial will demonstrate how to create windrose graphs from both raw and indexed data:

Minimum Origin Version Required: Origin 9.1 SRO

6.15.2What will you learn

This tutorial will show you how to:

- Create a windrose graph from binned data
- Customize the direction tick labels on the windrose graph
- Create a windrose graph from raw data

6.15.3Steps

This tutorial is associated with <Origin EXE Folder> \Samples \Tutorial Data.opj.
Also, you can refer to this graph in Learning Center. (Select Help: Learning Center menu or press $\mathbf{F 1 1}$ key , and then open Graph Sample: Specialized Graphs)

6.15.3.1 Part 1: Create a Windrose Graph from Binned Data

1. Open Tutorial Data.opj and browse to the Wind Rose folder in Project Explorer (PE). (If you don't have the project file, please import the sample data from here).
2. Activate the Book6E workbook. Highlight all worksheet columns and click the Wind Rose - Binned Data button on the 2D Graphs toolbar as shown below or select Plot: Specialized: Wind Rose-Binned Data from the main menu.

The wind rose graph should look like the following image:

3. To change the wind direction to show only N, E, S, W double-click on the angular axis (the outermost ring) to open the Axis dialog box. Go to Scale tab and choose Angular axis in the left panel. Under Major Ticks section, set Type to By Increment and Value to $\mathbf{9 0}$

4. Go to Tick Labels tab, make sure the Angular - Outer axis is selected in the left panel, and duplicate the following settings:

\square
8 x

Enter space-separated string for different ticks. Place quotation marks around the label with space.
\square
Suffix
Plus Sign
Minus Sign

Select multiple axes to customize together.
Crop...

Apply To...
5. Click OK. The graph should look like this:

6. Click on the Text Tool button $\mathrm{T}_{\text {to add a Text object as graph title. And enter Sample of Wind Rose }}$ (Binned Data) in that Text object.

6.15.3.2 Part 2: Create a Windrose from Raw Data

1. Go to the project folder Statistical and Specialized Graphs: Specialized: Wind Rose and activate the Book7E workbook, Raw Data worksheet. (If you don't have the project file, please import the sample data from here).
2. Highlight columns A \& B. Click the Wind Rose - Raw Data button on the 2D Graphs toolbar as shown below or select Plot: Specialized: WindRose - Raw Data from the main menu.

3. Use the settings below to create the wind rose graph:

The final graph should resemble the image shown below:

6.15.4Sample Data

6.15.4.1 Binned Data

To import Binned Data to a worksheet, copy the Binned Data $\mathbf{1}$ (including the heading) and select File: Import Wizard. Select the Clipboard checkbox in the DataSource group and click the Finish button to import the data into Origin.

Direction	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$

22.5	3.125	3.125	3.125	6.25	0
45	0	3.125	3.125	0	0
67.5	0	6.25	0	0	0
90	0	0	0	0	3.125
112.5	0	0	0	0	0
135	3.125	0	0	0	3.125
157.5	0	0	9.375	3.125	0
180	3.125	3.125	0	3.125	3.125
202.5	0	0	0	0	0
225	0	0	3.125	0	0
247.5	0	3.125	0	3.125	3.125
270	0	0	0	0	3.125
292.5	0	6.25	3.125	0	0
315	0	0	3.125	3.125	0
337.5	0	0	0	0	0
360	0	6.25	0	0	0
382.5	0	0	0	0	0

6.15.4.2 Raw Data

To import Raw Data to worksheet, you can copy the Raw Data (including the heading) and then select File: Import Wizard. Select the Clipboard checkbox in DataSource group and then click Finish button to import the data into Origin.

Direction	Speed
311.5	12.75
142.7	11.18
161.6	5.9
277.3	8.24
155.3	13.46
40.8	8.57
43.4	4.38
1.3	10.91
78.8	18.72
237.8	16.22
114.6	0.88
2.1	12.05

290.5	4.6
174.1	3.29
267.6	16.64
8	5.6
213.9	8.04
134.8	17.26
137.6	11.87
46.1	5.48
4.5	13.47
311.2	10.17
154.4	11.17
176.2	18.91
348.1	4.11
225.2	6.65
236.4	12.87
11.7	1.07
278.9	4.36
356.5	5.01

58.9	7.3
161.8	15.6

6.16 2D Vector Graph

6.16.1Summary

A vector plot is a multidimensional graph used in industries such as meteorology, aviation, research, and construction that illustrate flow patterns (e.g. of wind, water, magnetic fields, etc.). Both direction and magnitude are represented in a vector graph. Origin includes two types of vector plots:

1. Vector XYAM - takes a starting XY location for the vector tail (by default), an angle and a magnitude.
2. Vector XYXY - takes two XY positions and connects them with a vector.

Minimum Origin Version Required: Origin 2015 SR0

6.16.2What you will learn

This tutorial will show you how to:

- Use Two data organizing mode to plot a vector graph.
- Use Plot Setup to assign plot data

6.16.3Steps

This tutorial is associated with <Origin EXE Folder> \Samples\Tutorial Data.opj.
Also, you can refer to these graphs in Learning Center. (Select Help: Learning Center menu or press F11 key, and then open Graph Sample: Specialized Graphs)

To create a vector plot, you need four data columns, and to organize your data into two modes:

6.16.3.1 Vector XYAM

XYAM stands for X, Y, Angle and Magnitude. Vectors will start from point (X, Y), and rotate a specified angle. The following example uses XYAM data mode to create a vector graph.

1. Open Tutorial Data.opj and browse to the 2D Vector folder in Project Explorer (PE).
2. Activate the data worksheet Book8E. Without highlighting any columns, select Plot: Specialized: Vector XYAM from the main menu to open the Plot Setup dialog. Assign columns A, B, D, C to X, Y, A, M as shown below, then click OK to plot the graph.

In order to show all three panels in Plot Setup dialog, please expand Plot
 슬again.

Please refer to Plotting using Plot Setup for more information.
3. Select Format:Plot... to pull up the plot level of the Plot Details dialog. In the Vector tab change the Magnitude Multiplier drop-down list to 75. Click the OK button to close Plot Details dialog.
4. Double-click the X or Y axis to open the Axis dialog. Go to the Line and Ticks tab, in the left panel, hold Ctrl key to select both Bottom and Left icons, check the Use Same Options for Bottom and Top check box. This will apply the settings in bottom X to top X , and those in left Y to right Y .
5. Go to the Tick Labels tab, hold Ctrl key to select both the Top and Right icons in the left panel, check Show check box. Click OK to apply the setting and close the Axis dialog.
6. Right click on the legend box to bring up the context menu. Select Properties... to open the Object Properties dialog. Type $\mathbf{\ I}(\mathbf{1})$ Field Strength in the text box and click OK.
7. Add a layer title: Spot Write Effectiveness.

6.16.3.2 Vector XYXY

Another data organizing mode is XYXY ; where the first X, Y is the vector starting point, while the last X, Y is the ending point.

To create such a vector graph, activate workbook Book9E under the 2D Vector folder, highlight all of the four data columns in it, and select Plot: Specialized: Vector XYXY from the main menu. Delete the axis titles if necessary.

6.17 Piper Diagram

6.17.1Summary

Piper diagram (or Trilinear diagram) is used as an effective graphical representation of chemistry in water samples in hydro-geological studies. The percentage values of six ion groups are considered in the plot, they are calcium, magnesium and sodium plus potassium cations, and sulfate, chloride and carbonate plus hydrogen carbonate anions.

The cations and anions are shown by two separate ternary plots and both are then projected onto a rhomb. In Origin they are plotted as a three layer graph.

Minimum Origin Version Required: 9.1 SR0

6.17.2What will you learn

This tutorial will show you how to:

- create a piper plot from percentage data
- customize the gap between ternary and rhomb in piper graph
- add data labels in the piper plot

6.17.3Steps

1. Start a new workbook and click the \square button to import the file Piper.dat under <Origin EXE Folder>\Samples\Graphing path.
2. In the imported worksheet, column \mathbf{A} is the Sample ID. Column \mathbf{B} through \mathbf{G} are the percentage values for the six ion groups in the order of $\mathbf{C a}, \mathbf{M g}, \mathbf{N a + K}, \mathbf{C l}, \mathbf{S O 4}$, and $\mathbf{C O 3 + H C O 3}$. column \mathbf{H} is
the amount of total dissolved solids in water. The percentage for cation groups is relative to the total amount of cations and that of anion groups is calculated by the same manner.

Note: We have some built-in workbook templates to help you convert data from different units (MEq/mgL/PPM) to percentage (open from File:New:From Template:). For details, please refer to this help file.
3. Highlight column B through \mathbf{G} and select Plot $>$ Specialized : Piper from the top menu to open the plotpiper dialog.
4. Select column A for Sample ID and column H for Total Dissolved Solids.

Plotting: plotpiper	$? \times$
Create piper plots or add more data to it	
Input	[Piper]Piper!2:7
Column order of input data need to range as $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}+\mathrm{K}, \mathrm{Cl}$, S04, CO3+HCO3	
Sample ID	[Piper]Piper!A"Sample ID"
Total Dissolved Solids	ser]Piper! ${ }^{\text {' }}$ Total Dissolved Solids (TDS)' ${ }^{\prime \prime}$
Output Graph	[<new template:=piper>]<new>
	OK Cancel

Note: You can select an existing piper diagram as the Output Graph and add the selected new data into this piper diagram.
5. Click OK to generate the piper plot:

Sample ID and TDS are optional when plotting piper diagram. If Sample ID is specified, symbol color and shape will be controlled by it. If TDS is specified, open circle in the rhomb (Layer 1) will show and the size will be controlled by it. Also Piper diagram shows each sample in legend.

6.17.4More Customization Steps

The following steps can further customize the graph to be exactly the same as the image in Summary

1. To change the gap between the ternary plots and the rhomb, double click the bottom left ternary to open the Plot Details dialog. On the left panel, select Layer 2. On Size/Speed tab, change the Left value to be 130, so that the distance between the top vertex of rhomb and the top vertex of the ternary in Layer 2 will be 130% of the side length of rhomb. Click Apply button.

2. To change the symbol color or shape increment list, select the data plot under Layer $\mathbf{1}$ node on the left panel. Then go to the Color List or Shape List tab to customize them.

3. To add Sample ID as data label in the rhomb, Select 1st data plot under Layer $\mathbf{1}$ node on the left panel. Go to Label tab and set as follows:

Symbol	Color List	Shape List	Drop	S Label
\checkmark Enable				
Font	T. Default: Arial		\checkmark	Rotate (deg)
Color	. Black	Black	-	
Size	1	12	\checkmark	
\square White Out		B \boldsymbol{I}		Pos
Label Form		$\operatorname{Col}(\mathrm{A})$: "Sam \vee		
		$\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \end{aligned}$ Row Indices (X,Y) Custom		
		Col(A): "Sample ID"		

To add data labels to two ternaries in the graph, please select plot under Layer2 and Layer3 nodes in the Plot Details dialog and do the same.
4. The 2nd data plot under Layer1 node in the Plot Details dialog is the open circle for TDS. Select the data plot on left panel and select the Symbol tab. You can see the Size of the open circle is controlled by $\mathrm{Col}(\mathrm{H})$. The Scaling Factor is auto determined to get a proper display. Change the Scaling Factor to 0.03 to see the change.
5. By default Sample ID shows in legend. To show sampling location's information in legend, right click on the legend and select Legend:Point by Point... to open the Update Legend Point by Point dialog. Select Custom for the Label Form drop-down list and then select wcol(1): wcol(9) from the menu. wcol(9) refers to the 9th's column in worksheet, which is the Sampling Location column.

6.18 Waterfall

6.18.1 Waterfall

- 2D Waterfall
- 3D Waterfall

6.18.22D Waterfall

6.18.2.1 Summary

Origin's Waterfall plot uses a dataset stored in a parameter row to set the Z offset and create a color map with Y or Z values.

6.18.2.2 What you will learn

This tutorial will demonstrate how to:

- Create a 2D Waterfall color map with Y or Z values
- Customize colormap levels and palette

6.18.2.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples\Tutorial Data.opj.

6.18.2.3.1 Create Waterfall with Y Colormap

1. Open the Tutorial Data project and browse to folder Waterfall in Project Explorer. Select the Book4G window to activate it. Click in the upper left corner of the worksheet to select all data.
2. Right-click and select Plot > 3D : Waterfall Y:Color Mapping to create a Waterfall with Y color mapping. (Alternatively, select the Waterfall Y:Color Mapping button from the 2D Graphs toolbar.) A graph resembling the image below will appear:

Note that the values stored in the user-defined parameter row Frequency (Hz) have been automatically picked up as the Z Value Source. Confirm this by double-clicking the plot to open the Plot Details dialog box and selecting Layer1 in the left panel. Select the Waterfall tab and observe that the \mathbf{Z} Value Source is set to Frequency (Hz).

3. With the Plot Details dialog box still open, in the left panel, select the first line plot under Layer1. Select the Colormap tab in the right panel. Click on the Level... column header to open the Set Levels dialog box. Set levels as shown below:

Click OK to close the Set Levels dialog box.
4. Click on the Fill... column header to open the Fill dialog box. Select Load Palette, and choose the

Rainbow palette from the palette list. Click OK button to close the Fill dialog box.

Click OK to apply these settings and close the Plot Details dialog box.
5. Double-click the plot's Z axis to open the Axis dialog box. Go to the Scale tab and set the major tick Value to 50.

6. Go to the Grid tab. Press the Ctrl key to select the \mathbf{X} and \mathbf{Y} axes in the left panel, and the clear the Minor Grids check box.

Click OK to apply changes and close the dialog box. The final graph should look like this:

6.18.2.3.2 Create Waterfall with Z Colormap

1. In the Project Explorer (usually at the left of the screen), browse to \2D and Coutour

Graphs \Waterfall. Select the Book4G window to activate. Click in the upper left corner of the worksheet to select all data.
2. On the main menu, click Plot, then point to Y-offset/Waterfall, and then select Waterfall Z:Color Mapping to create a Waterfall with Z color mapping. (Alternatively, select the Waterfall Z:Color Mapping button from the 2D Graphs toolbar.)

3. Double-click the plot to open the Plot Details dialog box. In the left panel, select the first line plot under Layer1. Select the Colormap tab in the right panel. Click the Level... column header to open the Set Levels dialog box. Set Major Levels to $\mathbf{1 0}$.

Click OK to close the Set Levels dialog box.
4. Click the Fill... column header to open the Fill dialog box. Select Limited Mixing and set the From color to red and the To color to blue. Click OK to apply these settings and close the dialog box. Click OK to close the Plot Details dialog box.

5. Double-click the Y axis to open the Axis dialog box. Set the vertical Increment to 50. Select the Grid Lines tab. Select Horizontal from the Selection box, and clear the Minor Grids check box. Select Vertical from the Selection box and clear the Minor Grids check box. Click OK to close the Axis dialog box.

Your final graph should look like this:

6.18.33D Waterfall

6.18.3.1 Summary

Origin features an OpenGL-supported 3D waterfall graph. The 3D waterfall is a specific type of 3D wall graph with a wall width $=0$. You can rotate, resize, stretch and skew the graph as with other Origin 3D graphs.

Minimum Origin Version Required: 2015 SRO

6.18.3.2 What you will learn

This tutorial will show you how to:

1. Plot a 3D waterfall graph
2. Add a plane at the specified position in the graph
3. Skew the 3D waterfall graph

6.18.3.3 Steps

This tutorial is associated with the Tutorial Data project:<Origin EXE Folder>\Samples \backslash Tutorial Data.opj.

1. Open the Tutorial Data project and browse to folder 3D Waterfall.
2. Activate workbook Book4I by locating it in Project Explorer and double-clicking to show the window. Highlight all columns. Select Plot > 3D: 3D Waterfall from the main menu to plot a 3D waterfall graph.

3. Select Format:Layer from the menu to open the Plot Details dialog box. Go to the Planes tab, check the box to add an XY plane to the graph, uncheck the Enable check box in the Plane Border group, then set the remaining controls as shown in the following image:

4. Click the arrow icon to the left of Layer1 to show all plots in the layer. Select the first plot in the layer (take care not to clear the check box next to the dataset icon), then click the Pattern tab and set the Fill Color as LT Gray.

5. Click OK to close the dialog box. Double-click on a graph axis to open the Axis dialog box. Clear the Use Only One Axis For Each Direction check box. Go to the Scale tab and select \mathbf{Z} axis icon in the left panel and set From and To to 0.8 and 3.2, and set the increment value of Major Ticks to 0.2 .

Use Only One Axis For Each Direction

- Go to the Tick Labels tab, make sure Top-Z icon is selected and clear the Show check box to hide the tick labels on top Z axis.

6. Go to the Line and Ticks tab, make sure Top-Z icon is selected and set Major Ticks and Minor Ticks to None.

Use Only One Axis For Each Direction

7. Click $\mathbf{O K}$ to close the dialog. Click on the cube to activate the five red graphical editing icons. Click on the fourth button - the Skew button - and drag the X/Y hotspots to skew the graph in X/Y direction so that it looks approximately like this:

6.19 Open-High-Low-Close-Volume Stock Chart

6.19.1Summary

This tutorial will show you how to create a stock chart to display open, high, low, and close prices, along with trading volume.

Minimum Origin Version Required: Origin 2016 SR0

6.19.2What you will learn

- Create a stock chart with open, high, low, and close prices, and trading volume
- Set axis Scale Type to skip market-closed days
- Set format for tick labels(Multi-Line label)
- Categorize the volume columns according to their weekday by filling differnt colors
- Create the Legend to annotate the columns with different fill color

6.19.3Steps

You can refer to this graph in Origin Central. (Select Help: Origin Central menu or press F11 key, and then open Graph Sample: Financial Plots)

1. Highlight $\operatorname{Col}(\mathrm{C}) \sim \operatorname{Col}(\mathrm{G})$ in the worksheet, and then choose Plot > Specialized: OHLC-Volume to create a graph.
2. Double click on the bottom X axis of Layer2 to open the \mathbf{X} Axis dialog. Switch to the Scale tab. You can see the Type is set to Discrete by default. This is why the X axis skips all weekends and holidays automatically.

3. Change the axis rang From $3 / 3 / 2001$ To $5 / 7 / 2001$. Under the Major Ticks branch, make sure Type is set to By Increment. Type 1 week for Value. Under the Minor Ticks branch, make sure Type is set to By Counts. Type 5 for Count. Click Apply button. You can see weekend and holidays are skipped
clearer.</br>

Select multiple axes to customize together.

5. To show bottom axis label as multiple lines, switch to the Tick Label tab. Activate the Dsiplay sub-tab. Select Custom Display for Display drop-down list. Enter the text below in Custom Display text box.

Go to Format sub-tab, set Font Size to 10 and check Wrap Text check box.

Click Apply button.
6. Go back to Scale tab, select Vertical icon at the left panel, then set From and To to 0 and 120M. Click Apply button.
7. Select 1 under the Layer drop-down list which locates at the left-bottom corner of the dialog to switch to Layer 1. Then with Vertical icon still chose, set From and To to 12 and 22. Click OK button to close the
dialog.

8. Double-click on the column plot at Layer 2 to open the Plot Details dialog. In the Pattern tab, expand the Fill Color drop-down list, go to By Points sub-tab, under the Index list, select Col(B) : "Week Day",
then select D01 Pumpkin Patch under Color List. Click OK button to close this dialog.

9. With Layer 2 activated, select Graph: Legend : Categorical Values menu. In the dialog opened, keep the default settings, click OK button. A legend will be added onto graph. Select the legend to show up the legend border, press the Ctrl key to drag the legend border to make the legend items arranged in one line.
10. Resize and re-position the legend box. The Final graph should appear as shown below:

11.

7 Data Management

7.1 Data Management

- Working with Multi-Sheet Workbooks
- Adding Objects to Worksheet

7.2 Working with Multi-Sheet Workbooks

7.2.1 Summary

Origin workbooks are similar to spreadsheets and can have multiple worksheets. Multi-sheet workbooks allow for better organization and higher information density.

7.2.2 What you will learn

This tutorial will teach you how to:

- Add and arrange worksheets.
- Handle metadata.
- Split the worksheet into Panels using Dividers.

7.2.3 Steps

7.2.3.1 Adding and Arranging Worksheets

1. Click the New Project button \square on the Standard Toolbar.
2. Right-click on the Sheet1' tab and choose Name and Comments. Enter Subjects as the Short Name in the Name and Comments dialog.
3. Right-click on the tab of the sheet that was renamed in the last step, and choose Add. A second sheet, named Sheet1, will be added to the book.
4. Double-click on the new Sheet1 tab and enter 2nd Test as the name in the font box that appears. (Alternately, right-click and use the the Name and Comments option again.)
5. Right-click on the 2nd Test name and choose Insert. A new sheet, named Sheet1, is inserted between Subjects and 2nd Test. Rename the new sheet 1st Test.
6. Left-click and hold down the mouse button on the 1st Test sheet name, drag the mouse over the Origin Workspace and release. The 1st Test sheet will now appear in its own workbook.
7. Select Window: Tile Vertically to arrange the workbooks side by side as shown below:

8. Drag 2nd Test to the second workbook. This will move the 2nd Test sheet from the original workbook to the new workbook as shown below:

9. Click the Save button . The Save As dialog will open since the project is yet to be saved. Save this in the User Files Folder as Multi-Sheet Workbooks.opj

Note: It is also possible to drag and drop sheets within the workbook to change the order. Right-click on any sheet name and note these additional options: Duplicate Without Data, Duplicate, Delete and

Navigate.

7.2.3.2 Handling Metadata

7.2.3.2.1 Add Metadata to the Worksheet

1. Click the New Project button \square on the Standard Toolbar.
2. Select Format: Worksheet from the Origin menu (Alternatively press F4 or double-click on the gray area to the right of the columns). The Worksheet Properties dialog opens:

3. On the View tab, click the Edit Column Label Rows button. The Column Label Rows dialog opens.
4. Right-click on the table and select Add User-Defined Parameter. Scroll down to note that a

UserDefined label has been added. The Show box is checked by default.

5. Double-click on the UserDefined text (or single-click and press F2), and change the UserDefined text to Wavelength (nm).
6. Click in the box to the left of Wavelength ($\mathbf{n m}$) and drag it to the top of the list, dropping it above Long Name. This will change the order of the rows as shown below:

7. Click OK to close the Column Label Rows dialog.
8. Select the Format tab in the Worksheet Properties dialog, and choose LongName from the Apply To drop-down. Check the Rich Text box.

9. Click OK to close the Worksheet Properties dialog box.
 with one cell.
11. Enter the values shown below in the Columns A and B header region (Wavelength to Comments). (Note: Once the Rich Text box is checked for specified cells, double-clicking in the cells to edit them will activate the format buttons $\begin{array}{llll}\mathbf{x}^{2} & \mathbf{x}_{2} & \mathbf{x}_{1}^{2} \boldsymbol{\alpha} \boldsymbol{\beta} & \mathbf{A}^{\boldsymbol{A}}\end{array}$. These can be used to apply rich text formatting as shown below):

\# Book1		$\square \square$	
	A(X)	B (Y)	*
Wavelength (650	700	-
Long Name	$1^{\text {s: }}$ Sample	$2^{\text {ras }}$ Sample 4	
Units	nm	nm	
Comments	IR		
$F(x)$			
1			
2		Rich text	
3		Format	-
		1/ ${ }^{\text {a }}$	

7.2.3.2.2 View Metadata in the Workbook Organizer

1. Click on the New Folder button
2. Click on the Import Single ASCII button $\stackrel{13}{13}$ $\stackrel{117}{17}$
3. Browse to file S15-125-03.dat in Origin's Sample\Import and Export folder. The Show Options Dialog checkbox should be deselected by default. Click Open to import the file to Origin.
4. Right-click on the workbook window title and choose Show Organizer from the context menu. The Worksheet Organizer will appear at the bottom of the worksheet.
5. Expand the Imported Files branch and view the stored metadata.

7.2.3.3 Splitting Worksheets into Panels using Dividers

7.2.3.3.1 Split from Menu

1. Activate the worksheet and highlight a cell.
2. Select Window: Split from the Origin menu.
3. The worksheet or matrix sheet will be divided into 4 panels by a horizontal and vertical Divider at the highlighted cell. To move the Divider to a new location, drag it to the desired row or column.
4. Select Window:Remove Split from the Origin menu to hide the split pointers.
(Note: This process is the same for worksheets and matrix sheets).

7.2.3.3.2 Split by Dragging the Divider

1. Point the cursor to the bottom right of the sheet at the end of the vertical scroll bar (for a horizontal Divider) or at the right end of the horizontal scroll bar (for a vertical Divider) as shown below:
2. When the pointer changes to a split pointer, drag it to the desired position. A horizontal or vertical Divider will be created.

囲 S3201404－S32－014－04．dat			$\square \square$ 回 5	
	A（X）	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{Y})$	D（Y－
Long Name	Time	Delta Temperature	Magnetic Field	Posit
Units	（sec）	（K）	（Oe）	（mm
Comments				
$\mathrm{F}(\mathrm{x})$				
Sparklines			$\sqrt{ }$	$/$
1	0.01	40.3	110.6	1
2	0.02	40.1	111.3	1
3	0.03	40.8	111.9	1
4	0.04	З3＇Ho	zontal Diôivid	cursor
5	0.05	40.5	113．1	cursor
6	0.06	39.7	113.7	1
7	0.07	39.5	114.3	1 －
8	0.08	391	114.8	$1 \sqrt{\frac{E}{7}}$
$\xrightarrow{4} \mid$ S32－014－04 \sim Vertical Divider cursor $\xrightarrow{\square}$				

A worksheet with horizontal and vertical Dividers is shown below：

恐 S3201404－S32－014－04．dat				\square－	－
	A（X）	$\mathrm{B}(\mathrm{Y})$		C（Y）	－
Long Name	Time	Delta Temperature	M	Magnetic Field	F
Units	（sec）	（K）		（Oe）	
Comments					
$\mathrm{F}(\mathrm{x})$					
Sparklines		\cdots	／		－
1	0.01	40.3		110.6	
2	0.02	40.1		111.3	
3	0.03	40.8		111.9	\checkmark
2	0.02	40.1		111.3	A
3	0.03	40.8		111.9	
4	0.04	39.6		112.5	
5	0.05	40.5		113.1	
h	－06	397		1127	－
4 －${ }^{\text {a }}$ S32－0	04	$11 / \square$	，	1 III	1 ，

7．3 Adding Objects to Worksheet

7．3．1 Summary

Both worksheet header rows and data cells can contain embedded objects，linked objects as well as formatted text．In addition，floating graphs can be added to the worksheet like Excel．

Note：Beginning with Origin 2018，any inserted graph，whether it be a an editable graph，a graph inserted as a linked or static picture，an image inserted from file，or a sparkline，will generate a pop－up preview when you hover on the containing worksheet cell．

7.3.2 What you will learn

- How to insert various objects into a worksheet cell.
- How to add floating graph to worksheet.

7.3.3 Steps

7.3.3.1 Inserting Objects in Cells

1. Start with a New Project by clicking on the New Project button \square.
2. Click on the Import Wizard button. In the Import Wizard - Source page, browse to select S15-12503.dat file in Origin's Sample\Import and Export folder. Click on the Finish button to complete the importing.
3. Highlight columns $\mathbf{A (X)}$ and $\mathbf{B (Y)}$, choose Plot > 2D: Scatter: Scatter from the menu or click on the Scatter Plot button : " to create a graph.

4. Return to the workbook and select the Column: Add New Columns... from the menu or click on the Add New Columns button + 目 to add 3 columns.
5. Expand the workbook so you can see all 7 columns.
6. In the row $\mathbf{1}$ of $\mathbf{E}(\mathbf{Y})$, type New Features and press Enter.
7. Select cell E1, and then click the Bold button \mathbf{B} on the Format Toolbar.
8. Click the Font Color button on the Format Toolbar and pick Yellow as the color.
9. Click the Fill Color button $\stackrel{\leftrightarrow}{\square}$ on the Style Toolbar and pick Blue as the color.
10. Select the range E1 to F1, click the Merge cells button 涃.
11. Right-click on cell G1 and choose Insert Arrow: Left from the context menu to insert a arrow to the cell.
12. Select the range $\mathbf{E 2}$ to $\mathbf{G 1 2}$, click the Merge cells button
13. Right-click on the cell and choose Insert Graph.
14. In the InsertGraph dialog, type Graph1 in the large Graphs box or click on the Browse button ... to select Graph1.

15. Click OK to close this dialog.
16. Right-click on E13 to choose Insert Images from Files from the context emnu.
17. Click the Browse button \ldots and change the Files of Type to Bitmap (*.bmp).
18. In the Origin User File Folder, select the Userdef.BMP, click Add File(s) button and then click OK button.
19. Click OK button to close the InserImg dialog.
20. Right-click on cell F13 to choose Insert Notes.
21. Double-click on cell F13. Modify the text and then close the Notes window. A note wil be saved in the cell.
22. Right-click in E14 and choose Insert Sparklines to open the InsertSparklines dialog.
23. In the dialog, click the Data Columns fly-out button to choose $\mathbf{C}(\mathbf{Y})$. Uncheck Long Name in 1st Column check box.

24. Click OK to close the dialog. A sparkline will appear in the cell.
25. Click on cell E15 and type: http://www.originlab.com and press Enter.
26. Click on the text in E15 which opens your web browser to the OriginLab web site.
27. Click on cell E16 to choose Insert Variables from the context menu. The Insert Variable dialog opens.
28. with the worksheet Book1 is selected in the right panel, go to the Info tab, expand the USER.VARIABLES branch, select SAMPLE and then click on the Insert button. A variable will be inserted to the cell.

29. Double-click on the cell E16, the text will change to a variable string.

The Graph, Notes and Sparklines in the above lesson are all examples of embedded objects (the Insert Graph could be either Embedded or Linked.) Embedded objects present a visual of a hidden external object that can be opened by double-clicking. Changes to the object can be made and then the object window can be closed and the source worksheet cell is updated.

7.3.3.2 Adding floating Graph to worksheet

1. Continue the above project. Highlight $\operatorname{Col}(\mathrm{D})$ in Book1 to plot a line graph.

2. In Book1, right-click the empty area or title of the book to select Add Graph:Graph1 from the context menu. The graph is added to the sheet. Note: Origin pre-loads the last-created graph to the Add Graph shortcut command. If you only see the shortcut Add Graph (no named graph following the shortcut command), clicking Add Graph will open the Graph Browser. In the Graph Browser, select your graph and click OK to insert the graph and return to the worksheet.
3. Left-click and hold down the mouse button on the graph and drag it to reposition it on the worksheet.

8 Data Exploration

8.1 Data Exploration

- Data Reader Tool
- Use Data Cursor to Show the Difference between the Data

8.2 Data Reader Tool

8.2.1 Summary

The Data Reader 田 $_{\text {is }}$ an exploratory tool that uses the Data Info window to display information about a selected data point in a graph. Essentially anything that is contained in the worksheet, in association with a plotted data point, can be shown in the Data Info window. This includes coordinate values, column headers, or even cell-embedded images. In addition, you can customize the window to display numeric values using a custom format (e.g. date-time, Lat/Lon, etc.), or to change window background color, add a window title, etc.

Minimum Origin Version Required: Origin 2019

Beginning with Origin 2019, you can read data point coordinates in a 2D graph by hovering on the data point. This Data Point Tooltip is highly customizable, mimicking Data Info window functionality. For more information, see Data Point Tooltips.

8.2.2 What you will learn

This tutorial will demonstrate how to:

- Use the Data Info window to view information for a selected data point in the graph.
- Customize Data Info window content, to include the display of images (Tutorial 1).
- Customize Data Info window content, to display numeric data using custom formatting (Tutorial 2).

8.2.3 Tutorial 1: Basic Usage

1. Select File: Open... to open the Alkanes.opj in the <Origin Folder> \Samples\Data Exploration folder.
2. Highlight Column D in Book1 Sheet1, and select Plot > 2D: Scatter: Scatter to create a new graph.
3. Click the Data Reader 田 button from the Tools toolbar, and click on the Isobutane data point on the new graph.

The Data Info window showing the X and Y coordinates of the data point selected will appear.

4. Right-click on the Data Info window, and select Preferences from the context menu to open the Data Info Report Settings dialog.

5. To remove the book and sheet name from the Data Info window, set the Report Title drop-down to None.

6. In the center portion of the dialog, remove the X coordinate by clicking on $\langle X\rangle$, then clicking the Remove button. Do the same for the Y coordinate $(\langle Y\rangle)$.

 to add the X and Y data source. Note the use of dataset Long Names in the Preview.
8. All source worksheet columns that can be added to the Data Info window are listed in the left panel. Highlight the B, C, E, G, and \mathbf{H} columns and add them to the center panel by clicking the Select button. Note that at this point, the Preview shows that our window has two columns.

9. Click the Add Column button to add a third column to our table. Click the pencil icon above the third column and in the Column Settings dialog, set Type = Single Cell and Source = J"Ball and stick model". Set Column Width $=20$ and click OK. Click the pencil icon above the first and second columns
and set Column Width $=15$ and 20, respectively.

10. Click the Font button to open the Tooltip Font dialog. Set Minimum Font Size and Maximum Font Size to 10 and 16 respectively. This will for text to automatically resize as the Data Info window is resized. Note that this limits the resizing of the Data Info table, as well. Set the Font Color to Royal and click OK. Click the Background button, set Background = White and click OK.
11. Click on the Theme button and select Save to <Graph> in the fly-out menu. This ensures that your Data Info dialog settings will be saved to the active graph, then click OK to close the Data Info Report Settings dialog.

12. Resize the Data Info window by dragging a window corner. Note that the font size range that we specified previously, set limits on window resizing.

Data Info - [Book'1] Sheetti(A-Name",D"Mass')[4]		
Long Name	Data (Reader)	Ball and stick model
Name	Isobutane	
Mass	58.12	$1)$
CAS number	75-28-5	
Formula	C4H10	2
Mass	58.12	()
Melting point	-159.6	
Boiling point	-11.7	

8.2.4 Tutorial 2: Custom Numeric Display Format

In this tutorial, we'll learn how to apply a custom display format to numeric data shown in the Data Info window.

1. Press F11 to open the Learning Center, click the Graph Samples tab and search on the phrase "Google Map Temperature". Double click on the sample to open this project file containing the following map of the continental US with a contour plot overlay of mean January temperatures.

2. Double-click on the map + contour plot to open the Plot Details dialog box. Click on the

Colormap/Contours tab and enable Show Data Points and click OK. What you are now seeing are the US cities where the January temperature data in the map overlay, were recorded. Enlarge the size of the window so that you can get a comfortable view of all scatter points.
4. Pick the Data Reader tool
\square from the Tools toolbar (hint: it is on a split button with the Data Cursor ${ }^{\oplus}$ and the Data Highlighter \square), then click on one of the scatter points on the map. The Data Info window should open and look something like the following image.

Data Info - US Temps in January \mathbf{x}
[Book1B]Sheet1[1] Long Name Data (Ra... X -124.1 Y 40.8 Z 47.9

The information, as reported, is not very user-friendly so we will customize the Data Info window to report more useful information.
5. Double-click on the Data Info window to open the Data Info Report Settings dialog box. Under the Name column in the center panel, click on and remove -- one by one -- the $\langle\mathbf{X}\rangle,\langle\mathbf{Y}\rangle$ and $\langle\mathbf{Z}\rangle$
coordinates from the center panel, using the Remove button

6. Now click the XData Data and ZData buttons in the upper-left corner of the dialog to move the X, Y and Z source data, labeled with the column Long Name, to the center panel. You can see the result by looking at the Preview to the right side of the dialog box.

Preview

| [Book1B]Sheet1[1] |
| :--- | :--- |
| Long Name Data (Reader)
 Longitude -124.1
 Latitude 40.8
 January 47.9 |

Currently, our Data Info displays two columns, one with column Long Names (Longitude, Latitude, January) and a second column with the numeric data associated with Longitude, Latitude, January. What
we will do is to apply formatting to these numbers so that they do not simply display as generic decimal numbers.
7. Click the Add Column button to add a third column to the Data Info table, then click the pencil icon in the newly-added column to open the Column Settings dialog box. Set the Type drop-down list to Numeric Display Format and click OK.

8.
9. Click into the first cell below the Numeric Display Format heading and you will see a list control that you can click to show a list of custom formatting options. Firstly, note that this list is not exhaustive but contains suggestions for custom formats. Secondly, you can type directly into this box to specify a custom format.

11. In the first row list control, type the following (degrees-minutes east-west, with units before):

12. In the second row list control, type the following (degrees-minutes north-south, with units before):

13. In the third row list control, type the following (one decimal place + suffix string "deg F"):

14. Click the Add Column button to add a column to the Data Info table, then click the pencil icon in the newly-added column to open the Column Settings dialog box. Set the Type drop-down list to Single Cell, Source to A "City", Column Width to $\mathbf{3 0}$ and click OK.
15. Click the Save Theme button and choose Save to <Graph> to save the current Data Info window configuration to the graph window. Click OK to close the dialog box.

US Temperatures in January
16.

8.3 Use Data Cursor to Show the Difference between the Data

8.3.1 Summary

In Origin, the Cursor tool is used to measure the X and Y distance between two points. You can place cursor objects on the same curve or on different curves, then use the Data Info window to display the relative positions of the cursor objects.

Minimum Origin Version Required: Origin 2019

8.3.2 What you will learn

This tutorial will show you how to:

- Customize the Data Info window
- Read relative positions of two data points

8.3.3 Steps

1. Start with a new worksheet.
2. Select File: Import: Multiple ASCII from the main menu. Go to the folder \Samples\Spectroscopy\Chromatography, select GPC Single Channel Chromatogram 1.dat and GPC Single Channel Chromatogram 3.dat. Click Add Files, make sure that Show Options Dialog is
selected, and click OK. This opens the ImpASC dialog box. In this dialog, set the Multi-File Import
Mode to Start New Columns, check the Append Filename to Column Comment check box and uncheck the Include File Path when Appending Filename check box in the Re (Naming)

Worksheet and Workbook branch. Click OK to import these two files into a worksheet.

3. Highlight all columns and right-click to select Set As: XY XY from the context menu. With all columns highlighted, choose Plot:Line:Line.

4. Press and hold the Data Reader button and select the Data Cursor from the list.

5. The Data Info window opens.

Data Info - [GPCSingleChan]"GPC Single Channel ... \times [GPCSinqleChan]"GPC Sinqle Channel C...	
Long Name	Data (Rea...
Time	0
Normalize...	1.5924

6. Right-click on the Data Info window and select Preferences... from the shortcut menu. This opens the Data Info Report Settings dialog box.
7. Click the Add Column button three times to add a total of three columns to the Preview table.

8. Click the pencil icon above the first added column and change Source to Data (Cursor 1) and set Column Width $=\mathbf{3 0}$. Click OK.
9. Click the pencil icon above the second added column and change Source to Data (Cursor 2) and set Column Width $=\mathbf{3 0}$. Click OK.
10. Click the pencil icon above the third added column and change Source to Relative (Cursor 2 Cursor 1) and set Column Width $=\mathbf{4 0}$. Click OK.

11. Click OK to close this dialog. The Data Info window will display three new columns.
Data Info - [GPCSingleChan]"GPC Single Channel Chromatogram 3"!(A"Time",B"Normalized Value")[1]
IGPCSinoleChanl-GPC Sinole Channel Chromatooram 3"ril

Long Na-	Data (Re	Data (Cursor1)	Data (Cursor2)	Relative (Cursor2 - Cursorl)
Time	0			
Normaliz	1.5924			

11. Double-click on a data point in the graph to add the first cursor. Select the Data Cursor button again and add another cursor to the graph by double-clicking on the desired data point.

Note：After you add all the columns in the Data Info Report Settings dialog，you can save the settings as a Theme by clicking the Save Theme button and choosing an option from the popup menu．Note that you can save settings to the graph（maximum portability）or to a named Theme file（and subsequently applied to any graph window）．

12．The Data Info window will be updated with the values of the two points and their relative values．

Data Info－［GPCSingleChan］＂GPC Single Channel Chromatogram 3＂！（A＂Time＂，B＂Normalized Value＂）［1000］					\times
IGPCSinoleChanl＂GPC Sinole Channel Chromatooram 3＊「10001					
Long Na ．	Data（Re	Data（Cursorl）	Data（Cursor2）	Relative（Cursor2－Cursorl）	
Time	16.65	9.7833	16.65	6.8667	
Normaliz	66.4181	66.54	66.4181	－0．1219	

13．Right－click the Data Info window and select Copy All from the shortcut menu，then paste the table into a clean worksheet as shown below．

浉 Book1＊						
奮	A（X）	B （Y）	C（Y）	D（Y）	E（Y）	－
Long Name						
Units						
Comments	Long Name	Data（Reader）	Data（Cursor1）	Data（Cursor2）	Relative（Cursor2－Cursor1）	
$F(x)=$						
1	Time	16.65	9.7833	16.65	6.8667	
2	Normalized Value	66.4181	66.54	66.4181	－0．1219	
3						
（1）．Sheet 1					$1 \square$	10

14.

You can promote any worksheet row to the column label rows (header) area by right-clicking on the row and choosing one of the Set As... or Append To... options.

9 Importing Data

9.1 Importing Data

9.1.1 ASCII

- Importing Data
- Single ASCII
- Import Wizard
- Import Time Data
- Post Processing with Import Filter
- Importing Multiple Files into Workbooks Cloned from Active Workbook

9.1.2 Database

- Import Data from a Database
- Import Data from a Database for Analysis
- SQL Editor for Database Analysis
- Update Database Importing By LabTalk Substitution
- Update Graph By Reimport Data From Database

9.1.3 Digitizer

- Digitizer Tool
- Enhanced Digitizer

9.2 ASCII

9.2.1 ASCII

- Importing Data
- Single ASCII
- Import Wizard
- Import Time Data
- Post Processing with Import Filter
- Importing Multiple Files into Workbooks Cloned from Active Workbook

9.2.2 Importing Data

9.2.2.1 Summary

Origin provides flexible ways of importing data including simply dragging and dropping data files, using the ASCII import dialog to customize settings, using the Import Wizard for advanced customization and for extracting variables from header lines, and supporting custom file formats for many third-party files. This tutorial will highlight some of these features.

Note: This tutorial requires you to drag-and-drop data files onto Origin, so please make sure you are not running Origin as administrator.

9.2.2.2 What you will learn

This tutorial will show you how to:

- Import files by drag-and-drop
- Import multiple ASCII files by customizing settings
- Saving settings for future use
- Import Wizard and import filters

9.2.2.3 Draq and Drop Importing of ASCII Files

1. Start with an empty worksheet. Open Windows Explorer to the \Samples \Curve Fitting subfolder of your Origin installation folder. Drag and drop the file sensor01.dat from the Windows Explorer window into the empty Origin worksheet.

2. Data comes into the sheet. Now select two files: sensor02.dat and sensor03.dat and drop into the same worksheet. You will see that the first file replaces the data already in the worksheet, and the others create new workbooks, as the default setting is to create new books for the 2nd file.

The default setting when dragging and dropping is to replace existing data. If you have some other data already in the sheet, you can drop the file onto the gray area outside of any window, or into a graph window, and Origin will create a new book and import the data.

9.2.2.4 Customizing ASCII Import Dialog Settings and Saving a Theme

ASCII import and custom-file-format import both provide an options dialog where a user can customize import settings and then save settings for later use on similar files.

2. Select the files sensor01.dat, sensor02.dat from \Samples \Curve Fitting and add to lower panel of the file dialog. Click the file name column header in lower panel to sort the files by name. Keep the Show Options Dialog box checked and click OK. This will open a dialog for import settings.

3. Change import mode to Start New Sheets. Expand (Re)Naming Worksheet and Workbook node and change settings so that only sheet gets renamed.

4. Click on right arrow button at the top of the dialog and select Save As, then give it a name such as My Multifile Import and click OK. This saves your settings to a theme file on disk.

5. Click OK and the 1st file gets imported into the current sheet, and a new sheet is created for the 2nd file. File names are used as sheet names.

囲 Book1＊			$\square \square$	\underline{x}
腮男	A（X）	$\downarrow \mathrm{B}(\mathrm{Y})$		＊
Long Name	Displacement	Sensor Output		
Units	mm	mV		三
Comments				
$F(x)=$				
Sparklines				
1				
2	1.5	7.45		
3	2	8.58		
4	2.5	11.57		
5	3	File na		
6	3.5		are use	
7	4	as sh	names	
8	4.5	4		
9	5	7． 15		
4 1－Senso	01 A Sensor02	Sensor03／	III	

6．Now start a new book and invoke the menu Data：＜Recent used items＞impASC：My Multifile Import．In the file dialog pick the three files：step01．dat，step02．dat，step03．dat from
\Samples\Curve Fitting．Click the file name column header in lower panel to sort the files by name．
Click OK．The settings from the theme you saved and selected here are used to perform the importing．

When doing serial import of files to new sheets（Start New Sheets），note that the workbook can contain a maximum of 255 sheets（prior to Origin 2018）or 1024 sheets （Origin 2018 and later）．When the maximum number of sheets is reached，a new book is created．

9．2．2．5 Saving ASCII Import Settings to Worksheet

Custom ASCII import settings is by default saved into the worksheet itself．It can also be saved as a theme file to disk．Please note that settings saved in this way can only be reused when import with the impASC dialog．If you want to use the settings when drag－n－drop to import a data file，you will need to use Save Settings for Drag and Drop menu．

1．Start with new book and invoke Data：Import from File：Single ASCII from menu，and select the file sensor01．dat from \Samples \Curve Fitting subfolder，and keep the Show Options Dialog checked and click OK．
2．In the ImpASC dialog，unfold Import Options branch，select No with the Add Sparklines drop－down list． Expand（Re）Naming Worksheet and Workbook node and change settings so that only sheet gets renamed by file name，not book．
3．Click on Top Arrow icon and select Save Settings for Drag and Drop and click OK．Then your custom settings get saved to the sheet and data is imported．
4．Select File：Save Template As from the main menu．Enter SensorImport as the template name．Click OK to save the workbook template．This template contains both the import settings and the worksheet properties settings．
5. Now we create a new workbook from this template. Click the Open Template button on the Standard toolbar. Select SensorImport.otw under your User Files Folder and then click Open. A workbook is created from the template.
6. With this book active, drag and drop the file sensor02.dat. The data gets imported and only sheet name changes to the new file name. The sparklines were not turned on.

When saving custom settings to a worksheet, it is useful to then save the sheet, along with other desired analysis operations, as an Analysis Template for repeat analysis of similar data from multiple files. See the Batch Processing tutorial for details.

9.2.2.6 Import Wizard and Import Filters

The Import Wizard allows you to step through your data file, customize settings including how to parse header lines to create variables, and then save all of your custom settings as an import filter (.OIF) file for repeat use. The filter file can reside in the data folder, in the \Filters sub folder of your User Files Folder, or even saved to the worksheet itself for use with Analysis Templates. The Wizard is typically useful when the file has header lines that need to be parsed, or the file needs custom settings such as fixed width, or for executing LabTalk script at the end of the import for post processing.
 wizard.
2. Select the file \Samples \backslash Import and Export \backslash S15-125-03.dat.
3. Note that the Import Filter for Current Data Type drop-down changes to show Data Folder:

VarsFromFileNameAndHeader, this is a filter already created for this file and shipped with Origin, and is automatically picked up from the same folder as the data file you chose. Then change Import

Mode to Replace Existing Data.

4. Click Next and walk through the pages. Notice controls on Header Lines pages that allows flexible definition of where the header lines end, where the sub header lines are located, and what gets assigned to long name and units etc.
5. For this file the Variables Extraction and Variables Extraction by Delimiter page define how to parse the header lines to extract values from them.
6. Click Next until you get to the Save Filters page. Check the Save filter box and change the radio button to In the Window. This will save the filter in the active worksheet.

7. Now check the Specify advanced filter options. It brings you to a last page where script (to run at the end of the import) can be specified. In Script after Each File Imported edit box enter:

$$
\operatorname{col}(E)=\operatorname{col}(2)-273.15 ;
$$

$\operatorname{col}(E)[u] \$=(\backslash+(0) C) ;$
col(E) [l] \$=Delta Temperature;

Script after All Files Imported:

8. Click Finish, the file gets imported and the import filter is now saved in your worksheet. The fifth column is a column added by the script. It is the Delta Temperature data in Degree Celsius.
9. With the worksheet active, click Import Wizard button again and pick file \S21-235-07.dat. Note that the Import Filter for Current Data Type drop-down shows <use filter in active window>, so Origin picks up the filter settings that were saved in the worksheet.

10. Click Finish and the file gets imported and the script gets executed (the values in column 5 is updated).

You can save the import settings to the worksheet, perform analysis on the imported data, and save the workbook as an analysis template for repeat processing of similar data files. See the tutorial on batch processing for more information.

9.2.3 Single ASCII

9.2.3.1 Summary

The Data: Import from File: Single ASCII menu allows you to automatically import a single ASCII file where the data columns are delimited orderly and it consists of few header lines (maybe just a short description for the file and then names and units for the columns).

Minimum Origin Version Required: Origin 8.0 SR6

9.2.3.2 What you will learn

This tutorial will show you how to Import ASCII files.

9.2.3.3 Steps

Using Windows Explorer, browse to the \Samples \Import and Export subfolder of the Origin program folder (by default installed in the Program Files folder). Open the file S15-125-03.dat in Windows Notepad. You can see that this file includes header lines and data lines. For Single ASCII files, Origin can auto detect file header/subheader and extract this information to the worksheet headers, such as Long Name, Units, etc.

S15-125-03.dat - Notepad								
File Edit Format View H								
ersion: 2.1 No. of points: 1000 Sample: YBCO milled File Header Measured on: 12/01/2004 Time: 03:20:39 AM Run Type: Trial Run 1								
Time (sec) Delta (K) Temperature (Oe) Magnetic Field (mm) 0.01 40.00 60.60 101.70 Position Subheader 0.02 40.50 61.30 100.90 0.03 40.20 61.90 100.30 0.04 40.10 62.50 100.80 0.05 40.20 63.10 100.80 Data								

Note: Header lines are lines of text that are not part of the data and do not share the same delimiter formatting as the data. Subheader lines also are not part of the data, but share the same delimiter formatting and therefore correspond to particular columns of data.

To Import this file

1. Select Data: Import from File: Single ASCII from the menu to open the File Import dialog. Browse to the \Samples \Import and Export subfolder of the Origin program folder. Highlight the file S15-125-03.dat.
2. If you double-click this file or click the Open button, Origin will import the file automatically. To view the settings for how Origin will import the file, check the Show Options Dialog checkbox at the bottom of the dialog and then click Open. This will bring up the impASC X-Function dialog.

3. Expand the Import Options: Header Lines tree node.

By default, Origin auto detects the subheader, and data will be imported from subheader. In this example, Origin automatically set the first line,

```
Time Delta Temperature Magnetic Field Position
```

as the worksheet column Long Name and the second line,
(sec) (K) (Oe) (mm)
as Units.
4. Click $\mathbf{O K}$ to accept these settings and import data into worksheet.

\# ${ }^{\text {S }} 512503$ - S15-125-03. dat				- $\square \times$	
	A((1)	B(1)	cm	DM	\wedge
Long Name	Time	Delta Temperature	Magnetic Field	Position	
Units	(sec)	(k)	(0e)	(mm)	
Comments					
Sparklines					
1		40	60.6	101.7	
2		40.5	61.3	100.9	
3		40.2	61.9	100.3	
4		40.1	62.5	100.8	
5		40.2	63.1	100.8	\checkmark
	. 037			>	.:

9.2.4 Import Wizard

9.2.4.1 Summary

The Import Wizard allows you to preview your ASCII file. This is especially helpful when you are importing a file with many lines of header, and want to extract variables from both the file name and file headers for use in annotating a graph.

Minimum Origin Version Required: Origin 8.0 SR6

9.2.4.2 What you will learn

This tutorial will show you how to use the Import Wizard.

9.2.4.3 Steps

The Import Wizard allows you to import complicated ASCII files, extract variables from the import file name and header (for reuse in Origin), specify custom delimiters and date formats, or handle post-processing of your imported data using a custom LabTalk script. Another chief advantage of using the Wizard to import your data files is that you can save your custom settings to a filter that can be used repeatedly to import the same or similarly-structured files.

1. Create a new workbook. Click File, point to Import, and then click Import Wizard to open the Import Wizard dialog. Click the browser button ... to the right of the File box. Browse to the \Samples \Import and Export folder and open the file F1.dat. Click Next to navigate to Header Lines page.
2. This page enables you to easily customize the worksheet headers. For example, to specify the worksheet long name, clear Auto determine header lines check box, place your cursor on the relevant line in the lower panel, and then click the button next to Long Names.

Similarly, specify the Unit line and select <None> for Comments.
3. Click Next to navigate to File Name Options page. Make sure the worksheet with file name box is checked to rename worksheet by imported file name.
4. Click Next to go to the Data Columns page. Select (XYE) from the Column Designations drop-down menu and click Apply.

5. Click Next twice to go to the Save Filters page. To use these settings again, you can save this import procedure as a filter. Select the Save filter check box and type a filter name in the Filter file name text box (MyFilter in this example).

Click Finish to import the data.
6. Open Windows Explorer and browse to <Origin installation folder> \Samples \Import and Export \mid. Locate the file F2.dat, drag and drop it to Origin workspace. The Select Filter dialog will open asking you to select a filter.

Select MyFilter filter just saved. It will be used to import the file.

9.2.5 Import Time Data

9.2.5.1 Summary

Origin interprets Dates based upon the Gregorian Calendar, while Time is interpreted in hours:minutes:seconds. When working with Date and Time data, Origin displays these data in different formats, but internally uses underlying numeric values for calculations and certainly plotting operations. This tutorial shows you how to import custom date/time data.

Minimum Origin Version Required: Origin 8.0 SR3

9.2.5.2 What you will learn

This tutorial covers:

- How to import data using multiple delimiters.
- How to define a custom date/time format
- How to change the display settings for the custom date/time format
- How to save import settings in a filter for reuse

9.2.5.3 Steps

1. We will import \Samples\Import and Export\Custom Date and Time.dat in this tutorial. Before importing the file, let's look at the data structure first.
```
[ Custom Date and Time.dat - Notepad ■ 
File Edit Format View Help
25.01.2004 09:38:59.50 85.55
25.01.2004 09:39:04.50 85.55
25.01.2004 09:39:09.50 85.55
25.01.2004 09:39:14.50 85.60
25.01.2004 09:39:19.50 85.50
25.01.2004 09:39:24.50 85.55
25.01.2004 09:39:29.50 85.40
25.01.2004 09:39:34.50 85.45
```

We can see that there is a space between Date and Time, and it uses Tab to separate Time from the rest of the data. So we will use multiple delimiters to import this data file.
2. Open the file in Import Wizard. Accept the default settings on all pages until you get to the Data Columns page. Origin will, by default, use Tab to separate the data into two columns. To divide Date and Time, check the Tab/Space checkbox in the Column Separator group.

Note in the preview box that the column title is $\mathbf{A}(\mathbf{Y})(\mathbf{T \& N})$, where ($\mathbf{T \& N}$) means the data format is Text \& Numeric. Because the date uses "." to separate day, month and year, Origin by default treats the first column as Text. For the second Time column, Origin shows the underlying numeric values. To import data correctly, we should change the column properties.
3. In the Custom Date Format edit box, enter:
dd'.'MM'.'YYYY
where $d d, M M$ and yyyy mean the days, months, and year respectively. Since the "."is used as a separator, we need to put single quotation marks around it in the format specification. After entering the custom format, press the Apply button next to the edit box. Then right-click on the header of the first column in the preview and select Date from the context menu:

Then the column title will turn into $\mathbf{A}(\mathbf{Y})(\mathbf{D})$ which means this is now a Date data column.
4. Similarly, right-click on the header of the second column and select Time to set that column as a time column:

You can see the time data display in long format. We can change the display setting after imported.
5. Click Next twice to go to the Save Filters page. Select Save filter checkbox and In the User File folder radio box to save the import settings to a filter. Enter the filter file name as Custom Date and Time in the Filter file name (.OIF extension will be appended) edit box.
6. Click Finish button to import data. Then double-click the second column title to open the Column Properties dialog, and set the Time display as:

```
HH:mm:ss.##
```

The final worksheet data after imported will looks like:

7. Open Windows Explorer and browse to folder \Samples\Import and Export\. Locate the file Custom Date and Time.dat, drag and drop it to Origin workspace. The Select Filter dialog will open asking you to select a filter.

Select Custom Date and Time filter just saved. It will be used to import the file.

Note: In the case of this particular data file, the first column simply has the exact same date in every row. So at this point you may want to set this first column as Disregard by right-clicking on the column header and selecting Disregard from the context menu. Then you can set the 2 nd column as type X, and plot the data in the third column against the time data in the 2 nd column.

9.2.6 Post Processing with Import Filter

9.2.6.1 Summary

The Import Wizard allows defining a custom filter to import ASCII and simple binary files. The filter can then be reused with similar data files once created. The filter mechanism also allows including LabTalk script lines that will then be run at the end of the import. This capability allows user to add post-processing script code to the filter.

Minimum Origin Version Required: Origin 8.0 SR6

9.2.6.2 What you will learn

- How to add post processing script to existing import wizard filter

9.2.6.3 Steps

1. Start a new workbook by clicking the New Workbook button on the Standard toolbar.

2. In the Data Source group, click the \square button to the right of File and navigate to and add the file Samples \Import and Export\S15-125-03.dat.
3. A suitable filter for importing this file already exists in the data folder. Click the Next button to proceed thru all the pages of the wizard till you get to the Save Filters page.
4. On this page, check the Save Filter checkbox and select the option of In the User Files folder. Then specify the filter name as fil_01 in the Filter file name(.OIF extension will be appended) area.
5. Check the Specify advanced filter options checkbox and then click Next. This will bring you to the Advanced Options page.
6. On this page, copy and paste the following lines in the Script after Each File Imported edit box:
```
nlend output:=1 autoupdate:=au_auto;
```

8. Click Finish. This will save the filter along with these added lines of script, and the file will be imported and the script will run. The workbook will then have three sheets, which will include the custom report sheet and the fitted curve sheet, which are results of Gauss function fit to column 4 of the imported data.
9. Start a new project and open import wizard again and add all three files S15_125_03.dat, S21-235-07, s32-014-04 in the file open dialog.
10. Under Import Filter, check List filters applicable to both Data Type and file name checkbox and select Select User File Folder:fil_01 from the Import Filters for current Data Type drop-down list.
11. Under Target Window, select Start New Books from the Import mode drop-down list then click Finish. Your modified filter will be used and after each file is imported, the 4th column will be fit with the Gauss function.

9.2.7 Importing Multiple Files into Workbooks Cloned from Active Workbook

9.2.7.1 Summary

Origin provides a quick yet powerful way to clone current workbook/sheet when importing data, so that each new data will be imported to workbook/worksheet with same customization and analysis. This feature is implemented for most of Origin's supported import file types, e.g., ASCII, CSV, Excel, etc. This tutorial will highlight this feature with commonly used ASCII files.

9.2.7.2 What you will learn

This tutorial will show you how to:

- Create a Prototype Workbook
- Import Multiple Files into the Cloned Workbook

9.2.7.3 Import Multiple ASCII Files into Cloned Workbooks

9.2.7.3.1 Create a Prototype Workbook

In this example we will import a file and do a linear fitting with it.

2. Browse to <Origin Installation Path>\Samples\Curve Fitting \backslash folder to select Sensor01.dat.
3. Check Show Options Dialog checkbox and click Open button.
4. Under the Import Options -> Rename Sheets and Books node, uncheck the Rename Sheet with (Partial) Filename box.
5. Click OK button to finish import. You can see after import, Sheet name is still Sheet1.
6. Highlight column B (Sensor Output) and choose Plot: 2D: Scatter: Scatter to plot a scatter graph.
7. Double click on X axis to open the Axis dialog. Activate Scale tab. Choose both Horizontal and Vertical on left panel and set Rescale as Auto. Click OK.
8. Choose Analysis: Fitting: Linear Fit menu to open Linear Fit dialog. Select Recalculate mode as Auto, click OK button to perform the fit. Select No radio box and click OK button in appeared prompt.
9. Right click in gray area on Sheet 1 worksheet and choose Add Graph... context menu. Choose Graph1 and click OK. Scatter plot with linear fit curve will show as a floating graph on Sheet1.

In step 8., you were asked to set the Recalculate mode to Auto. Beginning with Origin 2018b, this step is not necessary as cloned imports automatically trigger recalculation. Earlier versions of Origin will behave in the same way if you put the following line of LabTalk script into Script after Each File Imported box in the Import Multiple ASCII dialog box.

```
run -p au;
```

\square Script
Script after Each File Imported
Script after All Files Imported
Dutput

9.2.7.3.2 Import Multiple Files into the Cloned Workbook

Now we want to import more Sensor data and do the same linear fit.

1. Make sure Sheet1 sheet is active and click the Import Multiple ASCII button $\begin{aligned} & \text { 1277 } \\ & \text { 䁖 }\end{aligned}$ on standard toolbar.
2. Select the files Sensor02.dat, Sensor03.dat from \Samples \Curve Fitting and add to lower panel of the file dialog. Keep the Show Options Dialog:<sheet> box checked and click OK. This will open a dialog for import settings.
3. Expand Import Options node and set 1st File Import Mode and Multi-File (except 1st) Import Mode to Start New Books. To clone current workbook, select <clone> from Template Name dropdown list.

4. Click OK button to import multiple files. Each data file is stored in a new workbook with same analysis done as in prototype workbook.

9.3 Database

9.3.1 Database

- Import Data from a Database
- Import Data from a Database for Analysis
- SQL Editor for Database Analysis
- Update Database Importing By LabTalk Substitution
- Update Graph By Reimport Data From Database

9.3.2 Import Data from a Database

9.3.2.1 Summary

There are two tools to import data from a database in Origin.

- Query Builder (Origin 32-bit only) -- a graphic dialog to build the SQL query.
- SQL Editor (both Origin 32-bit and 64-bit) -- editor to directly write and edit SQL query. It is more convenient for skilled database users. It also allows users to define LabTalk variables in the SQL script.

In both tools, Database Connection can be saved as ODS file and Database Connection and Query can be saved as ODQ file for future use. Importing from database in Origin 64-bit is faster so users can build ODS and ODQ file in Query Builder if they are not familiar with SQL language, and later run Origin 64-bit to load the ODQ in SQL Editor for the real import.

This tutorial will show you how to build the connection to a SQL server and extract desired data from specified tables using SQL Editor and Query Builder. The SQL database we use here is AdventureWorks database. For detailed information of how to attach an AdventureWorks database, please refer to CodePlex website.

The tutorial only works in 32-bit Origin as Query Builder is only supported in 32-bit Origin

Steps in the tutorial are only illustrative of what users could be doing with your database locally. Please don't follow to test.

9.3.2.2 What you will learn

This tutorial will show you how to:

- Import data from database using the SQL Editor.
- Import data from database using Query Builder.
- Reimport data.
- LabTalk support in the SQL Editor.

9.3.2.3 Steps

Suppose we have already set up a SQL server named AdventureWorks2008 on a server machine noho.

9.3.2.3.1 Import data using SQL Editor

1. Start a new project. Open SQL Editor by clicking the Open SQL Editor button on the Database Access toolbar.

2. Now we are going to create the connection to the AdventureWorks2008R2 database. Click
 button or select File: New...menu to bring up the Data Link Properties dialog.
3. Select Microsoft OLE DB Provider for SQL Server on the Provider tab. Click Next>> button.

4. On the Connection tab that is active, specify the server information, including server name, log-in user name and password (if needed, in this example labtalk2015), and database name. Click Test Connection to make sure the connection is successful.

5. Click OK button. All tables in database AdventureWorks2008 are listed in the left panel. The Connection string is in the Message tab.

Alternatively if you already have connection string, you can select File: Edit Connection String... menu to open the Connection String Editor dialog. Enter the following SQL string and then click OK button to create the connection.

8. Select File: Save Connection As... to save the data source file as MyDataSource.ods.
9. Now we are going to extract data from 9 tables to construct the employee list. You can write SQL script from scratch. Double click node on left panel will help you add the table and field name in the editor. For now, just copy following SQL scripts in the right panel.

SELECT
e.BusinessEntityID, p.Title, p.FirstName, p.MiddleName, p.LastName,
p.Suffix, e.JobTitle, pp.PhoneNumber, pnt. Name AS PhoneNumberType, ea.EmailAddress,
p.EmailPromotion, a.AddressLine1, a.AddressLine2, a.City, sp.Name AS StateProvinceName,
a. PostalCode, cr. Name AS CountryRegionName,
p.AdditionalContactInfo

FROM

HumanResources.Employee AS e INNER JOIN

Person. Person AS p ON p.BusinessEntityID = e.BusinessEntityID INNER JOIN

Person. BusinessEntityAddress AS bea ON bea. BusinessEntityID =
e.BusinessEntityID INNER JOIN

Person.Address AS a ON a.AddressID = bea.AddressID INNER JOIN

Person. StateProvince AS sp ON sp.StateProvinceID = a.StateProvinceID INNER JOIN

Person. CountryRegion AS cr ON cr.CountryRegionCode =
sp. CountryRegionCode LEFT OUTER JOIN

Person. PersonPhone AS pp ON pp.BusinessEntityID = p.BusinessEntityID
LEFT OUTER JOIN

```
    Person.PhoneNumberType AS pnt ON pp.PhoneNumberTypeID =
pnt.PhoneNumberTypeID LEFT OUTER JOIN
    Person.EmailAddress AS ea ON p.BusinessEntityID = ea.BusinessEntityID
WHERE sp.Name='Washington'
ORDER BY e.BusinessEntityID
```

10. Click the Preview the result data button to preview the data. If the preview is fine, click the Import data to worksheet button to import these data. Once imported, the worksheet is connected to the database, and a yellow icon will appear at the top-left of the worksheet.

\qquad	Book1				\square	回	$\Sigma 3$
	A(X)	$\mathrm{B}(\mathrm{Y})$	C(Y)	D(Y)	E(Y)		\wedge
Long Name	BusinessEntitylD	Title	FirstName	MiddleName	LastName		
Units							
Comments							
$F(x)=$							
1	1		Ken	J	Sánchez		
2	2		Terri	Lee	Duffy		
3	3		Roberto		Tamburello		
4	5	Ms.	Gail	A	Erickson		
5	6	Mr .	Jossef	H	Goldberg		
6	7		Dylan	A	Miller		
7	8		Diane	L	Margheim		
8	9		Gigi	N	Matthew		
9	11		Ovidiu	V	Cracium		
10	12		Thierry	B	D'Hers		
11	13	Ms.	Janice	M	Galvin		
12	14		Michael	I	Sullivan		
13	15		Sharon	B	Salavaria		
14	16		David	M	Bradley		
15	17		Kevin	F	Brown		
16	18		John	L	Wood		
				$1 /<$			1

11. Select File: Save Connection and Query As... from menu to save the connection and query as MyQuery.odq. Close the SQL Editor.

9.3.2.3.2 Import data using Query Builder in Origin 32 bit

1. If you are running Origin 32-bit, you can use Query Builder to visually build your SQL scripts
2. Start a new project. Click Query Builder button on Database Access toolbar.
3. Select Query: Data Source: Open... menu to load MyDataSource.ODS. All tables in database AdventureWorks2008 will show in right panel.

4. Drag and drop the following 9 tables from the right panel to the Main panel in the middle:

HumanResources.Employee
Person.Address
Person.BusinessEntityAddress
Person.CountryRegion
Person.EmailAddress
Person.Person
Person.PersonPhone

Person.PhoneNumberType

Person.StateProvince
5. Drag main key BusinessEntityID from table HumanResources.Employee and drop it to that key in table Person.BusinessEntityAddress to join these two table. A join line will connect between them.

6. Select the checkbox in front of the following columns from the corresponding tables to add them to the lower panel.

Table	Column	
HumanResources.Employee	\circ	BusinessEntityID
	\circ	JobTitle
Person.Person	\circ	Title
	\circ	FirstName
	\circ	MiddleName
	\circ	LastName
	\circ	Suffix

		EmailPromotion AdditionalContactInfo
	\bigcirc	AddressLine1
	\bigcirc	AddressLine2
Person.Address	\bigcirc	City
	\bigcirc	PostalCode
	\bigcirc	Name
	\bigcirc	Name
	\bigcirc	PhoneNumber
	\bigcirc	Name
	\bigcirc	EmailAddress

7. In the lower panel, drag and drop the first cell of a row to re-arrange column order as needed. E.g. JobTitle is moved after Suffix.

8. Select Ascending from Sort Type drop-down list in the first row

HumanResources.Employee.BusinessEntityID to sort the whole worksheet according to this column ascendingly.
9. As Criteria ='Washington' on Person.StateProvince. Name row.

10. Click the Preview button to preview the data in bottom panel. If the preview is fine, click the Import button to import into data into worksheet. Once imported, the worksheet is connected to the database, and a yellow icon will appear at the top-left of the worksheet.

11. Select File: Save Connection and Query As... from menu to save the connection and query as a ODQ file MyQuery2.odq. Close the Query Builder.

9.3.2.3.3 Reimport from Database

No matter using SQL Editor or Query Builder to import data from database, the connection and the query are automatically saved in the worksheet. You can click the Import data button on Database Access toolbar anytime to import the data from the database again. Try the following steps.

1. Delete some data in the worksheet with database connection.
2. Click the Import data button. The data should be back.
3. To import the database in a new workbook, choose File: Database Import menu. All saved ODQ files are listed here.
4. Choose MyQuery.ODQ. A new workbook will be created with data from database.

5. If your database is big, the saved workbook file will be big. You can choose Worksheet: Clear Worksheet to clear the data and then save the workbook. Later you can load the workbook and click the Preview the result data button命 to preview 50 rows of the data or click the Import data 雷 button to import from database.
6. If you need to modify the query, with the worksheet active, click the SQL Editor button or Query Builder button 8 .

9.3.2.3.4 LabTalk Support in SQL Editor

In above examples, we only imported data for Washington state. But it's harded coded so if you want to do a query of another State, you need to change the query. This section will show you how to define a Labtalk string variable for state name so it's easier to change the query in the future.

1. Start with a new project. Choose File: Database Import: MyQuery.ODQ to import data directly into worksheet.
2. Click the Open SQL Editor button to open the SQL Editor.
3. To add a Labtalk string variable, select Query: LabTalk... to open the LabTalk Support Setting dialog.

4. Check the Enable LabTalk (\%,\$) substitution checkbox.
5. Type the script below to define a LabTalk string variable strCond to represent the Washington State.

in the Before Query Script box. Click OK.

6. At the end of SQL Script on right panel, change WHERE statement into

7. Click the 荌 button to preview the SQL query string in with labtalk variable substituted the SQL Editor box.

8. Click the Import data to worksheet button to import these data. Close the dialog and choose Yes to resaved the SQL Query into worksheet.
9. From now on, you only need to change the strCond\$ value in LabTalk Support Settings dialog to change the State name. No need to change the SQL Query.

9.3.3 Import Data from a Database for Analysis

9.3.3.1 Summary

This tutorial shows how to import data from database into Origin worksheet by using SQL Editor. And then perform some operations on the data, such as filter, statistics, etc., so to get the desired results for the graphing.

The SQL database we use here is AdventureWorks database. For detailed information of how to attach an AdventureWorks database, please refer to CodePlex website.

Minimum Origin Version Required: Origin 9.0 SRO

9.3.3.2 What you will learn

This tutorial will show you how to:

- Import two SQL queries of same database into two sheets of a workbook data using SQL Editor.
- Apply data filter to the worksheet data.
- Perform descriptive statistics on columns.
- Make graphs such as column plot, etc.

9.3.3.3 Steps

Suppose we have already set up a SQL server named AdventureWorks2008 on a server machine noho.

9.3.3.3.1 Import Data from Database

1. Start a new project. Open SQL Editor by clicking the Open SQL Editor button on the Database Access toolbar.
```
Database Access * x
```



```
            8) Open SQL Editor
            Edit Worksheet SQL Query with SQL
            Editor
```

2. Select File: Edit Connection String... menu and put the connection string below to the text box.
Provider=SQLOLEDB.1;
Password=labtalk2015;
Persist Security Info=TRUE;
USER ID=CONNECT;
Initial Catalog=AdventureWorks2008;
DATA SOURCE=noho
3. Click the Test button to test if the connection is fine. If fine, click the $\mathbf{O K}$ button to connection to the database.
4. From the top left panel, double click on Production. Product table to add the table name on right panel.
5. Click the Preview the result data button to view the data in the bottom panel.

6. Click the Import data to worksheet button to import the data in the table to the active worksheet.

門 Book1			$\square \square \underline{\square}$	
32	A(X)	$\mathrm{B}(\mathrm{Y})$	C(Y)	-
Long Name	ProductID	Name	ProductNu	
Units				
Comments				
$F(x)$				
1	1	Adjustable Race	AR-5381	
2	2	Bearing Ball	BA-8327	
3	3	BB Ball Bearing	BE-2349	
4	4	Headset Ball Bearings	BE-2908	
5	316	Blade	BL-2036	
6	317	LL Crankarm	CA-5965	
7	318	ML Crankarm	CA-6738	
8	319	HL Crankarm	CA-7457	
9	320	Chainring Bolts	CB-2903	
10	321	Chainring Nut	CN-6137	
11	322	Chainring	CR-7833	
$1 \mid 1 / \mathrm{Sheet} 1 /$		$\rightarrow \mid$	\bigcirc	A

7. To import data based on another SQL query from the same database to new sheet, click the minimum button on the title bar of SQL Editor dialog to make it shrink into a bar.
8. Right click on Sheet1 tab and choose Add to add a new sheet.

\# ${ }_{\text {\# }}$ Book1			$\square \square$
	A(X)	B(Y)	-
Long Name			
Units			
Comments			
$\mathrm{F}(\mathrm{x})=$			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			-

9. Click the minimum button of SQL Editor dialog again to expand the dialog. You can see Production: Product still shows in right panel. You can ignore it for now.
10. Select Query: LabTalk... menu to open the LabTalk Support Settings dialog. Check the Enable LabTalk (\%, \$) Substitution checkbox, and put the following script to the text box.
\square
The dialog will look like this.

- LabTalk Support Settings ? \times

```
Enable LabTalk [%, $] Substitution
Ignore Substitution Inside Single Quotes
```

Before Query Script

```
string strDateBegin1$ = " }1/1/2003
string strDateEnd1$ = " 12/31/2003";
string strDateBegin2$ = " }1/1/2004"
string strDateEnd2$ = "12/31/2004";
```

11. Click OK to go back SQL Editor. Then put the following SQL script to the top right panel to replace existing content Production.Product. This script is going to query three columns from the database, one is the product's category name, other twos are line total for each category on year 2003 and 2004 respectively.

```
Sales.SalesOrderDetail.LineTotal, Sales.SalesOrderDetail.ProductID
    FROM Sales.SalesOrderHeader
    INNER JOIN Sales.SalesOrderDetail
    ON
Sales.SalesOrderHeader.SalesOrderID=Sales.SalesOrderDetail.SalesOrderID
    WHERE Sales.SalesOrderHeader.OrderDate
BETWEEN '%(strDateBegin1$)' AND '%(strDateEnd1$)') AS SALEINFO2003
        INNER JOIN
            (SELECT Production.Product.ProductID,
Production.Product.ProductSubcategoryID
    FROM Production.Product) AS
PRODUCTINFO2003
ON
SALEINFO2003.ProductID=PRODUCTINFO2003.ProductID) AS SALEANDPRODUCT2003
    INNER JOIN Production.ProductSubcategory
    ON
SALEANDPRODUCT2003.ProductSubcategoryID=Production.ProductSubcategory.Prod
uctSubcategoryID
    GROUP BY Production.ProductSubcategory.ProductCategoryID)
AS LINETOALANDNAME2003
    INNER JOIN Production.ProductCategory
    ON
LINETOALANDNAME2003.ProductCategoryID=Production.ProductCategory.ProductCa
tegoryID) AS TABLE2003
INNER JOIN
    (SELECT Production.ProductCategory.Name,
```

```
LINETOALANDNAME2004.LineTotalFor2004
    FROM
    SELECT SUM(SALEANDPRODUCT2004.LineTotal) AS
LineTotalFor2004, Production.ProductSubcategory.ProductCategoryID
    FROM
    (SELECT SALEINFO2004.LineTotal,
PRODUCTINFO2004.ProductSubcategoryID
    FROM
    (SELECT Sales.SalesOrderHeader.OrderDate,
Sales.SalesOrderDetail.LineTotal, Sales.SalesOrderDetail.ProductID
    FROM Sales.SalesOrderHeader
    INNER JOIN Sales.SalesOrderDetail
    ON
Sales.SalesOrderHeader.SalesOrderID=Sales.SalesOrderDetail.SalesOrderID
    WHERE Sales.SalesOrderHeader.OrderDate
BETWEEN '%(strDateBegin2$)' AND '%(strDateEnd2$)') AS SALEINFO2004
        INNER JOIN
(SELECT Production.Product.ProductID,
Production.Product.ProductSubcategoryID
        FROM Production.Product) AS
PRODUCTINFO2O04
    ON
SALEINFO2004.ProductID=PRODUCTINFO2004.ProductID) AS SALEANDPRODUCT2004
    INNER JOIN Production.ProductSubcategory
    ON
```

```
SALEANDPRODUCT2004.ProductSubcategoryID=Production.ProductSubcategory.Prod
uctSubcategoryID
    GROUP BY Production. ProductSubcategory.ProductCategoryID)
AS LINETOALANDNAME2004
    INNER JOIN Production.ProductCategory
    ON
LINETOALANDNAME2004.ProductCategoryID=Production.ProductCategory. ProductCa
tegoryID) AS TABLE2004
ON TABLE2003.Name=TABLE2004.Name
```

12. Click the last button to view the SQL query script with subsitudted variable. Click Preview the result data button 敉 to view the data in the bottom panel.

13. Click the Import data to worksheet button to import the query into the the active Sheet2.

14. Close SQL Editor. You will be prompted to save the change. You can choose No since the query settings are saved in corresponding sheet automatically when clicking Import button. You can also choose Yes to save the query of active sheet as an ODQ file for future use.

9.3.3.3.2 Data Filter and Statistics

1. Go to the first worksheet with the imported data from Production. Product in the above section.
2. Select column I (long name is StandardCost), and then add a data filter to this column by clicking the Add/Remove data filter button on the Worksheet Data toolbar.

『 Add/Remove data filter
Add/Remove data filter for selected columns, removing would clean up selected data filters' setting
3. Then there will be a filter icon on the top left corner of the column header. Click on it, and then select Greater Than... from the context menu.

\# Book1					$\square \square$			
3	G(Y)	H(Y)	$\bar{T}_{\text {Filter }}$		K(Y)	-		
Long Name	SafetyStockLevel	ReorderPoint			Size	SizeUnit		
Units			\checkmark					
Comments								
$F(x)$								
Filter				Equals... Less Than...				
1	1000	750	Greater Than...					
2	1000	750	Between...					
3	800	600						
4	800	600	Top 10... Bottom 10...					
5	800	600						
6	500	375						
7	500	375	Custom Filter...					
8	500	375		${ }_{0}^{0}$				
9	1000	750		$0 \quad 0$				
10	1000	750		$0 \quad 0$		-		
		750		0 0				
	$1 /$ Sheet 2			\\|	1			

4. There will be a dialog open, just keep the default Value to be $\mathbf{0}$ and click $\mathbf{O K}$ button.

5. Add a filter in column P (long name is ProductLine) as well with condition as follows.

6. Select column I and J (StandardCost and ListPrice), then select menu Statistics: Descriptive Statistics: Statistics on Columns to open the Statistics on Columns dialog.
7. In the open dialog, set Grouping Range to be column P. You can just click the triangle button to select column P from list on the right. And in the Plots tab, check Box Charts checkbox.

8. Click OK button to get the results.

9.3.3.3.3 Radar Plot

1. Go to the Sheet2.
2. Highlight all three columns, and select Plot: Specialized: Radar menu to make a radar plot.

3. Double click on the Clothing axis to open the Axis Dialog. Please note that the below procedure is based on Origin 2017.
4. With Scale selected on the left panel. Make sure Use Same Options for All Axes checkbox is unchecked. Select Axis1 to Axis4 on the left panel. Then set From to 0, and choose By \# of Majors for Major Ticks with value of 6. Click Apply button.

5. Still with Axis1 to Axis4 selected on the left, go to Tick Labels tab. Before Axis is chosen in Show Tick Labels. Please expand the dropdown list and choose Before Axis again since we want to apply it to all Axes.
6. Set Display to Decimal: 1000, and Divide by Factor to 1000000 (one million). Click Apply button.

Use Same Options for All Axes

Select multiple axes to customize together.

> OK

Cancel Apply
7. Now go back to Scale tab. Select Axis1 - Clothing only on the left and change To value to 1.5. Repeat this operation for Axis3 - Accessories and Axis4 - Components, with values of 0.7 and 6 respectively. Note: because Divide by Factor was set to 1000000 in the previous step, it's much easier to type the To value now.
8. Click OK button.

We can see that, for all four categories, line totals for 2004 is bigger than that for 2003. And Bikes is the biggest.

9.3.4 SQL Editor for Database Analysis

9.3.4.1 Summary

Origin supports importing data from many popular databases using ADO or ODBC. Once the data is in, Origin's data filtering and analysis features allow you to set up an Analysis template. This tutorial illustrate how to setup such an analysis template and use it to import data from database with updated analysis result.

The SQL database we use here is AdventureWorks database. For detailed information of how to attach an AdventureWorks database, please refer to CodePlex website.

Minimum Origin Version Required: Origin 9.0 SRO

9.3.4.2 What you will learn

This tutorial will show you how to:

- Use SQL Editor to import data from database for a specific year.
- Add column filter to only show products of interest.
- Create a pivot table for total cost of different products in different countries.
- Plot column graph to visualize the result.
- Insert the graph into the worksheet as a floating graph and save such self-contained workbook as analysis template.
- Load the analysis template and change the SQL query, reimport database to do analysis for another year.

9.3.4.3 Steps

Suppose we have already set up a SQL server named AdventureWorks2008 on a server machine noho.

9.3.4.3.1 Import Data from Database

1. Start a new project. Open SQL Editor by clicking the Open SQL Editor button on the Database

Access toolbar.

```
Database Access * x
```



```
    1) Open SQL Editor
    Edit Worksheet SQL Query with SQL
        Editor
```

2. Select File: Edit Connection String... menu and put the connection string below to the text box.

3. Click the Test button to test if the connection is fine. If fine, click the $\mathbf{O K}$ button to connection to the database.
4. Copy and paste the following query into the SQL Editor text box. The query shows data for the year 2003:
\square
```
SELECT CR.Name AS CustomerCountry,
    Pr.Name AS ProductName,
    Pr.Color AS ProductColor,
    PC.Name AS ProductCategory,
    PS.Name AS ProductSubcategory,
    SOH.OrderDate AS OrderDate,
    SOD.OrderQty AS OrderAmount,
    SOD.LineTotal AS TotalCost
FROM Person.CountryRegion AS CR
INNER JOIN Person.StateProvince AS SP
ON SP.CountryRegionCode = CR.CountryRegionCode
INNER JOIN Person.Address AS A
ON A.StateProvinceID = SP.StateProvinceID
INNER JOIN Person.BusinessEntityAddress AS BEA
ON BEA.AddressID = A.AddressID
INNER JOIN Person.Person AS P
ON P.BusinessEntityID = BEA.BusinessEntityID
INNER JOIN Sales.PersonCreditCard AS PCC
ON PCC.BusinessEntityID = P.BusinessEntityID
INNER JOIN Sales.SalesOrderHeader AS SOH
ON SOH.CreditCardID = PCC.CreditCardID
```

```
INNER JOIN Sales.SalesOrderDetail AS SOD
ON SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN Production.Product AS Pr
ON Pr.ProductID = SOD.ProductID
INNER JOIN Production.ProductSubcategory AS PS
ON PS.ProductSubcategoryID = Pr.ProductSubcategoryID
INNER JOIN Production.ProductCategory AS PC
ON PC.ProductCategoryID = PS.ProductCategoryID
WHERE SOH.OrderDate BETWEEN '1/1/2003' AND '12/31/2003'
```

5. Click the preview button to view the data the query produced in the bottom panel.

6. In the SQL Editor dialog, click File: Save to Active Worksheet menu to save database connection and query to the active worksheet. Close the SQL Editor.
7. Click Import data button to import data into worksheet. The icon on the top left of the workbook indicates the sheet contains an SQL query.

9.3.4.3.2 Filter Data

1. Origin has a data filter feature similar to Excel. We can use this feature to choose specific data for graphing and analysis without removing the rest of the data.
2. Select column E (Long Name: Product Subcategory). In order to choose just the bike data for analysis, add a data filter to this column by clicking the Add/Remove data filter button on the Worksheet Data toolbar.

[^8]3. A filter icon will appear on the top left corner of the column header. Click on it, and from the list that appears, uncheck Select All and then select Mountain Bikes, Road Bikes and Touring Bikes.

4. If a reminder message about hidden data appears, select the Yes radio button and click OK.
5. The sheet will now show data for just those 3 bikes types.

9.3.4.3.3 Create Pivot Table and Plot Column Graph

1. We can create a pivot table to see total costs of each bike type in different countries.
2. With nothing selected in worksheet, select Worksheet: Pivot Table: Open Dialog...
3. In the dialog that opens set the Row Source as CustomerCountry.
4. Set the Column Source as ProductSubcategory (the column with the filter on it).
5. In order to see the Total Cost, set the Summarize by option as Sum, and set the Pivot Table Data Source option that appears as TotalCost.

6. Click OK. A new worksheet is created named Pivot1.
7. Click on the green lock located on the top right of the first column and set the Recalculate Mode: Auto in the context menu. This will make the pivot table manipulation update if the data is reimported from the SQL Editor.

8. Now highlight the pivoted data and click on the Column Plot button to create a column plot.

9.3.4.3.4 Customize Graph and Create Analysis Template

1. Double click the Y axis title and set it as Total Sales (\$)
2. Double click on the Y Axis to open the Axis dialog.
3. On the Y axis Scale page, set the Rescale dropdown to Auto. Click OK.

Select multiple axes to customize together.

4. Right click on the graph and select Add/Modify Layer Title from the context menu. Set the Title as Bike Sales by Year. If needed, a year title can be added this way as well.

9.3.4.3.5 Add Floating Graph in Worksheet and Save Analysis Template

1. Add the graph to the worksheet with the original data by right clicking gray area in worksheet and from the context menu selecting Add Graph....
2. In the Graph Browser dialog, select the graph and click OK. Resize and move as needed. If you need to customize the graph further, double click it to bring up the independent graph window again to customize. And then click the return button on graph window title to bring it back to worksheet.
3. workbook is self-contained with everything: database connection, data filtering, analysis (pivot table) and graph.
4. Choose Worksheet: Clear Worksheet... menu and choose Yes when prompt shows to clear data from workbook. Note: Usually saving analysis template will clear data automatically but for database connection, it doesn't happen automatically. So we need to do this step
5. Choose File: Save Workbook as Analysis Template... or right click on the .worksheet title bar and select Save as Analysis Template... as shown below to save a template.
heet Analysis Statistics Image Tools Format Window Help

9.3.4.3.6 Change Query and Re-import Data to Automatically Update Analysis

1. Go to File: Recent Books menu to load the analysis template you just saved. This will open a blank analysis template workbook.

2. Click on the SQL Editor button to open the SQL Editor with SQL query loaded. Change it to show data for the year 2004 and then exit out of the Editor.Choose Yes to save the change SQL change in worksheet.

3. Re-import the data by clicking the Import Data button on Database Access toolbar.
4. and reapply the filter with the Reapply data filter : ${ }^{\text {哑 }}$ button.
5. All the data will update. The graph now shows the Bike Sales for the year 2004, and the year title has changed to reflect this.
6. You project now has two books; Book1 has the data for the year 2003, Book2 has the data for the year 2004.

7. You can use this template and the SQL re-import feature to find the Bike sales for as many years as needed just by adjusting the year range in SQL Editor and reimport.

9.3.5 Update Database Importing By LabTalk Substitution

9.3.5.1 Summary

This tutorial shows how to import data from database into Origin worksheet by using SQL Editor with LabTalk substitution. And then make a column plot for the imported data. Then update the worksheet data and the plot by changing the defined LabTalk variables.

The SQL database we use here is AdventureWorks database. For detailed information of how to attach an AdventureWorks database, please refer to CodePlex website.

Minimum Origin Version Required: Origin 8.5.1 SRO

9.3.5.2 What you will learn

This tutorial will show you how to:

- Import data using SQL Editor.
- Use LabTalk substitution in SQL statement.
- Make column plot.
- Update database importing by LabTalk substitution.

9.3.5.3 Steps

Suppose we have already set up a SQL server named AdventureWorks2008 on a server machine noho.

9.3.5.3.1 Import Data from Database and Make Column Plot

1. Start a new project. Open SQL Editor by clicking the Open SQL Editor button on the Database Access toolbar.
```
Database Access * x
```



```
    8) Open SQL Editor
        Edit Worksheet SQL Query with SQL
        Editor
```

2. Select File: Edit Connection String... menu and put the connection string below to the text box.

3. Click the Test button to test if the connection is fine. If fine, click the $\mathbf{O K}$ button to connection to the database.
4. Select Query: LabTalk... menu in SQL Editor to open LabTalk Support Settings dialog. In this dialog, check the Enable LabTalk (\%,\$) Substitution checkbox, and then put the following LabTalk script to Before Query Script textbox.
```
string myStartDate$ = "1/1/2003"; // For the first date substitution
string myEndDate$ = "12/31/2003"; // For the second date substitution
string myStrName$ = "LineTotalFor2003"; // For the name
```


■

LabTalk Support Settings

Enable LabTalk [\%, \$] Substitution

 Ignore Substitution Inside Single QuotesBefore Query Script

5. Click OK to go back SQL Editor. In the right text box, put the following SQL statements.


```
            WHERE Sales.SalesOrderHeader.OrderDate
BETWEEN '%(myStartDate$)' AND '%(myEndDate$)') AS SALEINFOYEAR
            INNER JOIN
```

```
                    (SELECT Production.Product.ProductID,
```

 (SELECT Production.Product.ProductID,
 Production. Product.ProductSubcategoryID
Production. Product.ProductSubcategoryID
FROM Production.Product) AS
FROM Production.Product) AS
PRODUCTINFOYEAR
ON
SALEINFOYEAR.ProductID=PRODUCTINFOYEAR.ProductID) AS SALEANDPRODUCTYEAR
INNER JOIN Production.ProductSubcategory
ON
SALEANDPRODUCTYEAR.ProductSubcategoryID=Production.ProductSubcategory.Prod
uctSubcategoryID
GROUP BY Production.ProductSubcategory.ProductCategoryID)
AS LINETOALANDNAMEYEAR
INNER JOIN Production.ProductCategory
ON
LINETOALANDNAMEYEAR.ProductCategoryID=Production.ProductCategory.ProductCa
tegoryID

```


As we can see that there are three LabTalk variables are used in the statements．

6．Just click the last button \(\square\) on the toolbar，we can see the substitutions．
\begin{tabular}{|c|c|c|}
\hline 파 & SQL Editor－＜Untitled＞＊－ & x \\
\hline \multicolumn{3}{|l|}{File View Query Setting Help} \\
\hline \multicolumn{3}{|l|}{园回 为的雷家} \\
\hline  & \begin{tabular}{l}
ctCategory．Name，LINETOALANDNAMEYEAR．LineTota1For 2003 FROM \\
IANDPRODUCTYEAR．LineTota1）AS LineTota1Fon 2003，Production．ProductSubcategory．Pri \\
IINFOYEAR．LineTota1，PRODUCTINFOYEAR．ProductSubcategoryID \\
Sales．SalesOrderHeader．OrderDate，Sa1es．SalesOrderDetail．LineTota1，Sales．Sales les．SalesOrderHeader \\
JIN Sales．SalesOrderDetail \\
s．SalesOrderHeader．SalesOrderID＝Sales．Sales0rderDetai1 Sales0rderTD \\
ales．SalesOrderHeader．OrderDate BETWEEN＇1／1／2003＇AND＇12／31／2003＇AS SALEINFOY \\
Production．Product．ProductID，Production．Product．ProductSubcategoryID \\
Jduction．Product）AS PRODUCTINFOYEAR \\
YEAR．ProductID＝PRODUCTINFOYEAR．ProductID）AS SALEANDPRODUCTYEAR \\
action．ProductSubcategory \\
TYEAR．ProductSubcategoryID＝Production．ProductSubcategory．ProductSubcategoryID \\
tion．ProductSubcategory．ProductCategoryID）AS LINETOALANDNAMEYEAR \\
on．ProductCategory \\
IAR．ProductCategoryID＝Production．ProductCategory．ProductCategoryID
\end{tabular} & \\
\hline
\end{tabular}

7．Select menu File：Save to Active Worksheet to save these settings to the worksheet，and then click the Import data to worksheet button \({ }^{\text {雨 }}\) to import the data into worksheet．

8．Close SQL Editor．We can see the imported data form the image below．The Long Name for column B is＂LineTotalFor2003＂，which is set in the LabTalk variable．

9. Highlight column B from the worksheet, then select menu Plot: Column/Bar/Pie: Column to make a column plot.


\subsection*{9.3.5.3.2 Update Database Importing By LabTalk Substitution}

LabTalk variables myStartDate\$, myEndDate\$, and myStrName\$ are used to control which year's data will be imported from database. One way to import data of another year is by modifying these variable values in LabTalk Support Settings dialog.
1. Activate the worksheet with data from database above. Click Open SQL Editor button and SQL Editor opens again, with the saved settings.
2. Select menu Query: LabTalk to open LabTalk Support Settings dialog. Now, change the values of these three variables: myStartDate\$, myEndDate\$, and myStrName\$.

3. Click OK to go back to SQL Editor. Click Save Query Settings button and then click the Import data to worksheet button 雷. Close SQL Editor.
4. Now we can see that the data in worksheet and graph are updated.



But you will need to open the SQL Editor dialog everytime to change the variable values which is not convenient. A nicer way is to modify the LabTalk Support Settings to use global variables. Then we can modify the global variables outside SQL Editor and reimport.
1. Let's activate worksheet again and click to open SQL Editor.
2. Choose Query: LabTalk... menu and modify the LabTalk Support Settings as follows.

```

else
{
myStartDate\$ = "1/1/2003"; // if no, use 1/1/2003 as myStartDate\$
}
if(exist(endDate$, 18) == 18) // if endDate$ exists or not
{
myEndDate\$ = endDate$; // if yes, use it as myEndDate$
}
else
{
myEndDate\$ = "12/31/2003"; // if no, use 12/31/2003
}
if(exist(strName$, 18) == 18) // if strName$ exists
{
myStrName\$ = strName$; // if yes, use it as strName$
}
else
{
myStrName\$ = "LineTotalFor2003"; // if not, useLineTotalFor2003
as strName\$
}

```

3. Click Save Query Settings button in SQL Editor and close it.
4. Select Window: Script Window menu to open Script Window.
5. Run the following script by pasting them into Script window, highlighting them and then pressing ENTER keyboard.
\(\square\)
6. The data in worksheet and graph are updated.

Note:
1. Three "global" LabTalk variables are defined here. Here "global" means the LabTalk variables can be "seen" and used by SQL Editor for the substitutions.
2. The last dbimport LabTalk command is the same as clicking the Import data button

Access toolbar.

\subsection*{9.3.6 Update Graph By Reimport Data From Database}

\subsection*{9.3.6.1 Summary}

This tutorial demonstrate how to import data from database and do analysis and graphing with data, then add a button in graph to update database query and reimport data using Origin's labtalk script.

The SQL database we use here is AdventureWorks database. For detailed information on how to attach an AdventureWorks database, please refer to CodePlex website.


Steps in the tutorial are only illustrative of what users could be doing with your database locally. Please don't follow to test.

\subsection*{9.3.6.2 What you will learn}

This tutorial will show you how to:
- Import data from database with LabTalk variables in the SQL query to define date range of the query.
- Create pivot table and plot graph to analyze data.
- Add a button on the graph to modify date range of the query and reimport from database.

\subsection*{9.3.6.3 Steps}

Suppose we have already set up a SQL server named AdventureWorks2008 on a server machine noho.

\subsection*{9.3.6.3.1 Import Data from Database}
1. Start a new project. Open SQL Editor by clicking the Open SQL Editor button on the Database Access toolbar.
```

Database Access * x

```

```

 8) Open SQL Editor
 Edit Worksheet SQL Query with SQL
 Editor
    ```
2. Select File: Edit Connection String... menu and put the connection string below to the text box.
Provider=SQLOLEDB.1;
Password=labtalk2015;
Persist Security Info=TRUE;
USER ID=CONNECT;
Initial Catalog=AdventureWorks2008;
DATA SOURCE=noho
3. Click the Test button to test if the connection is fine. If fine, click the \(\mathbf{O K}\) button to connection to the database.
4. Select Query: LabTalk... menu in SQL Editor to open LabTalk Support Settings dialog. In this dialog, check the Enable LabTalk (\%, \$) Substitution checkbox, and put the following script to the text box.

```

else // If strPast1\$ is not defined
{
pastFrom\$ = "1/1/2003"; // Assign a const string to pastFrom\$
}
if(exist(strPast2$, 18) == 18)
 {
 pastTo$ = strPast2$;
}
else
 {
 pastTo$ = "3/31/2003";
}
if(exist(strCurrent1$, 18) == 18)
 {
 curFrom$ = strCurrent1$;
}
else
 {
 curFrom$ = "4/1/2003";
}
if(exist(strCurrent2\$, 18) == 18)

```
Enable LabTalk [\%, \$) Substitution
Ignore Substitution Inside Single Quotes

\section*{Before Query Script}
string pastFrom$
string pastFrom$
string pastTo$
string pastTo$
string curFrom$ = "/
string curFrom$ = "/
string curTo$ =
string curTo$ =
if(exist(strPast1$, 18) == 18) // Check if strPast1$ has y
if(exist(strPast1$, 18) == 18) // Check if strPast1$ has y
    // If strPast1$ has value
    // If strPast1$ has value
    pastFrom$ = strPast1$; // Assign strPast1$ to pastFron
    pastFrom$ = strPast1$; // Assign strPast1$ to pastFron
s
s
else // If strPast1$ is not defined
else // If strPast1$ is not defined
    pastFrom$ = "1/1/2003"; // Assign a const string to pz
    pastFrom$ = "1/1/2003"; // Assign a const string to pz
}
}
if(exist(strPast2$, 18) == 18)
if(exist(strPast2$, 18) == 18)
    pastTo$ = strPast2$;
    pastTo$ = strPast2$;
else
else
    < >
    < >
5. Click OK to go back SQL Editor. In the right text box, put the following SQL statements.
```

SELECT OrderDateTotalDueAndProductSubcategoryID.OrderDate AS 'Order Date',
'Date Range' =
CASE
WHEN OrderDateTotalDueAndProductSubcategoryID.OrderDate <
'%(curFrom\$)' THEN 'Past'
ELSE 'Current'
END,
Production.ProductSubcategory.Name AS 'Subcategory Name',
OrderDateTotalDueAndProductSubcategoryID.TotalDue AS 'Total Due'

```
FROM
    (SELECT OrderDateAndTotalDue.OrderDate,
OrderDateAndTotalDue.TotalDue, Production. Product. ProductSubcategoryID
    FROM
    (SELECT Sales.SalesOrderHeader.OrderDate,
Sales.SalesOrderDetail. ProductID, Sales.SalesOrderHeader.TotalDue
    FROM Sales.SalesOrderHeader
    INNER JOIN Sales.SalesOrderDetail
    ON
Sales.SalesOrderHeader.SalesOrderID=Sales.SalesOrderDetail.SalesOrderID
    WHERE (Sales.SalesOrderHeader.OrderDate BETWEEN
'\%(pastFrom\$)' AND '\%(pastTo\$)'

OR Sales.SalesOrderHeader.OrderDate
BETWEEN '\%(curFrom\$)' AND '\%(curTo\$)')) AS OrderDateAndTotalDue
INNER JOIN Production. Product
ON OrderDateAndTotalDue. ProductID=Production. Product. ProductID) AS
OrderDateTotalDueAndProductSubcategoryID
INNER JOIN Production. ProductSubcategory
ON
OrderDateTotalDueAndProductSubcategoryID. ProductSubcategoryID=Production. P
roductSubcategory. ProductSubcategoryID


As we can see that there are three LabTalk variables are used in the statements.
6. Click the last button on the toolbar, we can see the substitutions.


7．Select menu File：Save to Active Worksheet to save these settings to the worksheet，and then click
the Import data to worksheet button
to import the data into worksheet，and then close SQL Editor．We can see the imported data as the following image shows．A yellow icon will appear at the top－left of the worksheet to indicate there is database connection is saved in the worksheet．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\frac{\text { 弗 }}{\text { 是边 }}
\]} & \multicolumn{3}{|c|}{Book1＊} & \multicolumn{2}{|l|}{\begin{tabular}{|l|l|l|}
\hline\(\square\) & \(\square\) \\
\hline
\end{tabular}} \\
\hline & A（X） & \(\mathrm{B}(\mathrm{Y})\) & \(\mathrm{C}(\mathrm{Y})\) & D（Y） & \(\wedge\) \\
\hline Long Name & Order Date & Date Range & Subcategory Name & Total Due & \\
\hline Units & & & & & \\
\hline \multicolumn{6}{|l|}{Comments} \\
\hline \multicolumn{6}{|l|}{\(F(x)=\)} \\
\hline 1 & 1／1／2003 & Past & Helmets & 11791.9901 & \\
\hline 2 & 1／1／2003 & Past & Helmets & 72415.506 & \\
\hline 3 & 1／1／2003 & Past & Helmets & 32319.8283 & \\
\hline 4 & 1／1／2003 & Past & Helmets & 53279.3646 & \\
\hline 5 & 1／1／2003 & Past & Helmets & 38884.281 & \\
\hline 6 & 1／1／2003 & Past & Helmets & 6073.3222 & \\
\hline 7 & 1／1／2003 & Past & Helmets & 55488.8652 & \\
\hline 8 & 1／1／2003 & Past & Helmets & 48718.8616 & \\
\hline 9 & 1／1／2003 & Past & Helmets & 31646.036 & \\
\hline 10 & 1／1／2003 & Past & Helmets & 40481.3902 & \\
\hline 11 & 1／1／2003 & Past & Helmets & 72497.3627 & \\
\hline 12 & 1／1／2003 & Past & Helmets & 30226.3167 & \\
\hline 13 & 1／1／2003 & Past & Helmets & 36998.6368 & \\
\hline 14 & 2／1／2003 & Past & Helmets & 64660.8669 & \\
\hline 15 & 2／1／2003 & Past & Helmets & 50678.4103 & \\
\hline 16 & 2／1／2003 & Past & Helmets & 34092.3437 & \\
\hline  & & & ｜＜ & ＞ & ． \\
\hline
\end{tabular}

\subsection*{9.3.6.3.2 Create Pivot Table and Do Column Calculations}
1. Start with the imported data. Select column C, and then choose Worksheet: Pivot Table menu to open the Data Manipulation \Worksheet: wpivot dialog.
2. Set the Recalculation as Auto.
3. Select column B for Pivot Table Column Source by clicking the triangle button to the right.
4. Choose Sum for Summarize by. Then you can see Pivot Table Data Source row shows above, just choose column D for it by clicking the triangle button to the right.
5. Expand the Options node and set Sort Output Columns to None.

6. Click OK button to create a pivot table by using the settings.

7. Click Add New Columns button + 目 twice to add two columns.
8. Change the Long Name of them to Percent Change and Gain/Loss respectively.
9. In \(F(x)=\) cell of column \(D\),
if you are using Orign 2017, enter


If you are using versions before Origin 2017, enter

10. In \(F(x)=\) cell of column \(E\),
if you are using Orign 2017，enter


If you are using versions before Origin 2017，enter


11．The result looks like：
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 呦 & \multicolumn{4}{|c|}{Book1＊} & \(\square \square\) & \\
\hline 䳡 & A（X）茼， & B（Y）圼 & C（Y）界 & D（Y）畐， & E（Y）嘼， & \(\wedge\) \\
\hline Long Name & Subcategory Name & \multicolumn{2}{|l|}{Sum of Total Due} & \multirow[t]{2}{*}{Percent Change} & Gain／Loss & \multirow[t]{3}{*}{} \\
\hline \multicolumn{5}{|l|}{Units} & & \\
\hline Comments & & Past & Current & & & \\
\hline \multicolumn{6}{|l|}{UserParam1} & \\
\hline \(F(\mathrm{x})=\) & & & & \(\mathrm{B}==0\) ？ 100 ：100＊（C－B）／B & \(D>0 ? 12: 2\) & \\
\hline 1 & Road Bikes & 7.22256 E 7 & 9.63871 E 7 & 33.45282 & 12 & \\
\hline 2 & Mountain Bikes & 2.53236 E 7 & 3.23855 E 7 & 27.88625 & 12 & \\
\hline 3 & Road Frames & 9.43693 E 6 & 4.16778 E 7 & 341.64598 & 12 & \\
\hline 4 & Wheels & 8.779 E 6 & 2.67553 E 7 & 204.76517 & 12 & \\
\hline 5 & Mountain Frames & 9．11042E6 & 1.88738 E 7 & 107.16758 & 12 & \\
\hline 6 & Gloves & 8.07405 E 6 & 1．85483E7 & 129.72758 & 12 & \\
\hline 7 & Helmets & 7.71143 E 6 & 1.64149 E 7 & 112.86453 & 12 & \\
\hline 8 & Jerseys & 7.27216 E 6 & 1.49464 E 7 & 105.5293 & 12 & \\
\hline 9 & Tights & 7.92738 E 6 & 1.39888 E 7 & 76.46211 & 12 & \\
\hline 10 & Bib－Shorts & 4．84223E6 & 1.21952 E 7 & 151.85187 & 12 & \\
\hline 11 & Shorts & 4．10814E6 & 1.03396 E 7 & 151.6862 & 12 & \\
\hline 12 & Handlebars & 3.28604 E 6 & 8．63461E6 & 162.76644 & 12 & \\
\hline 13 & Caps & 4.16276 E 6 & 5．68497E6 & 36.56729 & 12 & \\
\hline 14 & Pumps & 1.54351 E 6 & 5．17079E6 & 235.00097 & 12 & \\
\hline 15 & Locks & 1.49866 E 6 & 4．93992E6 & 229.62281 & 12 & \\
\hline 16 & Headsets & 1.72382 E 6 & 2.82204 E 6 & 63.70876 & 12 & \\
\hline 17 & Forks & 1.05305 E 6 & 2.4632 E 6 & 133.90993 & 12 & \\
\hline \begin{tabular}{|c|c|r|r|}
\hline & 18 \\
\hline 4 & Sheet 1 \\
\hline
\end{tabular} & A Pivot \(1 /\) & & & ｜＜ & ＞ & 15 \\
\hline
\end{tabular}

\section*{9．3．6．3．3 Create Graph and Customize Graph}

1．On Pivot1 worksheet，select column C and D and select Plot：Multi－Panel：Stack．．．menu．

2．In the dialog，change the setting as follows．

3. Click OK. A two panel graph is created.

4. Double click bottom axis on left panel. On Tick Labels tab, set Divide by Factor as 1000000 (one million), set Suffix as M. On Scale tab, set From and To as 0 to 120. Set Major Tick Type as By Increment and Value as 20. Select Vertical on the left panel of the Axis dialog. Set Rescale as Auto. Select Click OK.
5. Double click the bottom axis on right panel. On Scale tab, set From and To as -100 to 400 . Set Major Tick Type as By Increment and Value as 100. Select Vertical on the left panel of the Axis dialog. Set Rescale as Auto. Go to Grids tab, now Horizontal shows on the left panel. Check \(\mathrm{Y}=0\) checkbox at the bottom of the tab. On Special Ticks tab, select Bottom on the left panel. On Axis Begin row, set Show as Hide. Otherwise the end tick label of left plot will run into beginning tick label of right plot. Click OK.
6. Delete legends, right axis tick labels, etc. so the graph will look as follows.

7. Set the fill color of left bar plot to LT Cyan.
8. Set the fill color of right bar plot to be indexed to Column E (Gain/Loss). Enable labels and set Label Form as Custom and Format String as \(\$(Y, .1) \%\) to show \(Y\) value with 1 decimal places with \(\%\) suffix.
9. You can further customize the axis such as delete those axis frames on the top and right and bottom. Turn on grid lines. Hide the major and minor ticks on the left axis, etc. The graph will look as follows.


\subsection*{9.3.6.3.4 Add Button to Run LabTalk Script}
1. Right click at bottom-right corner of the graph and choose Add Text.... And type Update to create a text label.
2. Right click on the text Update and choose Properties... context menu to open Text Object dialog. Go to Programming tab. Note: In versions before Origin 2017, choose Programming Control... from the menu to open the Programming Control dialog.
3. Set Script, Run After to Button Up, and put the following script to the bottom text box. Click OK.

```

same time
if((exist(strPast1$, 18) == 18) && (exist(strPast2$, 18) == 18) \&\&
(exist(strCurrent1$, 18) == 18) && (exist(strCurrent2$, 18) == 18))
{
// If yes, set to double value, so to show on the dialog
pastDate1 = date(strPast1$);
 pastDate2 = date(strPast2$);
currentDate1 = date(strCurrent1$);
 currentDate2 = date(strCurrent2$);
}
// Dialog for date settings
GetN (Last Seaon) :@G
(From) pastDate1:@FD0
(To) pastDate2:@FDO (-) :@G
(Current Seaon) :@G
(From) currentDate1:@FD0
(To) currentDate2:@FD0 (-) :@G
(Set Date);
// Get the set dates, and convert to string
string strPast1\$ = $(pastDate1, D0);
string strPast2$ = \$(pastDate2, D0);

```
```

string strCurrent1\$ = $(currentDate1, D0);
string strCurrent2$ = \$(currentDate2, D0);
// Reimport data from database according to the set dates
dbimport iw:=[book1]sheet1!;
range rPivot = [Bookl]Pivot1!; // Pivot table range
layer.x.to = rPivot.maxRows+0.5; // Set to value of vertical axis
rPivot.runfilter(); // Run the data filter

```

The text object turns into a button and the script in it will be triggered when clicking on it.

4. Click this button, a dialog will pop up with the default dates (for the first time, if not the first time, the dates set last time are shown).
5. Now, let's change the period, such as Last Season From 1/1/2004 To 3/31/2004, and Current Season From 4/1/2004 To 6/30/2004.

6. Click OK, data in the specified date range will be reimported into worksheet and Pivot1 worksheet will be updated. The graph is updated as well. The bar color is indexed to Gain/Loss column in Pivot1 sheet. You can easily tell there is a loss in one product.


\subsection*{9.4 Digitizer}

\subsection*{9.4.1 Digitizer}
- Digitizer Tool
- Enhanced Digitizer

\subsection*{9.4.2 Digitizer Tool}

\subsection*{9.4.2.1 Summary}

The Digitizer helps you to capture data from images of graphs. You can import image files of graphs into Origin and digitize data points one by one.

\subsection*{9.4.2.2 What you will learn}
- How to capture data from images of graphs using the Digitizer Tool.
- How to modify the position of the picked points
- How to delete the extra points

\subsection*{9.4.2.3 Steps}

\subsection*{9.4.2.3.1 Capture data points}
1. Select Tools: Digitizer... from the main menu to open the Digitizer dialog.
2. Click the Import button on the dialog box toolbar, and select the Digitizer_image.png under <Origin EXE folder> \Samples\Import and Export\ path. The image is imported. Note that there are two pairs of \(X Y\) axes showing in the image; one red and one blue.

 the image in the counter-clockwise direction. Note that the rotation increment can be specified in <<>> Increment (degree) the text box.


Right Click to Save/Load Axes Settings
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Color & Axis Value & Image Pixel & \multicolumn{2}{|c|}{ Scale Type } \\
\hline\(X 1\) & & 1 & 99 & Linear \(\quad \vee\) \\
\hline\(X 2\) & & 10 & 396 & & \\
\hline\(Y 1\) & & 1 & 308 & Linear \(\quad \vee\) \\
\hline\(Y 2\) & & 10 & 77 & & \\
\hline
\end{tabular}

Click Rotate button again to get out of Rotation mode
Rotation Angle from Source Image [degree]
```

-2

```
<< >> Increment [degree)

When the graph axes in the image are aligned along the bottom/top and left/right edges, click once more on the Rotate Image \(\stackrel{\text { button, to leave Rotation mode. }}{\text { a }}\)

4. Click on the Edit Axes \(\$\) button in the dialog. Using your mouse, drag the two pairs of axis lines so that they coincide with minimum and maximum axis values. Note that when a line is selected, its corresponding row in the Digitizer dialog is also selected. Enter the appropriate coordinate value ( \(0,8,-\) 20,120 ) in the Axis Value column.


5．After locating the axes，click the Pick New Points \(\stackrel{\text { 車＂}}{\text { button．Move the cursor }}\) 一皿－sequentially over the points in the phosphorus plot（filled symbol），double－clicking on each point（or single－click and press Enter）．The GetPoints dialog displays coordinate values，while the Data Display window shows image pixel values．


6．When you have added all points for the phosphorus plot，click the Done button．


7．Click on the Go to Data \(=\) 曲 button to show the resulting worksheet which contains the values of picked data points．


8．Click on the Go to Image \(\square\) button to return to the original image．Click on the Start New Data家 button to start digitizing the second plot（potassium＝open symbol）．Note that two new oolumns of data points are created in the result worksheet．

9．Click on the Pick New Points \(\stackrel{\text { 車配 }}{ }\) button to get the points for the second plot，repeating the procedures followed in steps 5 and 6.

10．Click on the Go to Data \({ }^{=}\)曲 button and two datasets result shows in the worksheet．


11．Click on the Go to Image \(\square\) button．This takes you to your imported image file．Click on the Go to Graph进 button and note that this opens a graph window containing plots of your digitized data points．

12. When you close the Digitizer dialog, a Digitizer... Digitizer... button appears on the image. Clicking on the button, you can reopen the Digitizer dialog.

\subsection*{9.4.2.3.2 Move and delete the picked points}
1. Following the steps in the above section, you will easy to get the points from the image. But if the picked points are on the incorrect position or extra, as point \(\mathbf{A}\) and \(\mathbf{B}\) in the below image, you can modify or
delete them.

2. To modify the position of point A, click on it and move the cursor to the correct position. Or you can use Arrow keys to move the selected point.

3. To delete the point B, click to select it and right-click to choose Delete in the context menu. Or you can press Delete key to delete the selected point.

\subsection*{9.4.3 Enhanced Digitizer}

\subsection*{9.4.3.1 Summary}

The Enhanced Digitizer supports auto tracing and digitizing in 2D Cartesian, polar and ternary coordinate systems.

NOTE: The Enhanced Digitizer is built into Origin 2015 SRO and later versions. If you are running Origin 9.1, the Enhanced Digitizer is available as an add-on tool from the OriginLab File Exchange. The Enhanced Digitizer is not supported by versions prior to Origin 9.1 SR1.

\subsection*{9.4.3.2 What You Will Learn}

This tutorial will show you how to:
- Set axes in the image.
- Manually and automatically capture data points.
- Set axes for polar and ternary coordinate systems.

\subsection*{9.4.3.3 Steps}

\subsection*{9.4.3.3.1 Import Image and Clear Gridlines}
1. Select the Digitize Image \({ }^{-601}\) button on the Standard toolbar.
2. Browse to the folder <Origin EXE Folder> \Samples \Import and Export and open TwoPeaks.bmp. There are three line plots in the image: the black plot is the baseline and the red and blue plots are spectra.

3. In the Digitizer dialog, there are hints at the bottom of the Axes tab to guide you through each step.


Rotate: Choose Rotate from Image menu to rotate Image. Edit Axes:

Drag the lines to known coordinates on image.
Enter those values in Axis Value column.
Press s to select the X1 line, press tab to switch the selected line.
Pick Points: Click Manually Pick Points.
Auto Pick Points:
Use the options in Image menu to pre-processing the image. Click Auto Trace Line by Points or Auto Pick Points by Grids.
4. Select Image: Remove Cartesian Gridlines to remove the gridlines.

You can also choose Image: Rotate... and Image: Clear Background menus to rotate the image and clear background noise and color fills.

\subsection*{9.4.3.3.2 Edit Axes}

Before capturing data points, you need to setup axes on the image so that there is a reference for calculating the XY coordinates of the data points that will be captured later.
1. Click the Edit Axes
2. Four lines will appear framing the image. Drag each line so that it lines up at a location where you know the axis values and enter the axis value in the corresponding row in the Digitizer dialog.

Use the Zoom and Pan \(\square\) button on the Tools toolbar or hold down \(\mathbf{A}\) and use the mouse wheel to zoom in and pan the image. Then fine tune the line location. Press \(\mathbf{C t r I}+\mathbf{W}\) to restore the original image size.


Digitizer - TwoPeaks. bmp(677x532)


File Image Axes Digitize Settings Results


\section*{Axes Data}

Right Click to Save/'Load Axes Settings
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Color & Axis Value & Image Pixel & Scale Type \\
\hline X1 & & 0 & 68 & Linear v \\
\hline X2 & & 100 & 654 & \\
\hline Y1 & & 0 & 454 & Linear \(v\) \\
\hline Y2 & & 2.5 & 24 & \\
\hline
\end{tabular}

Rotate: Choose Rotate from Image menu to rotate Image.
Edit Axes:
Drag the lines to known coordinates on image.
Enter those values in Axis Value column.
Press \(s\) to select the \(X 1\) line, press tab to switch the selected line.
Pick Points: Click Manually Pick Points.
Auto Pick Points:
Use the options in Image menu to pre-processing the image.
Click Auto Trace Line by Points or Auto Pick Points by Grids.
3. After editing Axes, you can right click and save Axes settings in order to load them in the future for similar images.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Axes & \multicolumn{6}{|l|}{Data} \\
\hline \multicolumn{7}{|l|}{Right Click to Save/Load Axes Settings} \\
\hline & Name & Color & Axis Value & Image Pixel & Scale Ty & \\
\hline & X1 & & 0 & 68 & Linear & \(\checkmark\) \\
\hline & X2 & & 100 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Save Axes Settings... \\
Load Axes Settings...
\end{tabular}}} \\
\hline & Y1 & & \[
0
\] & & & \\
\hline & Y2 & & 2.5 & & & \\
\hline
\end{tabular}

\subsection*{9.4.3.3.3 Capture Data Points}

Besides the Manually Pick Data Points method, the Enhanced Digitizer provides four automatic digitizing methods to capture data points. They are all under the Digitize menu and have corresponding buttons.
\begin{tabular}{|c|c|c|}
\hline Name & Icon & \multicolumn{1}{c|}{ Function } \\
\hline Manually Pick Points & Double click on every spot you want to capture a point. \\
\hline \begin{tabular}{l} 
Auto Trace Line By \\
Points
\end{tabular} & \begin{tabular}{l} 
Double click on a curve on the image and data points will automatically \\
be captured along the curve.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Auto Pick Points By Grids & 還 & Drag a rectangle on a desired area of the image and data points will be captured where ever the gridlines in rectangle intersect with the image curve． \\
\hline Area Auto Trace & 遌 & This is a hybrid of the previous two methods．Drag a rectangle on a desired area of the image．Data points will automatically be captured along the curve． \\
\hline Boundary－Limited Area Auto Trace & 热 & Similar to the Auto Trace Area button except that points are created only within the selected area． \\
\hline
\end{tabular}

Manually Pick Points
Let＇s manually capture some points on the red line．

1．Click the Manually Pick Points button．


2．Double click on the red curve to pick a point．
The Magnifier window on the Data tab of the Digitizer dialog provides a blown up view of where the cursor is．You can also use the Zoom and Pan tool mentioned in the Edit Axes section to zoom and pan the image to pick points more precisely．
3．Pick several more points and click the Done button．The Number of Points on Line 1 of the Data tab shows the number of points that were captured for Line 1.


If you want to move or delete a captured point, click the captured point in the image to select it. Use the arrow keys on the keyboard to move the point or press the Delete key to delete it.


You can click the Manually Pick Points button again to pick more points for line 1.

\section*{Auto Trace Line by Points}

Multiple digitizing methods can be used on same line as long as the line is highlighted on the Data tab of the Digitizer dialog. Let's pick more red points for Line 1 using the Auto Trace Line by Points method.
1. Click the Auto Trace Line by Points button.
2. Double-click on red points to the left side of the peak and the right side of the peak. Every time you double click a point, Origin auto traces to find more points along the curve. Click the Done button.

3. There are in total 122 points captured on the red line.

4. Click the Go to Data \({ }^{=}\)button to see the results in a worksheet.

DigiData
\begin{tabular}{|c|c|c|c|}
\hline & A(X1) & B (Y1) & C(L1) \\
\hline Long Name & & PickedData & \\
\hline Units & & & \\
\hline Comments & & & \\
\hline \(F(x)\) & & & \\
\hline Scale Type & inear Scale & inear Scale & \\
\hline 1 & 14.37284 & 0.30375 & \\
\hline 2 & 15.56915 & 0.32705 & \\
\hline 3 & 16.93636 & 0.35035 & \\
\hline 4 & 17.44906 & 0.39695 & \\
\hline 5 & 17.96176 & 0.44937 & \\
\hline 6 & 18.13266 & 0.50762 & \\
\hline 7 & 18.47446 & 0.56587 & \\
\hline 8 & 18.64536 & 0.62412 & \\
\hline 9 & 18.81627 & 0.68237 & \\
\hline 10 & 19.15807 & 0.74062 & \\
\hline
\end{tabular}

\section*{Auto Pick Points by Grids}

Next let's use the Auto Pick by Grids method to digitize the black baseline.
1. Activate the image window.
2. Click the New Line button. The Data tab will start a new row for Line 2.

Note: All plots in this image use the same XY axis so we don't need to edit the axes again. However, in case you have images with multiple axes, you can setup a new axis for each new line of data.
3. Select the Auto Pick Points by Grids button.
4. Click and drag to create a rectangle on a portion of the black baseline as shown below:


Some points on the red and blue lines are captured as well.

5. To remove unwanted points, click the Delete Points button.
6. Drag a rectangle box over the unwanted points and release the mouse button to delete them.


With this method, only 57 points are captured.
Axes Data
\begin{tabular}{|c|c|l|}
\hline Line & Number of Points & \multicolumn{2}{|c|}{ Pixel Reduction Factor } \\
\hline 1 & 122 & <auto> \\
\hline 2 & 57 & <auto> \\
\hline 2 & \\
\hline
\end{tabular}
7. If you are not satisfied with the result, click the Delete Line button to delete Line 2 on the Data tab of the Digitizer dialog and click the New Line button to start over.

You can use the Settings: Digitize Settings... menu to customize the grids density.

\section*{Area Auto Trace/Boundary-Limited Area Auto Trace}

Let's use these two methods to digitize the blue line.
1. Click the New Line button.
2. Click the Area Auto Trace button.
3. Click and drag a rectangle over some part of the blue curve. Points will be auto created along the blue curve beyond the rectangle.

4. Select the Boundary-Limited Area Auto Trace 搵 button.
5. Click and drag a rectangle over some part of the blue curve. Points will be auto created only within the rectangle you drew. Unlike in the Auto Pick Points by Grids method, the Boundary-Limited Area

Auto Trace method creates more points than just where the curve intersects with the grids.


7. Click the Set Label \(\alpha\) button.
8. Click on the selected peak point of blue line and press the Enter key.
9. Enter Blue Peak in the dialog to add a label to the peak of the blue line.

10. To add another label on the peak of the digitized red line, click the Set Label button again to release it first.
11. Select Line 1 to show digitized red points on the Image. Repeat the same process, this time set the label as Red Peak.
12. Select the Go To Data \(=\) button. You can see the Labels added are in corresponding Label rows.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & A(X1) & B(Y1) & C(L1) & D(X2) & E(Y2) & F(L2) & G(X3) & H (Y3) \\
\hline Long Name & & PickedDat & & & PickedDat & & & PickedDat \\
\hline Units & & & & & & & & \\
\hline Comments & \multicolumn{2}{|l|}{Data for the Red} & & \multirow[t]{2}{*}{Data for basline} & \multirow[t]{2}{*}{the black} & & \multicolumn{2}{|l|}{Data for the Blue} \\
\hline \(F(x)\) & Curve & & & & & & Curve & \\
\hline Scale Type & \multicolumn{3}{|l|}{inear ScaleLinear Scale} & \multicolumn{3}{|l|}{Linear ScaleLinear Scale} & \multicolumn{2}{|l|}{Linear ScaleLinear Scale} \\
\hline 19 & 18.75201 & 0.59941 & & 19.26297 & 0.12288 & & 16.70818 & 0.29722 \\
\hline 20 & 18.92233 & 0.71564 & & 20.96617 & 0.11126 & & 17.73009 & 0.26235 \\
\hline 21 & 18.92233 & 0.77376 & & 22.66936 & 0.09963 & & 18.92233 & 0.24492 \\
\hline 22 & 19.09265 & 0.83187 & & 24.37256 & 0.08801 & & 20.45521 & 0.2333 \\
\hline 23 & 19.09265 & 1.00621 & Red Peak & 26.07576 & 0.08801 & & 22.1584 & 0.22167 \\
\hline 24 & 19.26297 & 0.9481 & & 27.77895 & 0.09963 & & 23.8616 & 0.22167 \\
\hline 25 & 19.26297 & 0.88998 & & 29.48215 & 0.09963 & & 25.5648 & 0.21586 \\
\hline 26 & 19.43329 & 1.12244 & & 31.18534 & 0.10545 & & 27.26799 & 0.23911 \\
\hline 27 & 19.43329 & 1.06433 & & 32.88854 & 0.12869 & & 28.97119 & 0.26816 \\
\hline 28 & 19.60361 & 1.29678 & & 34.59174 & 0.14031 & & 29.99311 & 0.29141 \\
\hline 29 & 19.60361 & 1.25029 & & 36.29493 & 0.14613 & & 30.8447 & 0.33209 \\
\hline 30 & 19.60361 & 1.18055 & & 37.99813 & 0.12869 & & 31.35566 & 0.38439 \\
\hline
\end{tabular}
13. With the image window active, click the Go To Graph button.

All the curves resulting from the picked points will show in one graph window.

14. You can save the project with the Digitizer in it. When you open the project in the future, there will be a Digitizer... button on the image and you can click it to continue Digitizing.


\subsection*{9.4.3.3.4Set Axes for Polar and Ternary Plots}

The following section only explains how to define axes for images with polar or ternary coordinate systems using the Enhanced Digitizer. Once the axes are defined the same methods outlined above can be used to digitize the image.

Polar Coordinates
1. Click the Import button in the Digitizer dialog.
2. Browse to the <Origin EXE Folder> \Samples \Import and Export folder and select PolarCoordinate.bmp.

The data plots in this image are in the polar coordinate system.

3. By default the Digitzer uses the Cartesian Coordinate system. Select Axes:Polar Coordinate... menu to open the Polar Coordinate Settings dialog box.

Polar Coordinate Settings

Axes Orientation

Counter-clockwise
Clockwise

Theta Units
DegreesRadians
Gradians


OK
Cancel
4. We can accept the default orientation and theta unit and click OK. Two line objects with anchor points show on the image.

To set the axes for polar coordinates, we need to make sure each line object follows the same radius line, i.e. \(\mathbf{P 1} \& \mathbf{P 2}\), or \(\mathbf{P 3} \& \mathbf{P 4}\) need to be at the same angle.

5. Drag each line's anchor points to known positions. Note: You can press theSpace key to make the cursor bigger so that it is easier to locate the desired position.

6. Enter the corresponding Theta and Radius values on the Axes tab of the Digitizer.
\begin{tabular}{|c|c|c|c|c|}
\hline Axes & Data \\
\begin{tabular}{|c|c|c|c|}
\hline Right Click to Save/Load Axes Settings \\
\begin{tabular}{|c|c|c|c|}
\hline Name & Color & Theta & Radius \\
Image Pixel \\
\hline P1 & & 0 & 5 \\
\((355,247)\) \\
\hline P2 & & 0 & 20 \\
\((512,247)\) \\
\hline P3 & & 90 & 5 \\
\((301,194)\) \\
\hline P4 & & 90 & 20 \\
\((301,37)\) \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l} 
\\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l} 
\\
\hline
\end{tabular}

\section*{Ternary Coordinate}
1. Click the Import button in the Digitizer dialog.
2. Browse to the <Origin EXE Folder> \Samples \Import and Export folder and select

TernaryCoordinate.bmp. The data plots in this image are in the ternary coordinate system.
3. Select Axes:Ternary Coordinate... to open the Ternary Coordinate Settings dialog.

4. Specify the Axes Orientation and Range of Variables (i.e. whether the ternary plot is normalized to 0 1 or \(0-100\) ). For this example, accept the default settings and click OK. Three anchor points are added to the image.
5. Drag these three points to the three vertices of the ternary plot.
6. Similarly to the polar coordinate anchor point control, the row of selected anchor points in the graph will be highlighted on the Axes tab:

7. The Axes Values of each point are \(\mathbf{X} \mathbf{Y} \mathbf{Z}\) respectively. The \(X, Y, Z\) values of \(\mathbf{P 1}\) in the ternary image are \(00 \mathbf{1}\) because \(P 1\) is at the end of the \(Z\) axis. Similarly P2 and P3 lie at the end of the \(X\) axis and the \(Y\) axis, so the \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) values should be 100 and 010 respectively. Logically therefore, P1, P2 and P3 can't be same values.

\section*{10 Exporting and Presentation}

\subsection*{10.1 Exporting and Presentation}

\subsection*{10.1.1 Exporting}
- Exporting Graphs

\subsection*{10.1.2Presentation}
- Pasting or Embedding Graphs in Other Applications
- Send Graphs to PowerPoint

\subsection*{10.2 Exporting}

\subsection*{10.2.1 Exporting}
- Exporting Graphs

\subsection*{10.2.2Exporting Graphs}

\subsection*{10.2.2.1 Summary}

When you have completed your graphs for publication, exporting your final results is very easy with Origin. The graph export is highly customizable. You can specify the size of the image, the file format, and other advanced settings such as color format.

\subsection*{10.2.2.2 What you will learn}
- How to export a graph and specify the settings.
- How to export specified graphs in the project.

\subsection*{10.2.2.3 Export a graph as an eps image}

This tutorial is associated with the Contour project (C:\ProgramData\OriginLab\\(version number)\Origin\Central\Graphing\Contour.opj)
1. In the Project Explorer, browse to \(X Y Z\) Contour folder, and make the graph window active.

2. With the graph window active, select File: Export Graphs from the Origin menu to open the expGraph dialog.
3. Click the Auto Preview check box. Then the graph will auto preview the temporary copy in the right panel of the dialog.

4.


If your Image tab Preview appears blank, you are likely viewing only a corner of a very large raster image. Starting with Origin 2019, you can right-click in the Image tab and choose a zoom level for previewing your raster or vector images. By manipulating the size of the Preview panel + the Image tab zoom level, you'll be able to view your entire graph.
5. Specify the following settings to export the graph:
- Customize the File Name to My Graph.
- Expanding the Export Settings node, select Border from the Margin Control drop-down list and type \(\mathbf{3}\) in the Clip Border Width box.
- Expanding the Image Size node, uncheck Auto check box for Fit Width and set width to 5.

6. Click the triangle button to the right of the Dialog Theme. Select Save As from the shortcut menu. The Theme Save as dialog opens.

7. In the Theme Save as dialog, enter My EPS Export as Theme Name. And click OK.
8. Click the OK button in the expGraph dialog, then My Graph.eps is created in your User File Folder. And the graph path will display in the Message Log.
Messages Log \(\quad \geqslant+\times\)
[1/6/2012 17:52:18 expGraph]
Graph1B is exported to
C: \Documents and
Settings \(\backslash\) Administrator \(\backslash \mathrm{My}\)
Documents \({ }^{0}\) originLab\86\User
Files
9. Repeat export a graph using the setting from above, select the theme My EPS Export in the fly-out menu of the export graph tool directly.


Or
Click the right-sided triangle button to the right of the Dialog Theme in the expGraph dialog. From the
shortcut menu, pick My EPS Export. The settings from that theme will then be loaded in the dialog.


\subsection*{10.2.2.4 Export the specified graphs}
1. Redo steps 1 and 2 from above.
2. In the expGraph dialog, select Portable Network Graphics(*.png) for Image Type.
3. Select Specified from the Select Graph(s) drop-down list. Click the \(\ldots\) button to the right of the Graph Page edit box to open the Graph Browse dialog.

4. In the Graph Browse dialog, all the graphs in this project will list in the left panel of the dialog. Select Graph8 in the left panel, then the preview panel will show a preview of the graph.
5. Click the \(\gg\) button to add the selected graph to the right panel, or double-click selected graph in left panel to add to the right panel.

6. Then click OK button, the specified graphs will show in the Graph Page box.

7. Expanding the Image Size node, select pixel from the Specify Size in drop-down list. And uncheck the Auto check box for Fit Width and set width to 600.

8. Click OK button in the expGraph dialog, then two images are created. And the graph path will display in the Message Log.
\begin{tabular}{|c|c|}
\hline Messages Log & - \(\times\) \\
\hline \multicolumn{2}{|l|}{[12/7/2016 17:35:59 expGraph]} \\
\hline \multicolumn{2}{|l|}{Graph4 is exported to C:VUsers} \\
\hline \multicolumn{2}{|l|}{\shirley.0LABGZ\Documents} \\
\hline \multicolumn{2}{|l|}{\originLab\2017\UserFiles_226\XYZ} \\
\hline \multicolumn{2}{|l|}{Contour .png} \\
\hline \multicolumn{2}{|l|}{Graph8 is exported to C:VUsers} \\
\hline \multicolumn{2}{|l|}{\shirley.olabgz\documents} \\
\hline \multicolumn{2}{|l|}{\originLab\2017 VUserFiles_226} \\
\hline \multicolumn{2}{|l|}{\Contour Plot from Matrix.png} \\
\hline
\end{tabular}

\subsection*{10.3 Presentation}

\subsection*{10.3.1 Presentation}
- Send Graphs to PowerPoint

\subsection*{10.3.2 Pasting or Embedding Graphs in Other Applications}

\subsection*{10.3.2.1 Summary}

It is possible to insert Origin graphs to other applications(e.g.Microsoft \(®\) PowerPoint/Excel/Word), either by object linking or embedding. Both linked and embedded graphs can be later edited with Origin.

The difference is that embedded graph is contained in the destination file while the linked graph is not. A linked graph can be dynamically updated if the source graph is changed.


OLE embedding is not supported by Origin's Master Page feature. When exporting graphs containing master items to MS Office or other documents, you should insert the graph as an image. For more information, see Adding common elements to an MS Word or PowerPoint file.

\subsection*{10.3.2.2 What you will learn}

This tutorial will show you:
- How to copy and paste the graph to Word as a linked graph.
- How to copy and paste the graph to Word as a embedded graph
- How to edit linked/embedded graphs after inserting to Word.
10.3.2.3 Steps
1. Launch Origin, open the OffsetY.opj project from <Origin program folder> \Samples \(\backslash\) Graphing \(\backslash\). This project contains a graph (Graph 1).

2. With the graph window active, select Edit: Copy Page.

Another menu option Copy Graph as Picture are also available. You can select it to insert the graph into Word(or other applications) as a picture. Then, you are not allowed to edit it with Origin anymore.
3. Create a blank page in Microsoft® Word(Here, I am using Word 2010). In the Home tab, select Paste Special... under the Paste option.

4. In the Paste Special dialog, select the Paste link radio button and then choose Origin Graph Object in the As list. Click OK to close the dialog.


The graph will be inserted to current position a linked object.
5. Open the Paste Special dialog again similarly as the previous step.

6．This time，select the Paste radio button then choose Origin Graph Object in the As list．Click OK to close the dialog．The graph will be pasted again，but as an embedded object．


7．Go back to the OffsetY．opj file in Origin，double click on the olive dot plot in Graph 1，bring up the Plot Details dialog，change the symbol color to Violet and click OK to close the dialog．
8．Now switch to Word file we just created，right－click on the first graph（the linked one），and choose Update Link from the fly－out menu．The color of the dot plot in this graph will be changed to violet．
\begin{tabular}{|c|c|}
\hline ¢ & Cut \\
\hline 凩 & Copy \\
\hline ［ & Paste Options： \\
\hline & \[
0
\] \\
\hline 曹！ & Update Link \\
\hline & Linked Graph Ofbject \\
\hline 3 & Hyperlink．．． \\
\hline 圆 & Insert Caption．．． \\
\hline \(\square\) & B \(o r d e r s ~ a n d ~ S h a d i n g . . . ~\) \\
\hline 4 & Format Object．．． \\
\hline
\end{tabular}

9．Right－click on the second graph（the embedded one），and choose Graph Object：Edit to reopen the graph in Origin．Note that the graph name is Graph in Document1，indicating that the graph is contained in the
destination file.

10. In the Graph in Document1, change the color of olive dot plot to blue similar as previously, and close Origin. Note that the linked graph and the embedded graph looks different now.


\subsection*{10.3.3Send Graphs to PowerPoint}
10.3.3.1 Summary

This tutorial will show you how to send the specified graphs to an existing PowerPoint file by inserting graphs from a specified slide on and also copy that slide style, logo, layout, etc. User will no longer need to set Slide Master in PowerPoint.

Minimum Origin Version Required: 2016 SRO

\subsection*{10.3.3.2 What you will learn}

This tutorial will show you how to:
- \(\quad\) send specified graphs to existing PowerPoint file.

\subsection*{10.3.3.3 Steps}

This tutorial is associated with the Column and Bar project: <Origin EXE Folder>\Samples \(\backslash\) Graphing \(\backslash\) Column and Bar.opju and the PPT file: <Origin EXE Folder>\Samples \Import and Export|Column_Plots_in_Sample_OPJ.pptx

We are going to send most graphs in Column and Bar project to the above PPT file which consists of four slides: 1st slide is title; 2nd slide is table of contents; 3rd slide is blank; 4th slide is End page. All the sent graphs will be inserted into this PPT file starting from the 3rd slide and using the same style as starting slide.
1. Open the sample project Column and Bar
2. Click the Send Graphs to Powerpoint button to open the pef_pptslide diallog.
3. Select Specified for the Select \(\operatorname{Graph}(\mathbf{s})\) drop-down list, click the browse button \(\ldots\) beside the Graph Page box to open the Graph Browser. In this dialog, select Active Folder(Recursive) for the top-left drop-down list, and then select all graph listed in the left panel except Graph 5B, click the right arrow button \(\gg\) to move them to right panel as below:

4. Click OK button. All selected graphs will be listed in the Graph Page text box, you can reorder the graphs. Expand the Slide Margin branch, set the Top Margin(\%) text box to 8 .
\begin{tabular}{|l|}
\(\square\) Slide Margin \\
Top Margin (\%)
\end{tabular}
5. Select Top of Slide for the Title Line drop-down list and set Title Mode to Window Long Name.


Title Mode

6. Set Starting Slide Index to 3 to insert all these graphs to the existing PPT file by starting from the 3rd slide with same style as starting slide. Then set Slide Mode to Start New.
\begin{tabular}{lll} 
Starting Slide Index & 3 & \(\square\) End \\
Slide Mode & Start New
\end{tabular}
7. Click the browse button \(\cdots\) beside the Load File/Template(Optional) box to locate the existing PPT file Column_Plots_in_Sample_OPJ.pptx under the <Origin EXE Folder>\Samples\Import and Export folder. Then specify the path to save the new PPT file in the Save File As(Optional) text box.
\begin{tabular}{ll|l|} 
Load File/Template[0ptional] & C:Srogram Files\OriginLab\Origin2017: \\
Save File As[Optional] & D:\$PPT file\Column Bar plots.pptx \\
PPT will be closed at the end.
\end{tabular}
8. Then you will get the final PPT file.

\section*{11 Collaboration and Connectivity}

\subsection*{11.1 Collaboration and Connectivity}

\subsection*{11.1.1 Connectivity}

\author{
11.1.1.1 Excel
}
- Working with Excel

\subsection*{11.2 Connectivity}

\subsection*{11.2.1Connectivity}

\subsection*{11.2.1.1 Excel}
- Working with Excel

\subsection*{11.2.2Excel}

\subsection*{11.2.2.1 Excel}
- Working with Excel

\subsection*{11.2.2.2 Working with Excel}

\subsection*{11.2.2.2.1 Summary}

Origin provides flexible ways to interact with Excel. You can either import Excel data into an Origin workbook, or open an Excel book inside Origin. If you require full access to all of Origin's graphing and analysis features, you will probably want to import your Excel data files into Origin. If it is important to maintain a separate Excel workbook file-perhaps, so that other colleagues who do not work with Origin have access to that file-you will probably want to open your Excel data files directly. We give a brief introduction to working with Excel in this tutorial.

\subsection*{11.2.2.2.2 What you will learn}

This tutorial will show you how to:
- Copy-Paste data from Excel with full precision.
- Import an Excel file into an Origin workbook.
- Open an Excel file in Origin.
- Save an Excel file with path relative to the Origin Project file.

\subsection*{11.2.2.2.3 Copy-pasting Data from Excel}

It may be desirable at times to simply copy+paste data from Excel to Origin instead of importing or opening Excel. These steps show that such a copy-paste operation can bring in data with full precision.
1. Launch Excel and Origin separately.
2. Open the file <Origin Installation Folder>\Samples\Graphing\ExceIData.XLS in Excel.
3. Select columns B through L. Right click, bring up the Format Cells dialog, and set the number of decimal places to 2 . Now Excel will show fewer decimal places.

4. Click on the top left cell in the Excel sheet to select the entire sheet, right-click and select Copy, or use the keyboard shortcut CTRL+C to copy.

5. In a new book in Origin, place the cursor in row 1 of column 1 and press CTRL+V or right click and Paste.

6. Note that the numbers come into Origin with full precision, not the number of displayed digits in Excel. As shown in the example below, the number circled value is displayed with 2 decimal places in Excel (0.35) but imported with all three decimal places into Origin (0.348).

7. In Origin, right click on the row 1 header and select Set as Comment to make this row an Origin column comment.

8. Right click on row 1 again and select Set as Long Name. This makes rows 1 and 2 in Excel the worksheet header in Origin:

9. You can now double click column 1, set it as Date, and plot the data.


In Step 5, you can right click to choose Paste Link or press Ctrl+Alt+V instead of choosing Paste or pressing \(\mathrm{Ctrl}+\mathrm{V}\). As a result, you will create a DDE link between the Excel data and Origin workbook. By this way, the linked data in Origin workbook will change when the values in Excel are changed. You will learn more in this blog.

\subsection*{11.2.2.2.4 Importing Excel File}

Origin supports importing Excel files directly into Origin workbooks. Multiple sheets are supported and controls are available for setting specific rows in the Excel sheet to be brought into an Origin worksheet as header information such as Long Name or Comments. If you want to perform analysis or data manipulation operations on your Excel data, we recommend importing your data into Origin.
1. With a new book active in Origin, use the menu Data: Import from File: Excel (XLS, XLSX, XLSM)....
2. Select the file <Origin Program Folder> \samples \(\backslash\) graphing \(\backslash\) Excel Data.xls and make sure the Show Options Dialog is checked.

3. In the dialog that comes up, leave the Use Excel COM Component to Import check box checked.
4. Set Index of Rows for Comments From to 1
5. Set Index of Rows for Long Name drop-down to 2 and click OK to Import.

6. Click and select the Comments cell under column 1, hold the CTRL key and drag the bottom right point of the selected cell to stretch across all columns with data, thus copying the same comments to all columns.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathbf{A}(\mathrm{X})\) & B(\%) & C1() \\
\hline Long Name & Year & Domestic c & Crude oil i \\
\hline Units & & & \\
\hline Comments & \begin{tabular}{c} 
(All \\
quantities \\
in millions \\
of \\
barrelsiday \\
\hline
\end{tabular} & \multicolumn{2}{|l|}{Hold Ctrl key and drag} \\
\hline 1 & 1/1/1973 & \(-9.27\) & -3.24 \\
\hline 2 & 1/1/1974 & 8.77 & 3.47 \\
\hline
\end{tabular}
7. Press \(\mathbf{F 4}\) to bring up the format dialog, switch to the Format tab, change the Apply To drop-down to Comments and set Dynamic Merge to Horizontal. Click OK.


This merges the comments cells and shows the title in the center of all the data columns as shown below:
\begin{tabular}{c|c|c|c|c|c}
\(\mathrm{C} 2(\mathrm{Y})\) & \(\mathrm{C} 3(\mathrm{O})\) & \(\mathrm{C} 4(\mathrm{O})\) & \(\mathrm{C} 5(\mathrm{O}\) & \(\mathrm{C}(\mathrm{Y})\) & \(\mathrm{C} 7(\mathrm{O})\) \\
\hline Petroleum & Total impor Crude oil e Petroleum & U.S. petrole World petro \\
\hline & (All quantities in millions of barrels/day) \\
\hline
\end{tabular}

\subsection*{11.2.2.2.5 Open Excel File in Origin}

At times it may be desirable to keep the data in an external XLS file while opening the file inside Origin as an Excel window and then working with the data. When you open Excel (.XLS or .XLSX) files as Excel workbooks in Origin, an OLE instance of Microsoft Excel is launched. You can plot directly using Excel workbook data, but many analysis features as well as 3D plotting are inaccessible.
1. Select File: Open Excel... and select the file \Samples \(\backslash\) Graphing \(\backslash\) Excel Data.xIs.
2. A new Excel window opens inside the Origin workspace. When this window is active, the Origin main menu has different entries, some of which are specific to Excel. The Excel toolbars are also available.

3. Highlight the Excel data range A3:A26 and right click. Select Format Cells to make sure that the data is Date format.

4. Now select the Plot menu in Origin and select the Multi-Y: Double-Y plot type.
5. Select A3:A26 in the Excel sheet and click \(\mathbf{X}\) in the Select Data for Plotting dialog to assign the \(X\) data.

6. Select B3:C26 in the Excel sheet and click \(\mathbf{Y}\) in the Select Data for Plotting dialog to assign the \(Y\) data. Select Multiple Layers from the Plot Into drop-down.

7. Click Plot to create a double-y plot as shown below:

8. By default, Origin displays the tick labels for time on the \(X\) axis in MM/DD/YYYY format. Double-click the \(X\) axis to open the Axis dialog. Select the Horizontal icon in Scale tab and change the scale from 1/1/1970 to 1/1/2000.


Select the Bottom icon in the Tick Labels tab and change the Display to year.


Click OK to apply the settings and close the dialog. The graph should be resemble to the following image:



After opening Excel in Origin, switching to another Origin window, causes a toolbar spacer to become visible where the Excel menu used to be. To remove it, right click and select Hide Toolbar Spacer or Hide Toolbar Spacer Always.

\subsection*{11.2.2.2.6 Setting External Excel File Path Relative to OPJ Path}

The Origin Project can contain an Excel window which is linked to an external Excel file. In such a case it may be beneficial to save the Excel file in the same folder as the Origin project, or a subfolder under the Origin project folder. This will make the two files more portable, as seen in the following steps:
1. Close Excel if it is running.
2. Perform the steps under the Open Excel File in Origin section above, and (optionally) create a plot.
3. Save the OPJ to a folder location such as "C:\My Files \My Project.opj".
4. Right-click on the Excel window and select Save Workbook As. Save it in a (new) subfolder under the OPJ save location, such as "C:\My Files\Data\My Data.xls".

5. Right click again on the Excel window title and select Properties. Check the box that says Relative to current project ( \(\mathbf{O p j}\) ) path. Note that the Excel file path in the box below changes to a relative path of "Data\My Data.xls".

6. Save the OPJ again. Now you can copy the entire subfolder structure, starting from where the OPJ is saved, and put it on an external memory device (i.e., a memory stick or similar), or zip the entire folder structure. When taken to another computer and opened, Origin will look relative to the OPJ path to find the Excel file.


If your Excel file is in a different location and you want to save it to the same path as the OPJ, you can open the Excel file in Origin, then right click the title, select Properties and click the Switch to OPJ path upon Saving button. On saving the OPJ, the Excel file will be copied from its current location to the same path where OPJ is saved.

\section*{12 Programming}

\subsection*{12.1 Programming}

\subsection*{12.1.1 LabTalk}

\author{
Get Started with LabTalk \\ LabTalk Language Fundamentals \\ Range Notation in LabTalk \\ Objects in LabTalk \\ Use X-Function in LabTalk \\ Debug LabTalk Script \\ Graphing and Exporting with LabTalk \\ Mathematical Analysis with LabTalk \\ Curve Fitting and Batch Processing with LabTalk \\ Peak Analysis with Labtalk \\ Statistics with Labtalk \\ Signal Processing with LabTalk \\ Creating OPX for Custom Tools with Labtalk
}
- How to share Origin C based LabTalk Functions

\subsection*{12.1.2Origin C}
- Introduction to Origin C and Code Builder
- The Code Builder Workspace
- Adding New Origin C Functions to Origin
- Organizing and Accessing Origin C Functions
- Tutorial:Calculating Double Integral with NAG Functions From Origin C
- Tutorial:Calling NAG Functions From Origin C
- Accessing Internal Origin Objects by Origin C
- Create and Update Apps for Origin

\subsection*{12.1.3X-Functions}
- Command Window and X-Functions
- Introduction to X-Functions
- How to Create a Wizard

\subsection*{12.2 LabTalk}

\subsection*{12.2.1 LabTalk}
```

Get Started with LabTalk
LabTalk Language Fundamentals
Range Notation in LabTalk
Objects in LabTalk
Use X-Function in LabTalk
Debug LabTalk Script
Graphing and Exporting with LabTalk
Mathematical Analysis with LabTalk
Curve Fitting and Batch Processing with LabTalk
Peak Analysis with Labtalk
Statistics with Labtalk
Signal Processing with LabTalk
Creating OPX for Custom Tools with Labtalk

```
- How to share Origin C based LabTalk Functions

\subsection*{12.2.2How to share Origin C based LabTalk Functions}

\subsection*{12.2.2.1 Introduction}

This tutorial will show you how to share code with other users by distributing OPX files. In this example, only Origin C files are distributed. However, please note that OPX distribution can include any file types including (but not limited to) project files, templates and toolbars.

\subsection*{12.2.2.2 Tutorial}

The following procedure will show you how to distribute your Origin C code to other Origin users. In this example, we will be packaging an Origin-C function in a file (MyCode.c) in a folder (MyFunctions) under the User Files Folder (UFF).
1. Create File Locations
2. The Source Path for your files should be available on any computer your OPX is targeted for. The easiest way to do this is to make a subfolder of the Origin UFF. Any of the files and folders of the UFF
can then be added to your OPX for distribution. So, create a subfolder named MyFunctions under the UFF

\section*{3. Copy Files to the Source Path}
4. Copy all the files to be packaged to the subfolder created in the last step. Here there is only a C file (MyCode.c). The function in this file is shown below.
```

void get_data_from_wks()
{
Worksheet wks = Project.ActiveLayer();
if(!wks)
{
out_str("Please keep a worksheet active with data");
return;
}

```
// The following settings to set range as whole worksheet,
// index offset is 0, -1 means last row/column.
// Change r1, c1, r2, c2 to specify worksheet sub range,
// for example, \(r 1=0, c 1=1, r 2=-1, c 2=2\) to
// select all rows from column 2 to column 3.
int r1 = 0; // first row
int c1 = 0; // first column
```

int r2 = -1; // last row
int c2 = -1; // last column
//construct a data range object from worksheet all data
DataRange dr;
dr.Add("X", wks, r1, c1, r2, c2);
// get data from worksheet to vector by column one by one
matrix mData;
dr.GetData(mData); // get all data to matrix
for(int nColIndex = 0; nColIndex < mData.GetNumCols(); nColIndex++)
{
vector vOneCol;
mData.GetColumn(vOneCol, nColIndex);
double min, max;
vOneCol.GetMinMax(min, max);
printf("Maximum value of %d column = %f\n", nColIndex+1, max);
}

```
```

}

```
5. Create a Package
6. Open the Package Manager by selecting Tools: Package Manager.... Then fill in the dialog as the following image shows.

- The Module Name will appear as the name of the package for uninstall purposes.
- Origin Version Required means the minimum version of Origin required for this package. You want to enter the version number like 8.0988, and not like 8.0SR6.
- To force the Origin C source file to the System Folder Workspace, use the run.addoc() method in the After Installation branch of LabTalk Script. In this example, it looks like the following:

- Click the Add Files or the Add Folder button and browse to and add any files required. In this example, browse to the subfolder (MyFunctions) under the UFF and add the C file (MyCode.c). Then the path of the UFF will show as the source path, and the files will list in the lower panel.
7. Save the Package
8. Select the File: Save menu of this Package Manager dialog. In the pop-up Save As dialog, enter a name (in this example, can be MyCode) for this package, and then save it as an OPX file.
9. Distribute the Package
10. Send the saved OPX file to other users. The user who gets this package can drag and drop the OPX onto Origin to install it, and then the functions in the \(C\) file are available.
- Drag and drop MyCode.opx onto Origin to install it. After installation, the function get_data_from_wks defined in MyCode.c can be used as a LabTalk command.


\subsection*{12.3 Origin C}

\subsection*{12.3.1 Origin C}
- Introduction to Origin C and Code Builder
- The Code Builder Workspace
- Adding New Origin C Functions to Origin
- Organizing and Accessing Origin C Functions
- Tutorial:Calculating Double Integral with NAG Functions From Origin C
- Tutorial:Calling NAG Functions From Origin C
- Accessing Internal Origin Objects by Origin C
- Create and Update Apps for Origin

\subsection*{12.3.2Introduction to Origin \(C\) and Code Builder}

\subsection*{12.3.2.1 Summary}

Origin C supports a nearly-complete ANSI C language syntax as well as a subset of C++ features including internal and DLL-extended classes. In addition, Origin C is "Origin aware". This means that Origin objects such as worksheets and graphs are mapped to classes in Origin C, allowing direct manipulation of these objects and their properties from Origin C .

Origin C's integrated development environment (IDE) is called Code Builder. Code Builder provides standard tools for writing, compiling, and debugging your Origin C programs. Once an Origin C function is compiled and linked, the function can be called in various ways from the Origin or Code Builder workspaces.

To open Code Builder, click the \({ }^{6 \rightarrow 4}\) button on the Origin Standard toolbar, or press ALT +4 from the keyboard.

Minimum Origin Version Required: Origin 9

\subsection*{12.3.2.2 What you will learn}

This tutorial will show you how to:
- Create an Origin C function.
- Debug and Run the Function.
- Run the Function Using the Custom Routine Button.

\subsection*{12.3.2.3 Steps}

\subsection*{12.3.2.3.1 Create an Origin C Function}
1. In Code Builder, start with a new workspace (File: New Workspace...). On the Code Builder Standard toolbar, click the New button to open the New File dialog.
2. Select C File to create a .c file. Type Tutorial in the File Name text box. In the Location text box, specify the User Files Folder/OriginC folder to save your source file. Make sure that the Add to Workspace box is checked. Click OK. A file named Tutorial.c is created and opened in the Code Builder workspace.

4. Copy and paste the following code beneath the line that reads "// start your functions here.":
\(\square\)
```

void new_wks()
{
Worksheet wks;
wks.Create("Origin"); // create a Worksheet window with template -
Origin
vector\& vecX = wks.Columns(0).GetDataObject();
vector\& vecY = wks.Columns(1).GetDataObject();
vecX.Data(1, 10, 1);
vecY.Data(0.1, 1, 0.1);
vector<string> vsLongName =
{
"Index",
"Data"
};
for (int nCol = 0; nCol < wks.GetNumCols(); ++nCol)
{
Column col (wks, nCol);

```
```

 col.SetLongName(vsLongName[nCol]);
 }
 }

```

This new_wks function will create a worksheet using the Origin template. It fills the first column with numbers from 1 to 10 , incrementing by 1 . The second column is filled with numbers from 0.1 to 1 , incrementing by 0.1 . Lastly, it sets the Long Names of the first and second columns as Index and Data, respectively.
5. Click the Save button


Mini-Tutorial: Find more examples of the usage of GetDataObject and use a bookmark to quickly navigate to a marked line.
1. Click line 33 and click the Toggle Bookmark button \(\square\).
2. Select GetDataObject() in line 37 and click the Find in files button .
3. In the Find in Files dialog box, set In files/file types as *.c,*.cpp and In folder as <program folder>\Originc. Check all the boxes in this dialog and click the Find button.
4. In the Find Results window, double-click any line containing GetDataObject(). This opens the file containing this string and jumps to the related section.
5. To back to the line marked in step1 activate the Bookmarks window. Double click the bookmark added in step 1 of this mini-tutorial and the cursor jumps to line 33 in the Tutorial.c file.

\section*{Origin 2015 provides some useful tools:}

\section*{- Quick open files}

Prss SHIFT + ALT + O or select Tools: Quick Open Files to open the Quick Open Files dialog.
- Switch between .h and .c/.cpp file

When open a .h file, press CTRL + ALT + O to open the corresponding .c or .cpp file, and vice versa.

\section*{- Find symbols}

Press SHIFT + ALT + S or select Tools: Find Symbols to open the Find Symbols dialog.

\subsection*{12.3.2.3.2 Debug and Run the Function}
1. On the Code Builder Standard toolbar, click the Build button . This compiles the new_wks function and performs linking (Please make sure the Tutorial.c file is active).
\begin{tabular}{|lr|}
\hline Output & \(\times\) \\
\hline compiling... & \\
Tutorial.c & \\
Linking... & \\
Done! & \\
\\
& \\
& \\
& \\
\hline
\end{tabular}
2. Click the space just to the left of lines \(34,35,37,50\). A red ball icon will be placed at the beginning of each line, indicating that you added breakpoints to these lines. These breakpoints are listed in the Breakpoints window.
3. In the Breakpoints window, clear the box before tutorial.c, line \(\mathbf{3 5}\) to disable this breakpoint. Note that the breakpoint icon before line 35 becomes a hollow circle icon.


To delete a breakpoint, you can click on the breakpoint icon before the corresponding line, or right-click on the breakpoint in the Breakpoints window, and select Delete Breakpoint.
4. Right-click on the breakpoint of line 37. Select When Hit... to open a dialog. Check the box before Print a message. In the text box under Print a message:, append the text test code runs to here. . Click OK to finish. Note that this breakpoint's icon is now a diamond.

\section*{When Breakpoint Is Hit} \(x\)

Specify what to do when the breakpoint is hit.


You can include the value of a variable or other expression in the message by placing it in curly braces, such as "The value of \(x\) is \(\{x\}\) ". To insert a curly brace, use " \(\{\{\) ". To insert a backslash, use " \(\langle 1\) ".
The following special keywords will be replaced with their current values:
\$FILE - Current source file name,
\$FUNCTION - Current function name,
\$LINE - Current line numberRun Labtalk Script
\(\square\)Continue execution
5. Right click on the breakpoint at line 50. Select Condition... to open a dialog. Enable Condition and type \(\mathbf{n C o l}=\mathbf{= 1}\) in the text box. Click OK.

\section*{Breakpoint Condition}

When the breakpoint location is reached, the expression is evaluated and the breakpoint is hit only if the expression is true or has changed.

\section*{Condition}

\section*{\(\mathrm{CO}==1\)}Is trueHas changed
6. To run this code, type the function name new_wks in the upper panel of the LabTalk Console window.
7. Press ENTER. A yellow arrow will appear upon the first breakpoint icon, indicating which line of code is executed to.
8. Press F8 to continue debugging the code. You will see the yellow arrow icon moving to the line 50 .
9. In the Command \& Results window, the message added in the breakpoint of line 37 is printed in the lower panel.

10. Activate the Variables window. The variable names are listed in the first column and their values are listed in the second column. Check the value of nCol.

11. Press F 5 to run over all codes, the yellow arrow will disappear.
12. Return to the Origin workspace. You can see that a workbook is created as in the following image.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\＃Book2} & & & \multicolumn{2}{|r|}{} & & X \\
\hline & \(A(x)\) & B（） & \multicolumn{4}{|l|}{\multirow[t]{16}{*}{（1）}} \\
\hline Long Name & Index & Data & & & & \\
\hline Units & & & & & & \\
\hline Comments & & & & & & \\
\hline 1 & 1 & 0.1 & & & & \\
\hline 2 & 2 & 0.2 & & & & \\
\hline 3 & 3 & 0.3 & & & & \\
\hline 4 & 4 & 0.4 & & & & \\
\hline 5 & 5 & 0.5 & & & & \\
\hline 6 & 6 & 0.6 & & & & \\
\hline 7 & 7 & 0.7 & & & & \\
\hline 8 & 8 & 0.8 & & & & \\
\hline 9 & 9 & 0.9 & & & & \\
\hline 10 & 10 & 1 & & & & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline \begin{tabular}{|l|l|}
\hline 4 & \(\checkmark\) \\
\hline
\end{tabular} & \multicolumn{3}{|l|}{} & IIII & 3 & ， \\
\hline
\end{tabular}

\section*{12．3．2．3．3 Run the Function Using the Custom Routine Button}

1．Hold the CTRL＋SHIFT keys and click the Custom Routine button品吕．It will open the Custom．ogs file in Code Builder．
2．With the cursor at line 11，click the Comment button \(\overline{\text { It }}\) to comment out line 11 ．

3．Type the following code at lines 12 and 13.
\(\square\)
This code will load the Tutorial．c file we added in the previous section and run the new＿wks（） function．

4．Press the Save button \(\frac{\square}{n}\) ．

5．Return to the Origin workspace．Click the Custom Routine button品．A new worksheet will be created and filled with data as it was in the previous section．


\subsection*{12.3.3The Code Builder Workspace}

\subsection*{12.3.3.1 Summary}

In this tutorial, we will create a workspace in the Code Builder of Origin, add a source file with a new function, then build, test and save the workspace file. Also, we will configure the appearance of the Code Builder.

Minimum Origin Version Required: Origin 2016 SR0

\subsection*{12.3.3.2 What you will learn}

This tutorial will show you how to:
- Build a Workspace File
- Build Workspace Folders
- Build on Startup
- Configure Code Builder Interface
- Create an App Using Apps folder in Workspace
- Use Hot Key to speed up your work

\subsection*{12.3.3.3 The Workspace File}

A workspace is a collection of files that can be opened by a single menu option (File: Open Workspace...) in Origin's Code Builder. Any text file can be a part of the collection. They do not necessarily have to be source code files; they could be notes, for example.

All files opened in the Multiple Document Window by a workspace can be edited and saved individually. In addition to files being opened in the Multiple Document Window, source code files can be added to the Workspace Window with the File: Add to Workspace menu option.

By including source code files in the Workspace Window, you can build individual or multiple files with the appropriate menu option or toolbar button. Header files can be referenced within source files and do not need to be loaded in the Workspace Window or even open in the Multiple Document Window.

Since you can save a workspace with a new name, you can have multiple workspace files. However, only one workspace file can be opened at a time.

To create a workspace:
1. On the Standard toolbar, click the Code Builder button
2. From the Code Builder menu, select File: New Workspace. This creates a new workspace with the default name of "Untitled.ocw".
3. From the Code Builder menu, select File: New. This opens the New File dialog.
4. Choose C File, and type foo in the File Name text box. The Add to Workspace and Fill with Default Contents check boxes should be selected. You may accept the default Location. Click OK.
5. In FOO.C, starting below the line that says "\\start your functions here", type the following:
```

void bar()

```
\{
```

 printf("Hello World!\n");
    ```
\}
6. Click the Build button (or use the hotkey Shift+F8). Origin automatically saves the source file and compiles and links the function.
7. From the Origin menu choose Window: Script Window.
8. To test our new function, type:
bar

\section*{9. Press ENTER}

Origin responds by typing Hello World!
10. From the Code Builder menu, choose File: Save Workspace As....

The figure shows the foo.ocw workspace file containing a single source file, foo.c, in the Multiple Document Window. The file has been added to the Workspace Window. The Output Window shows that the file has been compiled. The source file contains a single function "bar( )" which is listed in the tree structure of the workspace.


\subsection*{12.3.3.4 Workspace Folders}

The Code Builder workspace has six subfolders: Apps, Project, System, Temporary, User [AutoLoad] and User. Files added by user, such as foo.c that you just added, are placed in the User subfolder. Origin, itself, uses Origin C for many analysis routines. When these routines are accessed, the Origin C source files are loaded into either the System subfolder or the Temporary subfolder in the Workspace. The Project subfolder is reserved for files that are saved and loaded with the Origin project. This aspect of attaching a file to the project is described in a separate tutorial.

\subsection*{12.3.3.5 Build on Startup}

If you right click on the Origin C Workspace folder, the shortcut menu has a Build on Startup option. When this option is checked, the last workspace you saved will be loaded when you restart Origin. All source files in the Workspace will be built and all functions in the source files will be available for immediate use.

For information on building individual source files on startup by including information in the ORIGIN.INI file, please view Build on Startup

This concludes the tutorial on the Code Builder Workspace.

\subsection*{12.3.3.6 Configure Code Builder Interface}

User can configure code builder interface including the fonts and colors, the brackets color, the icons size and so on.
1. Open Options dialog in Code Builder by select Preference: Options in main menu. Go to the Fonts and Colors tab, change the Theme to Dark. An interface with dark background and light font is obtained. You can further adjust the font size or type in this dialog.

2. In Options dialog, go to the (Text Editor) General tab, change the properties for Enable Multiple Colored Brackets to True and click OK. The nested "()" in code will be shown in multiple colors.
\[
\text { if }\left(a=!\left(\left((\sin (x)+\cos (x))^{\wedge} 2+1\right) / 2\right)\right) \text { Multiple Colored Brackets }
\]

3. Open Customize dialog in Origin's main interface by select View: Toolbars in main menu. Go to the Options tab and check on Use Large Icons box, then you can get large icons for buttons in Toolbars (note that this setting may not work well on your system depending on your display settings). Close the Customize dialog box.

4. You can control the show or hide of each panel by selecting or unselecting them from View in Code Builder menu, the selected panel will be shown in Code Builder.


\subsection*{12.3.3.7 Create an App Using Apps folder in Workspace}

To create an App package, you need to combine the use of Apps folder in Code Builder workspace and the Package Manager. Following steps will show you how to create the package for an App.

2.Make sure Workspace window is open, if not you can select menu View: Workspace to open it. Right click on the Apps folder in Origin C Workspace and select New to add a new folder.
\begin{tabular}{|c|c|c|}
\hline Workspace & & - \(7 \times\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Origin C Workspace}} \\
\hline & & \\
\hline \(\therefore \mathrm{Pr}\) & Add Existing Folder... & \\
\hline \(\square \mathrm{Sy}\) & New & \\
\hline
\end{tabular}
3.Right click on the newly added folder Untitled and select Rename to name the folder as "MyApp".
4. Right click on MyApp folder and select Add Files... to open Add Files to Workspace dialog. Browse to select all prepared files and click Open button to add them to current folder.
```

Workspace * п >
_ Origin C Workspace
4 Apps
MyApp
\squareODODSolver.bmp
\square ODESolverx.bmp
C] odesolv.c
) ODEHelp.chm
odesolv.h
ODESolver.OXF
Project
System
D.\square
Temporary
\square\square
User [AutoLoad]
User 'C:\Origin 2016\Origin 2016 UFF\OriginC\Untitled.ocw'

```
5. Right click MyApp folder to select Generate and you will be directed to the Package Manager.


6．You can find the added files in the lower panel of Package Manager．Now you can input some basic information about MyApp under Package node as shown below．To make the App display as an icon in App Gallery，you need to prepare a \(32 * 32\)（in pixels）bmp image and input its name with extension in Icon edit box．Then you can input some LabTalk script in Launch Script field to tell Origin what to do when launching the App．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{［－1 Package Manager－Untitled＊} & \(\square\) 回 & － \\
\hline \multicolumn{6}{|l|}{File Tools} \\
\hline \multicolumn{6}{|l|}{\(\square\) Package} \\
\hline －Name & MyA．pp & & & & \\
\hline －Description & App to & ve Ordinary Dif & ntial Equations & & \\
\hline －Version & 1 & & & & \\
\hline －．．Author & OriginLa & Corp． & & & \\
\hline Origin Version Required & 9.3 & & & & \\
\hline \multicolumn{6}{|l|}{\(\square\) App} \\
\hline \multicolumn{6}{|l|}{Icon ODESolver．bmp} \\
\hline \multicolumn{6}{|l|}{Icon（small）ODESolverx．bmp} \\
\hline \multicolumn{6}{|l|}{Launch Script odesolver－d；} \\
\hline \multicolumn{6}{|l|}{\(\pm\) Toolbar \(\square\)} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
⿴囗 LabTalk Script \\
Source Path C：UUsers \(\backslash\) sean\AppData＇Local\UriginLab\93\Apps
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Repack Files Set Toolbar} & Add Folder．．． & Add Files．．． & Remove Files & 人 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{MyÁpp MyA．pplodesolv．c MyApplodesolv．h MyA．pp\ODESolver．bmp MyA．pp\ODESolver．OXF MyApplODESolwerx．bmp}} \\
\hline & & & & & \\
\hline
\end{tabular}
7.Select File: Save to save the package as an OPX file. Later you can drag and drop this OPX file into Origin workspace to install this App.

\subsection*{12.3.3.8 Frequently Used Hot Keys}

The Hotkey in Code Builder make the coding work efficiency. The following parts introduce the useful hotkey one by one.

Firstly, please download this zip file, extract it and then browse to the \Origin C Examples \(\backslash\) Programming Guide\Practical Examples subfolder to add AccessMatrix. c by right-clicking the user folder and select "Add Files"

\section*{- CtrI+F2 and F2}

CtrI+F2 add a Toggle Bookmark at the specific line. You can use hotkey F2 to go to next Toggle Bookmark.
\begin{tabular}{|c|}
57 \\
58 \\
59 \\
60 \\
61 \\
62 \\
63 \\
64 \\
65 \\
66 \\
67 \\
68
\end{tabular}
```

//set and get Matrix data by vector
vector vDataRad; //declear a new vecto
lint nRows, nCols;
nCols = MatData.GetNumCols(); //get the M
nRows = MatData.GetNumRows();
for(int ii = 0; ii < nRows * nCols; ii++)
{
vDataRad.Add(ran());
vDataRad[ii] *= 10;

```
- Ctrl+F3 and F3

CtrI+F3 highlight all the select word ("MatData") in code. You can use hotkey F3 to go to the next highlighted "MatData".
```

Matrix MatData; //new Ma
MatData.Attach(ml);
MatData.SetSize(3,4); //set the
matrix mat = //declear
matrix {
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10,11,12}
};
MatData = mat; //put the m
//set and get Matrix cell data
[2][3] = 100; //set one cell v
double dVal = MatData[1][3]; /
out_double("The Value on Corrid
//set and get Matrix data by ve
vector vDataRad; //declear a
int nRows, nCols;
nCols = MatData.GetNumCols(); /
nRows = MatData.GetNumRows();

```

\section*{- Ctrl+]}

This hotkey help you to go to matching brace in the code.
- F9

This hotkey add a Toggle Breakpoints at the specific line.
```

52 //set and get Matrix cell dat
MatData[2][3] = 100; //set o
|ouble dVal = MatData[1][3];
out_double("The Value on Corr

```
- Ctrl+/ and Ctrl + Shift + /

This hotkey Ctrl+/ comment the selected lines, while Ctrl + Shift + / uncomment them.

\section*{- Ctrl+Alt+O}

After constructing the *.c and *.h files with the same name, you can use hotkey Ctrl+Alt+O to switch between them.


Please refer to Hotkeys in Code Builder for more hotkeys information.

\subsection*{12.3.4Adding New Origin C Functions to Origin}

\subsection*{12.3.4.1 Summary}

Functions written in Origin C are accessible from various locations within the Origin interface, such as the Script Window, provided they meet the following criteria: the function should return either void (as in the previous tutorial), double, string, or vectors of type double or string. Variables passed to the function from Origin should be of type double or string, or vectors of these types. Functions that do not meet these criteria are not callable from the Origin interface, but can be called within other Origin C functions. Note that although an Origin C function that accepts and returns type int can be called from the Origin interface, the data may be truncated since the interface only supports type double.

In this tutorial, you will be introduced to writing a math function that returns computed values. We will first create a function that returns type double to Origin, and then we will create a function that returns vectors of type double.

Minimum Origin Version Required: Origin 8.0 SR0

\subsection*{12.3.4.2 What you will learn}

How to add a new function and how to run this function in the Script Window.

\subsection*{12.3.4.3 Steps}
1. Start a new Origin C file in Code Builder.
2. Enter the following code:
```

double myfuncl(double x, double a)

```
```

return sin(a * x);

```
3. Click the Build button to compile the function.

This function can now be called from the Origin interface, in places such as the Script Window.
4. Go to the Script Window, and type in the following lines, pressing ENTER at the end of each line:
```

y = myfunc1 (2, 3)

```
\(y=\)

You can also use worksheet cells instead of absolute numbers:
5. Make a worksheet active, enter a number in the first row of column A. Then type the following into the Script Window and press ENTER:
col (B) [1] = myfunc1 (col(A) [1], 3)

Note that a function such as myfunc1, that accepts and returns type double, can also be used to perform vector operations.
6. Fill rows 1 through 10 of Column A with numbers, and type the following into the Script Window:
\(\operatorname{col}(B)=\operatorname{myfunc}(\operatorname{col}(A), 3)\)

In the above example, Origin calls the myfunc1 function for each row of column A. For performing vector operations as above, it is more efficient to write functions that accept and return vectors.
7. Go back to Code Builder and add the following function to the same file, and compile the file by clicking the Build button
```

vector<double> myfunc2(vector<double> vecIn, double a)

```
\{
```

 vector<double> vecOut;
    ```

Tutorials for Origin
```

 vecOut = sin(a * vecIn);
 return vecOut;
 }

```
8. Go back to the Origin interface, fill Column A with some new numbers, and type the following into the Script Window:
```

col(B) = myfunc2(col(A), 3)

```

The function myfunc2 is called only once for computing the entire column.
Note that you can use such functions in other places such as the "Set Column Values" dialog. The Auto Update feature of "Set Column Values" can be enabled by checking the appropriate check box in this dialog. As long as the Origin C function is compiled and ready to be called from Origin, any changes to the source column will result in an update of the destination column.

\subsection*{12.3.5Organizing and Accessing Origin C Functions}

\subsection*{12.3.5.1 Summary}

Techniques for using your Origin C functions.
Minimum Origin Version Required: Origin 8.0 SR0

\subsection*{12.3.5.2 What you will learn}

This tutorial will show you how to:
- Save your Origin C Function with your Project
- Associate your Programs with Visual Objects
- Load and Compile your Origin C Function from script

\subsection*{12.3.5.3 Saving your Origin C Function with your Project}

One way to load and compile your Origin C function is to save the Origin C file as an attachment to your Origin Project (*.OPJ) file. When a project file is opened, all files attached to it are separated out and stored in a temporary folder. In addition, any Origin C file that was attached is also automatically loaded into the Code Builder workspace, and compiled. The function is then ready to be called upon opening the Origin Project file.
1. Start a new Origin project file by clicking on the New Project button on the Standard Toolbar.
2. On the Standard Toolbar, click the Code Builder button \(\$\)
3. From the Code Builder menu, select File: New. This opens the New File dialog box.
4. In the top list-box, select C File.
5. In the File Name text box, type: Test. Keep the Add to Workspace check box selected. Click OK. The file Test.c is added to the workspace.
6. Select and copy the following function, and paste it into the Test.c file. Be sure to paste the text below the line that reads "//start your functions here."
```

void Plot_Data(string strTemplate, string strData)
// Create a graph window from a Template
GraphPage gp;
BOOL bOK = gp.Create(strTemplate, CREATE VISIBLE);
if(!bOK)
return;
// Attach the first layer (0) to a GraphLayer object
GraphLayer gl = gp.Layers(0);
//Attach a dataset to a Curve object
Curve crv(strData);
// Add the Curve to the graph layer
int nPlot = gl.AddPlot(crv);
if(nPlot >= 0)
{

```
```

 // Set plot color to Green(2)
 gl.DataPlots(nPlot).SetColor(2, TRUE);
 // Rescale this graph layer
 gl.Rescale();
 }
 }

```

The Plot_Data function takes two arguments: (1) the template name and (2) the name of a \(Y\) dataset to include (plot) in the layer.
7. Click the Build button to compile and link the file.
8. Drag-and-drop the file Test.c from the User subfolder branch of the Workspace tree, to the Project subfolder. (Hint: You may need to first expand the User subfolder branch to display the Test.c entry prior to dragging the file).
9. Go back to the Origin interface and save the project by clicking the Save button \(\square\) on the Standard Toolbar. Give the project the name Test.OPJ, and save it in a location of your choosing.
10. The Origin C file, Test.c, is now saved with the Project. To verify this, close the project, and go back to Code Builder. You will see that there are no entries under the Project subfolder of the Workspace tree. Now go back to Origin interface and reopen the project. Go to Code builder and verify that Test.c is now listed under the Project subfolder (Hint: you may need to expand the Project subfolder branch to see the Test.c entry).

\subsection*{12.3.5.4 Associating your Programs with Visual Objects}

You will now learn how to create a button on a worksheet and program the button to call the Origin C function in the Test.c file that you saved with the project.
1. Open the Test.OPJ project that you saved under step 9 (previous section).
2. Highlight the \(A(X)\) and \(B(Y)\) columns, right-click and select Fill Columns With: Row Numbers.
3. From the menu, select Format: Worksheet to open the Worksheet Properties dialog box.
4. In the Size tab, Worksheet Measurement branch, set the Gap from Top to \(\mathbf{4 0}\) and click OK to close the dialog.


The worksheet now has sufficient space above the column headings to add a text label.
Right-click in the area directly above the two columns and choose Add Text.
5. At the cursor, type: Plot Data.
6. Click once outside the text label to deselect it.
7. Right-click on the text label and choose Programming Control to open the Programming Control dialog box. (Hint: Please choose Label Control in Origin 7.5)
8. From the Script, Run After drop-down list, choose Button Up.
9. Type the following script in the text box at the bottom of the dialog box:
```

Plot_Data("scatter","book1_b");

```
10. Click OK.

Your text label will now look like a button.

11. Click the Plot Data button on your worksheet.
12. The Plot_Data function in your Test.c file is called, and a scatter plot is created.

Notes: The script behind the button assumes that you have data in column \(\mathrm{B}(\mathrm{Y})\) of the Data1 worksheet and that there is an associated X data set.

\subsection*{12.3.5.5 Loading and Compiling your Origin C Function from Script}

In this tutorial we learned how to save an Origin C function along with the project file and then access the function from the Origin interface. Saving an Origin C file with a project limits access to functions within that file to only that project. When a new project is opened, the functions are not available any more.

To access functions in an Origin C file that is saved on disk, the file can be programmatically loaded and compiled using LabTalk script. The script command for performing the programmatic load and compile is run.LoadOC. Refer to the LabTalk Help files (Help: Programming: Labtalk) for more information on using this command.

This concludes the Origin C Functions tutorial.

\subsection*{12.3.6Tutorial:Calculating Double Integral with NAG Functions From Origin C}

\subsection*{12.3.6.1 Summary}

Origin/OriginPro includes the complete NAG Mark 9 numerical library. This library provides multiple method for numerical integration. All functions are accessible from Origin C. In this tutorial, you will call NAG functions to perform the double integration. Note that an infinite NAG integrator is used here.

\subsection*{12.3.6.2 What you will learn}

This tutorial will show you how to:
- Call NAG functions in Origin C
- Solve definite double Integral using the NAG integration routine

\subsection*{12.3.6.3 Example and Steps}

To calculate the double integration. You need to call function in NAG library category D01 Quadrature. This category provides functions for the numerical evaluation of definite integrals in one or more dimensions. Two functions with different algorithm are available for double integral, which is nag multid quad adapt 1 and nag multid quad monte carlo 1. In this tutorial, you will learn to use them to solve the integral formula below:
\[
\int_{0}^{1} \int_{0}^{1} x y(x+y) d x d y
\]

You are recommended to read the relevant tutorial Calling NAG Functions From Origin C, to study how to run and test the code below for calculation. Then you can copy and pase the code into new created .c file in Code Builder and run the compile and build process. Below is the Origin C code with comments:

\subsection*{12.3.6.3.1 Using nag_multid_quad_monte_carlo_1}
```

\#include <Origin.h>
\#include <OC_nag.h>

```
\#define MAXCLS 20000 //maximum number of integrand evaluations to be allowed
double NAG_CALL f(Integer ndim, double x[], Nag_User *comm)
\{

\}
```

int multid_quad_monte_carlo()

```
\{
```

Integer exit_status = 0, k, maxcls = MAXCLS, mincls;

```
```

Integer ndim =2; // the number of dimensions of the integral

```
    NagError fail;
    Nag_MCMethod method;
    Nag_Start cont;
    Nag_User comm;
    double a[2], b[2], acc, *comm_arr, eps, finest;
    comm_arr=NULL;
    if (ndim < 1)
    printf("Invalid ndim. \n");
    exit_status = -1;
    return exit_status;
\}
for \((k=0 ; k<n d i m ; k++)\{\)

    \(\mathrm{b}[\mathrm{k}]=1.0 ; \quad / /\) the upper limits of integration
\}
eps \(=0.01 ;\) //the relative accuracy required
mincls \(=1000 ; / / m i n i m u m\) number of integrand evaluations to be allowed
method \(=\) Nag ManyIterations;
```

 cont = Nag_Cold;
 /* nag_multid_quad_monte_carlo_1 (d01xbc).
 * Multi-dimensional quadrature, using Monte Carlo method,
 * thread-safe
 */
 nag_multid_quad_monte_carlo_1(ndim, f, method, cont, a, b, \&mincls, maxcls,eps,
\&finest, \&acc, \&comm_arr, \&comm, \&fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_MAX_INTEGRAND_EVAL){
if (fail.code == NE_QUAD_MAX_INTEGRAND_EVAL) {
printf("Error from nag_multid_quad_monte_carlo_1
(d01xbc).\n%s\n",fail.message);
exit_status = 2;
}
//output the calculation results
printf("Requested accuracy = %7.2e\n", eps);
printf("Estimated value = %7.5f\n", finest);
printf("Estimated accuracy = %7.2e\n", acc);
printf("Number of evaluations = %6d\n", mincls);
}
else{

```

Tutorials for Origin
```

 printf("Error from nag_multid_quad_monte_carlo_1
 (d01xbc).\n%s\n",fail.message);
exit_status = 1;
}
/* Free memory allocated internally */
if (comm_arr)
NAG_FREE(comm_arr);
return exit_status;
}

```

Then you can call the functions in LabTalk Console. The results will be like this:
```

Requested accuracy = 1.00e-002
Estimated value = 0.33326
Estimated accuracy = 2.23e-004
Number of evaluations = 1552

```

\subsection*{12.3.6.3.2 Using nag_multid_quad_adapt_1}
```

\#include <OC_nag.h>
\#include <Origin.h>
\#define NDIM 2 //the number of dimensions of the integral
\#define MAXPTS 1000*NDIM //maximum number of integrand evaluations to be allowed
double NAG_CALL f(Integer n, double x[], Nag_User *comm)

```
```

 return x[0]*x[1]*(x[0]+x[1]); //define the function formula
    ```
\}
int multid_quad_adapt()
\{
```

 Integer exit_status = 0;
 Integer ndim = NDIM;
 Integer maxpts = MAXPTS;
 double a[2], b[2];
 Integer k;
 double finval;
 Integer minpts;
 double acc, eps;
 Nag_User comm;
 NagError fail;
 for (k = 0; k < 2; k++)
 {
 a[k] = 0.0; //the lower limits of integration
b[k] = 1.0; //the upper limits of integration

```

Tutorials for Origin
```

 }
 eps = 0.001;
 minpts = 0;
 nag_multid_quad_adapt_1(ndim, f, a, b, &minpts, maxpts, eps, &finval,&acc,
 \&comm, \&fail);
if (fail.code != NE_NOERROR \&\& fail.code != NE_QUAD_MAX_INTEGRAND_EVAL)
{
printf("Error from nag_multid_quad_monte_carlo_1
(d01xbc).\n%s\n",fail.message);
exit_status = 1;
return exit_status;
}
//output the calculation results
printf("Requested accuracy = %7.2e\n", eps);
printf("Estimated value = %7.5f\n", finval);
printf("Estimated accuracy = %7.2e\n", acc);
return 0;
}

```

Then you can call the functions in LabTalk Console. The results will be like this:
Requested accuracy \(=1.00 \mathrm{e}-003\)

Estimated value \(=0.33333\)
```

Estimated accuracy = 3.33e-016

```

\subsection*{12.3.7Tutorial:Calling NAG Functions From Origin C}

\subsection*{12.3.7.1 Summary}

Calling a NAG function from an Origin C function is very much like calling any other Origin C function. You must familiarize yourself with the desired NAG function to gain an understanding of what parameters the function requires to be passed as arguments and what parameters the function returns. Once familiar with the function, you must develop code that follows the function's requirements.

The NAG header file containing the function's prototype must be included, required parameters must be correctly declared, sized, and initialized, and the function call must follow the function's prototype as described in header file. The objective of this tutorial is to demonstrate how to call a NAG function from an Origin C function.

Minimum Origin Version Required: Origin 8.1 SR1

\subsection*{12.3.7.2 What you will learn}

This tutorial will show you how to:
- Understand NAG functions
- Get Ready to Debug Sample Code
- Include the NAG Header
- How to See the Declaration of NAG Function
- How to Get NAG Error Code
- How to Use Function Pointer

\subsection*{12.3.7.3 Understand NAG Functions}

The primary resource for understanding NAG functions is NAG library. The library also can be found in Origin C Reference. For example, d01sjc NAG function:
1. From the Origin menu select Help:Programming:OriginC. In the Origin C Reference book, expand the Global Functions book, expand the NAG Functions book, and choose Accessing NAG Functions Category and Help.
2. Select Quadrature (d01) category and then select nag_1d_quad_gen_1 (d01sjc) function.
3. The selected page is one PDF file. Study the nag_1d_quad_gen_1 function as needed to understand the description of the function, the function's prototype, and the description of all arguments. Sample data and an example program calling the function are also often included.

Secondary resource for understanding the Origin C NAG functions is Examples book. From the Origin menu select Help:Programming:OriginC, expand Examples book, expand Analysis book, choose Accessing NAG Functions, there are some examples to show how to call NAG functions in Origin C.

\subsection*{12.3.7.4 Get Ready to Debug Sample Code}

The best way to understand how to write an Origin C function that calls a NAG function is to step through an example function in Debug mode. Follow the steps below to set up Origin and Code Builder to execute such a sample Origin C function in Debug mode.
1. From the Code Builder menu, select File: New. This opens the New File dialog box.
2. In the File Name text box, type: TestNAG, Keep Add to Workspace checkbox is checked. Click OK. The file TestNAG.c is added to the workspace.
3. Select and copy the following function, and paste it into the TestNAG.c file. Be sure to paste the text below the line that reads "// Include your own header files here."
```

// Include your own header files here.
\#include <OC_nag.h>
// Start your functions here.
//NAG_CALL denotes proper calling convention. You may treat it like a function
pointer
//and define your own integrand
static double NAG_CALL f_callback_ex(double x, Nag_User *comm)
{
int *use_comm = (int *) comm->p;
return (x*sin(x*30.0)/sqrt(1.0-x*x/(PI*PI*4.0)));
}
void nag_d01sjc_ex()

```
```

 double a = 0.0;
 double b = PI * 2.0; // integration interval
 double epsabs, abserr, epsrel, result;
 // you may use epsabs and epsrel and this quantity to enhance your desired
 precision
// when not enough precision encountered
epsabs = 0.0;
epsrel = 0.0001;
// The max number of sub-intervals needed to evaluate the function in the
integral
// The more diffcult the integrand the larger max_num_subint should be
// For most problems 200 to 500 is adequate and recommmended
int max_num_subint = 200;
Nag_QuadProgress qp;
NagError fail;
Nag_User comm;
static int use_comm[1] = {1};
comm.p = (Pointer)\&use_comm;

```
```

 //Note:nag_1d_quad_gen (d01ajc) has been replaced by nag_1d_quad_gen_1
 (d01sjc) at Mark 25
d01sjc(f_callback_ex, a, b, epsabs, epsrel, max_num_subint,\&result,
\&abserr, \&qp, \&comm, \&fail);
// For the error other than the following three errors which are due to bad
input parameters
// or allocation failure NE_INT_ARG_LT NE_BAD_PARAM NE_ALLOC_FAIL
// You will need to free the memory allocation before calling the
integration routine again to
// avoid memory leakage
if (fail.code != NE_INT_ARG_LT \&\& fail.code != NE_BAD_PARAM \&\& fail.code !=
NE_ALLOC_FAIL)
{
NAG_FREE(qp.sub_int_beg_pts);
NAG_FREE(qp.sub_int_end_pts);
NAG_FREE(qp.sub_int_result);
NAG_FREE(qp.sub_int_error);
}
printf("%10.6f", result);
}

```

\subsection*{12.3.7.5 Include the NAG Header}
```

\#include <OC_nag.h>

```

This header file containing all the header files of NAG functions, and all type define and error code define. So just include this one function should be enough.

\subsection*{12.3.7.6 How to See the Declaration of NAG Function}

See the declaration of NAG functions from the header file:
1. Acivate TestNAG.c file that created in above section, move scoll bar to find out \#include <OC_nag.h> line.
2. Right click anywhere in the line and select Open "OC_nag.h". This opens the NAG header file.
3. Move scoll bar to find out \#include <NAG_MARK25\oc_nag_all.h> line, and also right click to select Open "NAG_MARK25\oc_nag_all.h". This opens the header file containing all nag headers at Mark25.
4. In the Search combo box NAG\nagd01.h type nagd01.h and press ENTER button to find out this line. Function d01sjc belongs to d01 category, so the header file name should be nagd01.h.
5. Right click anywhere of this line to choose Open "nagd01.h". This opens the header file including the prototype of the functions.
6. In the Search combo box, type d01sjc and press ENTER button to go to the declaration of this function.

To see the declaration of functions from NAG PDF:
- NAG PDF Online
- NAG PDF Files

\subsection*{12.3.7.7 How to Get NAG Error Code}
1. Reactivate the TestNAG.c window in Code Builder. In this file, the NagError variable fail is defined and passed as last argument to function d01sjc.
2. NAG function returns error code into NagError variable code item. In this example, can access NAG error code by fail.code.

How to know what error codes will be got:
3. Open Origin C Help from Origin menu Help: Programming: OriginC, expand Origin C Reference book, Global Functions book, NAG Functions book and choose Accessing NAG Functions Category and Help.
4. In Chapters of NAG C Library table, choose d01 to enter Quadrature page, select d01sjc in the table of this category to open the PDF help of this NAG function.
5. Drag scall bar to page down to \(\mathbf{6}\) Error Indicators and Warnings part, there list all error codes for this function and the related description. Can directly use these error codes in Origin C if included correct header file (include <OC_nag.h>, this header containing all NAG headers), for example NE_INT_ARG_LT, NE_BAD_PARAM, NE_ALLOC_FAIL used in TestNAG.c file.

\subsection*{12.3.7.8 How to Use Function Pointer}
1. Open nagd01.h file from Origin program path \OriginC\system\NAG_MARK25 folder.
2. In this file, find out the declaration of d01sjc function. The first argument type of this function is NAG_D01SJC_FUN.
3. Double-click NAG_D01SJC_FUN to high-light it. From menu choose Edit: Find in Files to open Find in Files dialog. Set settings same as the following picture, click Find button.

4. Searching result display in Output window. Double click nag_types.h line to go to this file, typedef NAG_D01_TS_FUN NAG_D01SJC_FUN line, you can find the define of NAG_D01_TS_FUN nearby.
5. The define of NAG_D01_TS_FUN is
```

typedef double (NAG_CALL * NAG_D01_TS_FUN)(double, Nag_User *comm);

```

User defined function should keep the same return type and argument list as this define. And NAG_CALL denotes proper calling convention and it should be used in your own function.
6. Activate TestNAG.c file. There is a function named \(\mathbf{f}\) _callback_ex and it used as function pointer in d01sjc as the first argument.
```

double NAG_CALL f_callback_ex(double x, Nag_User *comm)
{
int *use_comm = (int *)comm->p;
return (x*sin(x*30.0)/sqrt(1.0-x*x/(PI*PI*4.0)));

```

\subsection*{12.3.8Accessing Internal Origin Objects by Origin C}

\subsection*{12.3.8.1 Summary}

Internal Origin objects (such as Project Explorer folders, Origin windows (pages), layers, plots, graphic objects, data sets, etc.) are accessed using Origin C classes. To access or programmatically control an internal Origin object, you must attach it to an Origin \(C\) object.

To attach something to an internal Origin object you must first "find" it using the properties, methods, and collections of a container class. Common container classes include the Project, Folder, Page, GraphPage, Layer, GraphLayer, Worksheet, MatrixLayer, and Collection classes. Once found, an internal Origin object can easily be attached to an Origin C object of the appropriate type.

The internal Origin object is then programmatically controlled by manipulating the class methods and properties of the attached Origin C object. The objective of this tutorial is to demonstrate how to find particular internal Origin objects, attach things to those objects, and access the objects by manipulating the methods and properties of the attached Origin C objects.

Minimum Origin Version Required: Origin 8.1 SR1

\subsection*{12.3.8.2 What you will learn}

This tutorial will show you how to:
- Access Worksheet Related Objects
- Access Graph Related Objects

\subsection*{12.3.8.3 Accessing Worksheet Related Objects}

Familiarity with the Origin C Project class (Project.h), the Collection class (Collection.h), and the Folder class (Folder.h), is valuable when attempting to understand how to find particular internal Origin Objects. Users may find it helpful to preview these classes in the Origin C Reference: Classes book of Origin C Help or in the above header files located in the .. \Origin\OriginC \(\backslash\) system subfolder.

To begin this tutorial:
1. Download this zip file, extract it.
2. On the Standard toolbar, click the New Project button
3. On the Standard toolbar, click the Code Builder button
4. On the Code Builder menu, select File: New Workspace.
5. On the Code Builder menu, click the Open button \(\square\)
6. Open the unzipped folder created at step 1, browse to the \Origin C Examples \(\backslash\) Programming Guide\Introduction to Accessing Origin Objects folder in the Origin software directory, select AccessWorksheetObjectsTutorial.c, check the Add to Workspace check box and click Open.
7. On the Code Builder toolbar, click the Rebuild All button \({ }^{\dagger}\). This compiles and links the file.
8. On the Code Builder View menu, verify that the LabTalk Console (Command \& Results) and the Local

Variables windows are visible (the corresponding menu items should be checked).
9. From the Code Builder menu, select Tools: Customize. Select the Toolbars tab and make sure that the Debug toolbar check box is selected.
10. In Code Builder, activate AccessWorksheetObjectsTutorial.c.
11. Near the top of the file, locate and click on the line:
```

PageBase pb;

```

You can position the cursor anywhere on the line.
11. From the Code Builder menu, select Debug: Toggle Breakpoints. Alternately, press F9 or click the Toggle Breakpoint button on the Debug toolbar.

A brown circle is displayed in the gray margin to the left of the above line indicating that a Debug breakpoint has been set for that line.
12. In the Code Builder workspace, activate the LabTalk Console (Command \& Results window) and type in the following:
AccessWorksheetObjectsTutorial
13. Press ENTER to execute the function.

14. On the Debug toolbar, press the Step Into button 5
15. Press the Step Into button \({ }^{5}\) 프 repeatedly, stopping to read the comments for each statement. Periodically stop and resize and/or reposition the Local Variables window to view the current run-time value of each variable.


\subsection*{12.3.8.4 Accessing Graph Related Objects}
1. Return to the Origin workspace and, on the Standard toolbar, click the Open button \(\qquad\)
2. Locate the unzipped folder you created at step 1 of above section in this page. Browse to the \Origin \(C\) Examples \Programming Guide\Introduction to Accessing Origin Objects subfolder, select AccessGraphObjectsTutorial.OPJ, and click Open. You may be prompted to save changes to an untitled project. Click No and a worksheet and graph should open.
3. From the Code Builder menu, select File: New Workspace. Click No when prompted to save workspace changes.
4. In Code Builder, click the Open button \(\square\)
5. Locate the unzipped folder again. Browse to the Origin C Examples\Programming Guide\Introduction to Accessing Origin Objects subfolder, select AccessGraphObjectsTutorial.c, select the Add to Workspace check box, and click Open.

7. On the Code Builder View menu, verify that the LabTalk Console (Command \& Results) and the Local

Variables windows are visible (the corresponding menu items should be checked).
8. From the Code Builder menu, select Tools: Customize. Select the Toolbars tab and make sure that the Debug toolbar check box is selected.
9. In the Code Builder workspace, activate AccessGraphObjectsTutorial.c.
10. Near the top of the file locate and click on the line:
```

GraphPage gp;

```

You can position the cursor anywhere on the line.
11. From the Code Builder menu, select Debug: Toggle Breakpoints. Alternately, press F9 or click the Toggle Breakpoint button on the Debug toolbar.

A brown circle is displayed in the gray margin to the left of the above line indicating that a Debug breakpoint has been set for that line.
12. Activate the LabTalk Console (Command \& Results window) in Code Builder and type the following: AccessGraphObjectsTutorial
13. Press ENTER to execute the function.
14. On the Debug toolbar, press the Step Into button \(\leftrightarrows\)
15. Press the Step Into button \(\stackrel{\text { 프 }}{ }\) repeatedly, stopping to read the comments for each statement. Periodically stop and resize and/or reposition the Local Variables window to view the current run-time value of each variable.

This concludes the Internal Origin Objects tutorial.

\subsection*{12.3.9 Create and Update Apps for Origin}

\subsection*{12.3.9.1 Summary}

Apps are custom applications for Origin that perform specific graphing and/or analysis tasks. Origin users can browse for Apps and download and install them from the File Exchange area of the OriginLab website. Origin users can also create Apps and share with other on File Exchange. This tutorial provides the guidelines for making an App and detailed steps to build, upload and modify an App.

\subsection*{12.3.9.2 What you will learn}

This tutorial will show you how to:
- Build an App
- Upload an App to File Exchange Website
- Modify an App and Submit for Approval

\subsection*{12.3.9.3 App Files Specifications}

The following files are supported/needed for Apps:
Icon files

\section*{Icon file (Required)}

This should be a png file with size of \(32^{*} 32\) in pixels. This icon will be displayed in the Apps
Gallery window in Origin.

\section*{Small icon file (Optional)}

This should be a bmp file with size of \(16^{\star 1} 16\) in pixels, and 16 color (4 Bits). It will be available from View: Toolbars: Apps button group in Origin. It can be used as a button, by adding to a toolbar.

Programming files
X-Function, *.ogs, *.c, *.h and DLL files are supported. Note that X-Function file name should not be the same as *.c file name if both exist.

Other files
Any other files such as documentation (*.chm, *.pdf), image files, sample data, etc, can be included.

\subsection*{12.3.9.4 Building an App}
1. Locate the Apps folder under the AppData area of your Origin installation. You can enter the following command in Command/Script Window to locate this folder:
```

%@A=; // The output can be, e.g., C:\Users\XXX\AppData\Local\OriginLab\Apps\

```
2. Open the folder in the path found in step1, create a subfolder in this location. Note that the subfolder name will be used as your App name. Place all your files for the App in this subfolder.
3. Start Origin and click Code Builder button \({ }^{6 \rightarrow 4}\) in Origin main interface.
4. In Code Builder window, right click on the Apps folder in the left Workspace panel. Select Add Existing Folder from the shortcut menu and browse to add the folder created in step 2. Expand the folder in Workspace panel. All files in the folder will be listed.
Note that if you have no existing App folder, you can choose New from the shortcut menu to create a new sub-folder in Apps folder. If you right click on a file, you can choose to remove the file. Right click on the folder, and you can add more files, even files not located in current folder.

5. Right click on the newly created App folder in Code Builder's Workspace panel, and choose Generate from the shortcut menu. It will open the Package Manager dialog.

6. In Package Manager dialog, do the following:
- Package branch:

Name
Do not change the Name field, otherwise the folder name will also be changed.

\section*{Description}

Input descriptions of the App in this field. The desciptions will be shown in the file exchange web's

\section*{Summary section.}

\section*{Version}

Set current App version. You can use two decimal digits, e.g. 1.11.

Origin Version Required
Set the required Origin version. For Origin 2016, you should type 9.3 instead of 2016.
- App branch:

Icon
Set it to file name for icon to be displayed in Apps Gallery window.

Icon (Small)
Set it to file name for small icon used in toolbar.

Launch Script
LabTalk script to run after you click the App icon. If you want to open an X-Function dialog, you can write your script such as: xfname -d; You can also have your script point to a section in ogs file, and run that section, e.g. run.section(\%Afoldernamelogsname,sectionname).

Enable by Window
Specify the active window type(s) for which the App should be enabled. e.g. for Latex App, Graph window should be active.

\section*{- LabTalk Script branch:}

Specify LabTalk script for before, after installation and before uninstalling.

7. When settings are done in Package Manager, click File: Save from the menu. The .opx file will be saved. The opx name can be different from the folder name. The opx file for an App is ready now. You can simply drag-and-drop the file onto Origin to install. Note that you may need to run Origin not as administrator to be able to drop the file onto Origin.

\subsection*{12.3.9.4.1 Uploading App to File Exchange Website}

When the App package file is ready, you can upload it to File Exchange website to share with the public. To do it, follow the steps below:
1. Go to File Exchange Website, click Submit a file on the bottom right to open Submit File page. Select File Type as App and fill in other needed information, File Category, Created using Origin:, etc. Note the information contained in the App package will be automatically extracted, such as, Minimum Origin Version Required, Title, Summary.
2. Upload the App OPX package file, screenshot image, click Submit button to submit your App and create a File Exchange tool page for it.
3. You can then download the OPX file from the web page you have created, and drag-and-drop onto Origin to test it. A package ID will be assigned to the opx during the download process.
4. You can continue editing the web page for your App. Once finished, you can click Update button to update the web page.
5. When you are ready to publish your App, press the Request Approval button on the botton of Update form. You will be notified by OriginLab through email when your App has been approved. The approval status is also shown on the Update File page as indicated by OriginLab Tested, OriginLab Approved checkboxes.
6. Once your App got approved, it will be automatically shown on the Tools: Apps on file Exchange menu list.

\subsection*{12.3.9.4.2 Modifying an App}

Modify App Settings
1. Select Tools: Package Manager from Origin menu. Select Tools: Browse Installed Package in Package Manager dialog's menu. Select the App and click Open button.
2. You can change the settings in the dialog. If your files in the folder are modified, you can click Repack Files button.
3. Click File: Save to save the App OPX package.

Add, Remove or Change Files in App Folder
When you need to add files, remove files or change file names in App folder, you can perform these operations by right clicking on the App folder in the Workspace panel on Code Builder and selecting corresponding option from the shortcut menu. When done, click Generate from the shortcut menu to regenerate the App package.
Note that when removing files or changing file names, original files should be kept in the App folder under path \(C: \\) Users \(\backslash X X X \backslash A p p D a t a \ L o c a l \backslash O r i g i n L a b \backslash A p p s \backslash\) even if they are not being used, otherwise old settings in the opx will not be kept in Package Manager dialog when you click Generate button.

\section*{Upload Modified OPX to File Exchange Page}

Log in Origin website, go to the File Exchange page you have created for your App and upload the updated OPX file to the File Exchange page. Update the web page as needed, including notes on what has been updated in current App version. Users would know this update from menu Tools: Apps on File Exchange: * YourApp (installed) as indicated by the asterisk symbol * if this App was previously installed.

\section*{* Heat Map with Dendrogram (installed)}

Request Approval from OriginLab
Click the Request Approval button in the File Exchange webpage of your App and wait for OriginLab to notify you.

\subsection*{12.4X-Functions}

\subsection*{12.4.1X-Functions}
- Command Window and X-Functions
- Introduction to X-Functions
- How to Create a Wizard

\subsection*{12.4.2Command Window and X-Functions}

\subsection*{12.4.2.1 Summary}

Many of Origin's analysis tools and other data processing tools have been implemented using X-Functions. The Command Window provides a convenient way to run these functions.

Another important use for the Command Window is to send LabTalk script commands to Origin. Script commands can range from simple math and data operations, to user-created X-Functions or Origin C functions.

Minimum Origin Version Required: Origin 8.0 SR6

\subsection*{12.4.2.2 What you will learn}

This tutorial will introduce you to the Command Window and show you how to:
- Perform simple calculation
- Access worksheet cells/columns
- Access X-Functions

\subsection*{12.4.2.3 Command Window}

The Command Window consists of two panels: the Command Panel and History Panel:


The Command Window is normally located at the bottom right corner of the screen, but if it is not visible, you can access it by pressing Alt+3 or by selecting View: Command Window.

When typing in the Command Panel, the Auto Complete support allows you to choose among X-Function script commands and OGS files in the current working folder. The command and OGS file name will be respectively preceded by Xf and LT. You can move up and down the list using the arrow keys; pressing Enter selects the item. After your selection, press the space bar and the Auto Complete now shows you the available options for the command.

\subsection*{12.4.2.4 Examples}

\subsection*{12.4.2.4.1 Perform Calculations}

The Command Window can be used as a calculator or to access any of Origin's mathematical functions. See the examples below.

\section*{Single Line}

One of the more basic uses for the Command Window is as an interface to perform simple calculations. For example, type the following:
\(2+2=\)

Press ENTER. Origin returns
\(2+2=4\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{--m Command Window} & - \(\times\) \\
\hline \multicolumn{3}{|l|}{//--9/16/2007} & \[
\left\lvert\, \begin{aligned}
& \gg 2+2= \\
& 2+2=4 \\
& \gg
\end{aligned}\right.
\] & \\
\hline \multicolumn{5}{|l|}{\(2+2=\);} \\
\hline \(\leqslant\) & - IIII & \(\geqslant\) & & \\
\hline
\end{tabular}

\section*{Multiple Lines}

If you are typing multiple lines of scripts, first edit it in Code Builder (View:Code Builder) or any text editor, such as Windows Notepad, ending each line with a semi-colon, and then Copy + Paste the script in the Command Window, and press ENTER to execute. For example, paste the following script in the Command Window and ENTER:
```

sum = 0;
loop(ii, 1, 10)
{
sum += ii;
}
sum = ;

```

Origin returns:
SUM \(=55\)
```

-man Command Window - X

```


\section*{Functions}

Any mathematical function, built-in as well as user-created, can be executed from the Command Window. For example, type:
```

ln(10) =

```

Origin returns natural logarithm value of 10 .


\subsection*{12.4.2.4.2 Access Worksheet Values}

You can also use the Script Window to read and write worksheet values, or to perform math operations on datasets.
1. Enter the following data into a fresh worksheet:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\#\#\#\# Book1} & \multicolumn{2}{|l|}{\(\square \square\)} \\
\hline & A(0) & B(1) & 人 \\
\hline Long Name & & & \\
\hline Units & & & \\
\hline Comments & & & \\
\hline 1 & 1 & 6 & \\
\hline 2 & 2 & 7 & \\
\hline 3 & 3 & 8 & \\
\hline 4 & 4 & 9 & \\
\hline 5 & 5 & 10 & \(\checkmark\) \\
\hline  & &  & \\
\hline
\end{tabular}
2. To return the value in the first cell of the second column, type the following:
\(\operatorname{cell}(1,2)=\)
3. Press ENTER. Origin returns:
\(\operatorname{CELL}(1,2)=6\)
You can also use the column name and row number to reference cell values.
4. Type the following:
\(\operatorname{col}(B)[1]=\)
5. Press ENTER. Origin returns:
\(\operatorname{COL}(B)[1]=6\)

Notes: In addition to using the column name, you can also use the dataset name. In LabTalk, the syntax for naming datasets is worksheetName_columnName. So, For example, Book1_A[1]= would return the first element of column A in worksheet Data1. Also, if the worksheet that you are referencing is the active window, you can use the LabTalk string variable \%H, in place of the worksheet name. For example, \%H_A[1].

To subtract the value in row 1 of column \(A\), from all the values in column \(B\)...
6. Type the following:
\(\operatorname{col}(B)=\operatorname{col}(B)-\operatorname{col}(A)[1]\)
7. Press ENTER. Your worksheet now reads:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\#\#\#\# Book1} & \multicolumn{2}{|l|}{\(\square \square\)} \\
\hline & A(k) & B(1) & 人 \\
\hline Long Name & & & \\
\hline Units & & & \\
\hline Comments & & & \\
\hline 1 & 1 & 5 & \\
\hline 2 & 2 & 6 & \\
\hline 3 & 3 & 7 & \\
\hline 4 & 4 & 8 & \\
\hline 5 & 5 & 9 & \(\checkmark\) \\
\hline (1) \({ }^{4}\) Sheet 1 & & ||< \(\square^{\text {l }}\) > & \\
\hline
\end{tabular}

Let's use what we have learned about executing multiple lines of script in the Script window. We will multiply every value in a column of data by some constant \(b\).
8. Type the following:
b=3;

Press CTRL+ENTER. Recall that this gives us a carriage return without executing the command.
9. Now type:
\(\operatorname{col}(A)=\operatorname{col}(A) * b ;\)

\section*{Again, Press CTRL+ENTER.}
10. Choose Edit from the Script window's menu bar. Script Execution should have a check mark next to it; if not, single-click on the menu item to place a check mark there.
11. Now, select the two lines of script that you just entered into the Script window and press ENTER.

Your worksheet now reads:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\# Book1} & \multicolumn{3}{|r|}{\(\square \square\)} \\
\hline & A(A) & B () & А \\
\hline Long Name & & & \\
\hline Units & & & \\
\hline Comments & & & \\
\hline 1 & 3 & 5 & \\
\hline 2 & 6 & 6 & \\
\hline 3 & 9 & 7 & \\
\hline 4 & 12 & 8 & \\
\hline 5 & 15 & 9 & \(\checkmark\) \\
\hline \begin{tabular}{|l|l|}
\hline 4 & Sheet 1 \\
\hline
\end{tabular} & & \(1 \leqslant 0>\) & . \\
\hline
\end{tabular}

Notes: The following C notation is also supported:
\[
b=3 ;
\]
\(\operatorname{col}(\mathrm{A})^{*}=\mathrm{b}\);

You can also use linear interpolation or extrapolation on a specified \(X\) dataset to find the corresponding
interpolated or extrapolated value in a \(Y\) dataset. This requires using a new notation with parentheses () instead of brackets [ ].

In this example, book1_b is a \(Y\) dataset and (4) is a value in an \(X\) dataset (book1_a) for which you want to find a corresponding, interpolated \(Y\) value.
12. Type the following:
book1_b (4) =
13. Press ENTER. Origin returns:
\(B O O K 1 \_B(4)=5.333333\)


This is a line plot of our simple worksheet data. You can see that our interpolated \(Y\) value - the one corresponding to \(\mathrm{X}=4\) - is 5.333333 .
14. If the columns you work with are in different worksheet/workbook, you should use the range variables to represent the worksheet columns. For example, this script calculates the sine value on Book1 column A, and puts the result in Book2 column A (You must have Book2 before hitting Enter):
15.



\subsection*{12.4.2.4.3 Access X-Functions}

Origin 8 provides a large collection of \(X\)-Functions for performing a wide variety of data processing tasks. Of this collection, many of the X-Functions are accessible from LabTalk script. The functions accessible from script provide a powerful environment for users to create custom script code for their routine tasks.

X-Functions that are accessible from script can be listed in the Command Window, and you can also obtain help on the command syntax as well as make use of auto completion of commands for such functions.

X-Functions accept data range string or range variable for specifying source and destination data for the operation. For example, the smooth X -Function under signal processing can be accessed from the Command Window as follows:
1. Import the file \Samples \(\backslash\) Signal Processing \(\backslash\) Signal with Shot Noise.dat.
2. In the Command Window, type the following:


When you press ENTER, the result will append to the source worksheet.

3. For help in using this smooth X-Function, you can type

to open the corresponding Help.

\subsection*{12.4.3Introduction to X-Functions}

\subsection*{12.4.3.1 Summary}

X-Functions provide a structured programming environment that offers a framework for building Origin tools. Different from the simple GetN box, creating tools by using X-Functions allows the user to focus on the actual data processing code and not have to worry about codes for the user interface.

Most of the dialogs/functions in Origin 8 are X-Functions, and many of them can be run from both menu and command line mode. The flexibility of running \(X\)-Functions makes them an attractive approach to customizing Origin

\subsection*{12.4.3.2 What you will learn}
- How to create an X-Function
- How to make the X-Function script accessible
- How to use the X-Funciton in dialog mode

\subsection*{12.4.3.3 Create an X-Function}
1. Select Tools: X-Function Builder or press F10 to open the X-Function Builder dialog
2. Set Name, Label and Data of the 1st variable as ix, Source and <active>
3. Right click in the list panel and select Add Variables from the context menu.
4. Set Name, Label, Input/Output and Data of the 2nd variable as ox, Destination, Output and <new>
5. Select File:Save to save the x-function as vcopy

6. Click \({ }_{\text {雨 }}\) to open Code Builder
7. Add the following codes in the vcopy function in code builder
```

void vcopy(const vector\& ix, vector\& ox)

```
```

 if (!ix || !ox)
 XF_THROW(CER_NO_DATA);
 ox = ix;
    ```
\}

\subsection*{12.4.3.4 Making the X-Function Script Accessible}
1. Click the Return to Dialog button in Code Builder
2. In the \(\mathbf{X}\)-Function Builder, save your changes
3. Open the X-Function in Tree View by clicking \(\mathbb{F}^{\mathbb{E}}\)
4. Open the Usage Context branch. Make sure the Labtalk check box is selected

5. Save the \(\mathbf{x}\)-function and close the \(\mathbf{X}\)-Function Dialog
6. Fill column \((A)\) with row numbersw in the active worksheet (Highlight column(A), right-click and select Fill Column with: Row Numbers)
7. Type the following script in the command window, Column(A) will be copied to Column(B)
vcopy col(a) col (b)

\subsection*{12.4.3.5 Using the X-Function in Dialog Mode}
1. Open the X-Function Dialog and open VCOPY.OXF in Tree View
2. Open the Usage Context branch
3. Open the Menus branch, make sure Simple GetNBox is selected from the Auto GetN Dialog list box

4. Save the \(x\)-function and close the \(\mathbf{X}\)-Function Dialog
5. Type following script in the command window, Dialog of VCOPY.OXF will be opened vcopy -d


\subsection*{12.4.4How to Create a Wizard}

\subsection*{12.4.4.1 Summary}

A wizard is a graphical user interface that includes a series of dialogs to direct a user to complete a mission step by step. A wizard makes a complex task easier to perform. Origin provides several classes in Origin C for users to develop a wizard. The dialog for each step in the wizard can be created using an X-Function.

In this example, the wizard will perform a normality test and then a one-sample t-test for data in a column. The normality test's result can be shared in one-sample t-test.

Note: This tutorial requires the Develop Kit.

Minimum Origin Version Required: Origin 8.1SR0

\subsection*{12.4.4.2 What you will learn}
- How to create an X-Function.
- How to share a variable or a DataRange in different steps.
- How to call an X-Function in OriginC.
- How to create a wizard.

\subsection*{12.4.4.3 Create four X-Functions}
1. Select Tools: X-Function Builder or press F10 to open X-Function Builder dialog
2. Add the variables as follows and save the X-Function as "StatTest" in the User Files folder, User Files\XFunctions\Statistics\Hypothesis Testing.

3. Click the New X-Function Wizard button. Add the variables as follows and save the X-Function as "StatTestWizGoal" in the User Files folder, User Files\X-Functions\Statistics\Hypothesis Testing.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(\square\) x-Function Builder - Statistics Hypothesis Testing: StatTes... \(\square \times\)} \\
\hline \multicolumn{8}{|l|}{File Tools} \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{X-Function StatestWizGoal} \\
\hline \multicolumn{8}{|l|}{Variables: (right-click to add/del)} \\
\hline & Name & Label & Input/Output & Data Type & Data & Control & Option String \\
\hline & goal & Goal & Input & int \(\checkmark\) & 0 & BothlOnly t -test & \(\mathrm{P}: 0\) \\
\hline & input & Input & Input & Range - & <active> & & P:0 \\
\hline & \(n \mathrm{X}\) FCorePointer & & Input & int \(\bullet\) & & & \(\mathrm{V}: 0 \mathrm{~T}: 1\) \\
\hline & & & & & & & \(\geq\) \\
\hline
\end{tabular}
4. Click the New X-Function Wizard button. Add the variables as follows and save the X-Function as "NormalityTest" in the User Files folder, User Files\X-Functions\Statistics\Hypothesis Testing.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\(\square\) X-Function Builder - Statistics Hypothesis Testing: Normalit... \(\square \times\)} \\
\hline \multicolumn{9}{|l|}{File Tools} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{X-Function NormalityTest} \\
\hline \multicolumn{3}{|l|}{Variables: (right-click to add/del)} & \multicolumn{6}{|r|}{Shapiro-Wilk|Kolmogorov-Smirnov|Lilliefors} \\
\hline & Name & Label & Input & utput Data Type & Data & Control & Option & String \\
\hline & type & Type & Input & - int \(\quad\) & Shapirowilk & hogorov & & \\
\hline & nXFCoreP & & Input & \(\checkmark\) int \(*\) & <unassigned> & & \(\mathrm{V}: 0\) & T:1 \\
\hline & stat & Statistics & Outpu & - double \({ }^{*}\) & & & G:-Out & put:U:n \\
\hline & df & zes of Fre & Outpu & - double - & & & U & :n \\
\hline & prob & P-value & Outp & - double - & & & & In \\
\hline \multicolumn{9}{|l|}{Degrees of Freedom} \\
\hline
\end{tabular}
5. Click the New X-Function Wizard button. Add the variables as follows and save the X-Function as "OnetTest" in the User Files folder, User Files \X-Functions\Statistics\Hypothesis Testing.


Note that the X－Functions NormalityTest and OnetTest have the same variable＂prob＂，which is a shared variable and will be declared in the source file．

\section*{12．4．4．4 Update X－Function＇s Property in Tree View}

1．Open the X－Function StatTest．Click the TreeView button \(\mathbb{F}_{\text {E }}\) to open the Tree View．Make the following settings in the Tree View．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\square \mathrm{X}\)－Function Builder－StatisticsHypothesis Testing：StatTest（U．．．\(\square \square \times\)} \\
\hline \multicolumn{2}{|l|}{File Tools} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \(\wedge\) \\
\hline Name & StatTest \\
\hline Description & 1 Stat Test \\
\hline Author & \\
\hline Auto Compile Dependent Files & \(\checkmark\) \\
\hline \(\square\) Usage Context & \\
\hline Labtalk & \(\square\) \\
\hline Worksheet Selection & \(\square\) \\
\hline W Graphic Object Events & \(\square\) \\
\hline T Theme & \\
\hline 田Menus & 2 Main Menus \(v\) \\
\hline \(\square\) Windows & 3 回 \\
\hline Graph & \(\square\) \\
\hline Worksheet & 4 図 \\
\hline ＜ & \(>\) \\
\hline
\end{tabular}

2．Click the Save OXF file button to save the X－Function．
3．Open the X－Function StatTestWizGoal，NormalityTest and OnetTest respectively in X－Function Builder． Click the TreeView button 医 and type＂Select Wizard Goal＂，＂Normality Test＂and＂One－Sample t－test＂ in the Description edit box of each X－Function＇s Tree View，which will be shown in the dialogs．

\section*{12．4．4．5 Create Files for the Wizard}
－Click the Code Builder button on the Standard toolbar．In Code Builder，click the New button．In the New File dialog，select H File，click the Browse button，and select the User Files folder，User Files \(\backslash\) OriginC as the new header file＇s Location．Then type StatTestWiz in the File Name edit box．Click OK to close the dialog．

Add the following script to StatTestWiz．h file．
```

\#ifndef __STAT_TEST_WIZ_H__
\#define __STAT_TEST_WIZ_H_
\#include <..\OriginLab\XFWiz.h>
\#include <..\OriginLab\XFCore.h>
\#include <..\OriginLab\XFWizard_utils.h>
class StatTestWizCore : public XFCore
{
public:
StatTestWizCore();
public:
void ChangeGoal(int nGoal);
DataRange GetRange();
int nStep;
protected:
};

```

\section*{Tutorials for Origin}
```

int stat_test_run_wiz_nodlg(LPCSTR lpcszThemeName = NULL, const XFWizTheme
*pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID = 0);
int stat_test_open_wiz_dlg(LPCSTR lpcszThemeName = NULL, const XFWizTheme
*pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID = 0);
\#endif
//__STAT_TEST_WIZ_H

```

Click the Save button to save StatTestWiz.h file.
- Repeat the same operation to create a new C File, StatTestWiz.c .

Add the following script to StatTestWiz.c file.

```

\#include <..\OriginLab\XFWizManager.h>
\#include <..\OriginLab\WizOperation.h>
\#include <..\OriginLab\XFWizNavigation.h>
\#include <..\OriginLab\XFWizScript.h>
\#include <..\OriginLab\XFWizDlg.h>

```
```

// Include your own header files here.
\#include "StatTestWiz.h"
enum
{
GOAL_ALL = 0,
GOAL_SIMPLE,
};
//Names of three X-Functions
\#define STR_STEP_GOAL "StatTestWizGoal"
\#define STR_STEP_Normal "NormalityTest"
\#define STR_STEP_TTest "OnetTest"
//Names of steps shown in the wizard.
\#define STR_LABEL_STEP_GOAL "Goal"
\#define STR_LABEL_STEP_Normal "Normality Test"
\#define STR_LABEL_STEP_TTest "One-Sample t-test"

```

```

//Class StatTestWizTheme
class StatTestWizTheme : public XFWizTheme

```

\section*{Tutorials for Origin}
\{
public:
```

 StatTestWizTheme();
    ```
\};
```

//Name of the variable prob shared by X-Functions NormalityTest and OnetTest
\#define STR_GETN_VAR_SHARED_NProb "prob"

```
StatTestWizTheme::StatTestWizTheme()
:XFWizTheme()
\{
    m_saSharedList.Add (STR_GETN_VAR_SHARED_NProb); //Add the shared variable
\}

class StatTestWizInputOutputRange : public XFWizInputOutputRange
\{
\};

//Class StatTestWizManager
```

\#define STR_CLASS_NAME_TEST "StatTestWiz"
\#define TEST_VERSION_NUMBER 1.0
class StatTestWizManager : public XFWizManager
{
public:
StatTestWizManager(LPCSTR lpcszThemeName = NULL, const XFWizTheme *pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwUIDOp = 0);
protected:
virtual double GetVersion() { return TEST_VERSION_NUMBER; }
virtual XFCore* CreateXFCore() { return new StatTestWizCore; }
virtual XFWizTheme* CreateXFWizTheme() { return new StatTestWizTheme; }
virtual XFWizInputOutputRange* CreateXFWizInputOutputRange()
{ return new StatTestWizInputOutputRange; }
virtual string GetClassName() { return STR_CLASS_NAME_TEST; }
};
StatTestWizManager::StatTestWizManager(LPCSTR lpcszThemeName, const XFWizTheme
*pXFWizTheme, const XFWizInputOutputRange *pXFWizIO, DWORD dwUIDOp)
: XFWizManager(lpcszThemeName, pXFWizTheme, pXFWizIO, dwUIDOp)
{

```
```

 StringArray saMapXFNames = {STR_STEP_GOAL, STR_STEP_Normal, STR_STEP_TTest};
 StringArray saMapXFLabels = {STR_LABEL_STEP_GOAL, STR_LABEL_STEP_Normal,
 STR_LABEL_STEP_TTest};
 m_saMapXFNames = saMapXFNames;
 m_saMapXFLabels = saMapXFLabels;
 ASSERT(m_saMapXFNames.GetSize() == m_saMapXFLabels.GetSize());
StringArray saDefaultXFNames = {STR_STEP_GOAL, STR_STEP_Normal, STR_STEP_TTest};
m_saDefaultXFNames = saDefaultXFNames;
m_strRunDlgName = L("Stat Test");
}

```
```

//Class StatTestWizCore
StatTestWizCore::StatTestWizCore()
:XFCore()
{
StringArray vsXFsRecalculateShown = {STR_STEP_GOAL};
m_vsXFsRecalculateShown = vsXFsRecalculateShown;
nStep = GOAL_ALL;

```
```

//Select steps in the Goal Step
void StatTestWizCore::ChangeGoal(int nGoal)
{
XFWizNavigation *pXFWizNavg = (XFWizNavigation *)GetXFWizNavigation();
ASSERT(pXFWizNavg);

```
    nStep = nGoal;
    if ( pXFWizNavg )
    \{
    StringArray saXFNames;
    saXFNames.Add (STR_STEP_GOAL);
    switch (nGoal)
    \{
    case GOAL_ALL:
        saXFNames.Add(STR_STEP_Normal);
        saXFNames.Add(STR_STEP_TTest);
        break;
    case GOAL_SIMPLE:
        saXFNames.Add(STR STEP TTest);

Tutorials for Origin
```

 break;
 }
 pXFWizNavg->SetSteps(saXFNames);
 }
 }
//Get input DataRange in the Goal Step.
DataRange StatTestWizCore::GetRange()
{
XFWizNavigation *pXFWizNavg = (XFWizNavigation*)GetXFWizNavigation();
XFWizInputOutputRange* pIORange = pXFWizNavg->GetXFWizInputOutputRange();
DataRange drInput;
if(!pIORange)
{
error_report("Fail to get io ranges!");
return drInput;
}
Array<DataRange\&> drs;

```
```

 //Get input DataRange.
 if(!pIORange->Get(&drs, STR_STEP_GOAL, true))
 {
 error_report("Fail to get range from WizCore!");
 return drInput;
 }
 drInput = drs.GetAt(0);
 return drInput;
 }

```

```

int stat_test_run_wiz_nodlg(LPCSTR lpcszThemeName, const XFWizTheme *pXFWizTheme,
const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID)
{
TEMPLATE_run_wiz_nodlg(StatTestWizManager, lpcszThemeName, pXFWizTheme,
pXFWizIO, dwOPUID)
}

```
```

int stat_test_open_wiz_dlg(LPCSTR lpcszThemeName, const XFWizTheme *pXFWizTheme,
const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID)
{
TEMPLATE_open_wiz_dlg(StatTestWizManager, lpcszThemeName, pXFWizTheme, pXFWizIO,
dwOPUID)
}
int stat_test_run_wiz(UINT msg, const XFWizTheme *pXFWizTheme, const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID, int nExeMode)
{
TEMPLATE_run_wiz(StatTestWizManager, msg, pXFWizTheme, pXFWizIO, dwOPUID,
nExeMode)

```
\}

Click the Save button to save StatTestWiz.c file.
Note that StatTestWiz.c should be compiled after the X-Function StatTest is compiled, since the included files in StatTestWiz.c are not yet in the workspace until the X-Function StatTest is compiled. In fact StatTestWiz.h is included in X-Function StatTest, so StatTestWiz.c will be compiled automatically when X-Function StatTest is compiled.

\subsection*{12.4.4.6 Add Script for X-Functions}

\subsection*{12.4.4.6.1 Script for X-Function StatTest}

In the X-Function Builder, click the Open button and open the X-Function StatTest. Click the Edit XFunction in Code Builder and add the following script.
- Include header files
```

\#include <..\OriginLab\XFWiz.h>
\#include <..\OriginLab\WizOperation.h>

```
```

\#include <..\OriginLab\XFCore.h>
\#include <..\OriginLab\XFWizNavigation.h>
\#include <..\OriginLab\XFWizManager.h>
\#include <..\OriginLab\XFWizScript.h>
\#include <..\OriginLab\XFWizDlg.h>
\#include <..\OriginLab\XFWizard_utils.h>
\#include <..\OriginLab\WksOperation.h>
\#include <event_utils.h>
\#include "StatTestWiz.h"

```
- StatTest()

Add the function body, which specifies the dialog mode.
```

if(script)

```
    stat_test_run_wiz_nodlg(tn);
else
    stat_test_open_wiz_dlg(tn);
- StatTest_before_execute()

Add the function body, which determines not to show this dialog before the wizard is opened.
```

nRet = XFEVT_PROCEED_NO_DLG;

```

Click Compile button to compile the file. Then click Return to Dialog button to return to X-Function Builder. In the X-Function Builder, click Save OXF file button to save the X-Function.

\subsection*{12.4.4.6.2 Script for X-Function StatTestWizGoal}

Open the X-Function StatTestWizGoal. Click Edit X-Function in Code Builder button, add the following script.
- Include header files
```

\#include "StatTestWiz.h"

```
- Add a static function _check_input()

This function is used to check whether the input DataRange is a single column.
```

static bool _check_input(const TreeNode trGetN, string\& strErr)
{
TreeNode trRange = trGetN.input;
DataRange drInput;
drInput.Create(trRange.strVal);
if(drInput.GetNumRanges() == 0)
{
strErr = "Input can't be empty, and it should be a valid column.";
return false;

```
```

 }
 else
 {
 if(drInput.GetNumRanges() == 1)
 {
 Worksheet wksInput;
 int nC1, nC2;
 drInput.GetRange(wksInput, nC1, nC2);
 if(nC1 == nC2)
 return true;
 }
 strErr = "Please select one column.";
 return false;
 }
 }

```
- StatTestWizGoal_event1()

Add the function body, which updates the dialog.
```

StatTestWizCore* pstatwc = (StatTestWizCore*)get_xf_core_handler(trGetN);
ASSERT(pstatwc);

```
```

//Update the Wizard page.
if (0 == lstrcmp(lpcszNodeName, "goal"))
pstatwc->ChangeGoal(trGetN.goal.nVal);
//Error message is shown at the bottom of the dialog,
//and OK button is disenabled for incorrect choice of DataRange.
bOKEnable = check input(trGetN, strErrMsg);
return false;

```

Click Compile button to compile the file. Then click Return to Dialog button to return to X-Function Builder, and click Save OXF file button to save the X-Function.

\subsection*{12.4.4.6.3 Script for X-Function NormalityTest}

Open the X-Function NormalityTest. Click the Edit X-Function in Code Builder button and add the following script.
- Include header files
```

\#include "StatTestWiz.h"

```
```

\#include <XFbase.h>

```
- Add a static function _update_GUI()

This function is used to update the dialog's edit boxes for normality test result.
```

static void _update_GUI(TreeNode\& trGetN)

```
```

 vector vRes;
 vRes = _norm_test(trGetN.nXFCorePointer.nVal, trGetN.type.nVal);
 trGetN.stat.dVal = vRes[0];
 trGetN.df.dVal = vRes[1];
 trGetN.prob.dVal = vRes[2];
 }

```
- Add a static function _update_strErr()

This function is used to update the string shown at the bottom of the dialog.
```

static void _update_strErr(const TreeNode tr, string\& strErr)
{
if(tr.prob.dVal >= 0.05 \&\& tr.prob.dVal <= 1)
strErr = "At the 0.05 level, the data was significantly drawn from a
normally distributed population.";
else if(tr.prob.dVal < 0.05 \&\& tr.prob.dVal >= 0)
strErr = "At the 0.05 level, the data was not significantly drawn from a
normally distributed population.";
else
strErr = "There is not enough information to draw a conclusion.";
}

```

Tutorials for Origin

Note that the string is divided into two lines shown in the page. It should be a command of one line in the script.
- Add a static function _norm_test()

This function is used to perform Normality Test using related X-Functions.
```

static vector _norm_test(const int nXFCorePointer, const int nType)
{

```
```

 StatTestWizCore* pstatwc =
    ```
    StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
    ASSERT(pstatwc);
```

 ASSERT(pstatwc);
    ```
    vector vRes(3);
    vRes [2] = -1;
    DataRange drInput;
    drInput = pstatwc->GetRange();
    if( !drInput )
        return vRes;
    vector<string> vsXFName = \{"swtest","kstest","lillietest"\};
    XFBase xfNorm(vsXFName[nType]);
    if( !xfNorm.SetArg("irng", drInput) )
    \{
        error_report("Failed to set argument image type");
```

 return vRes;
 }
if(!xfNorm.SetArg("stat", vRes[0]))
{
error_report("Failed to set argument image type");
return vRes;
}
if(!xfNorm.SetArg("df", vRes[1]))
{
error_report("Failed to set argument image type");
return vRes;
}
if(!xfNorm.SetArg("prob", vRes[2]))
{
error_report("Failed to set argument image type");
return vRes;
}
f(!xfNorm.Evaluate())
{
error_report("Failed to evaluate the stats X-Function.");
return vRes;

```
\}
- NormalityTest()

Update the function body, which exports the result into a worksheet when the Next button is pressed.
```

 DataRange drInput;
 StatTestWizCore* pstatwc =
 (StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
ASSERT(pstatwc);
drInput = pstatwc->GetRange();
if(!drInput)
return;
string strBook, strSheet;
if(!drInput.GetBookSheet(strBook, strSheet))
{
error_report("Workbook and worksheet names can't be obtained.");
return;
}
WorksheetPage wpData(strBook);

```
```

 int nLayer = wpData.AddLayer("Normality Test");
 if(nLayer >= 0)
 {
 Worksheet wksRes = wpData.Layers(nLayer);
 vector<string> vsTypeName = {"Shapiro-Wilk","Kolmogorov-
 Smirnov","Lilliefors"};
vector<string> vsNProb = {"Prob<W", "Prob>D", "Prob>D"};
vector<string> vsParaName = {"Statistic", "DF", ""};
vsParaName[2] = vsNProb[type];
vector vRes;
vRes = _norm_test(nXFCorePointer, type);
wksRes.Columns(1).SetLongName(vsTypeName[type]);
for(int ii=0; ii<3; ii++)
{
wksRes.SetCell(ii, 0, vsParaName[ii], false);
wksRes.SetCell(ii, 1, vRes[ii]);
}
}

```
else
\{
```

 error report("New worksheet can't be created.");
    ```
\}
- NormalityTest_event1()

Update the function body, which will update the results in the dialog as the method of normality test changes. Strings shown at the bottom of the dialog will also be updated.
```

_update_GUI(trGetN);
_update_strErr(trGetN, strErrMsg);
return true;

```
- NormalityTest_before_execute()

Update the function body, which will make the edit boxes for results grayed out, and show the result in the dialog.
```

trGetN.stat.Enable = false;
trGetN.df.Enable = false;
trGetN.prob.Enable = false;

```

Click the Compile button to compile the file. Then click the Return to Dialog button to return to X-Function Builder, and click the Save OXF file button to save the X-Function.

\subsection*{12.4.4.6.4 Script for X-Function OnetTest}

Open the X-Function OnetTest. Click the Edit X-Function in Code Builder button and add the following script.
- Include header files
```

\#include "StatTestWiz.h"

```
\#include <XFbase.h>
- Define strings
```

const vector<string> vsNull = {"Mean = ","Mean <= ","Mean >= "};
const vector<string> vsAlter = {"Mean <> ","Mean > ","Mean < "};
const vector<string> vsAcceptNull = {"Not significantly different from","Not
significantly greater than","Not significantly less than"};
const vector<string> vsRejectNull = {"significantly different from","significantly
greater than","significantly less than"};
const vector<string> vsProb = {"Prob>|t|", "Prob>t", "Prob<t"};

```
- Add a static function _update_null()

This function is used to update the Null edit box.
```

static void update null(TreeNode\& trGetN, bool bMean = false)
{
string strNull;
strNull = vsNull[trGetN.tail.nVal] + ftoa(trGetN.mean.dVal);
trGetN.null.strVal = strNull;

```
\{
```

 string strAlter = vsAlter[0] + ftoa(trGetN.mean.dVal) + "|";
 strAlter = strAlter + vsAlter[1] + ftoa(trGetN.mean.dVal) + "|";
 strAlter = strAlter + vsAlter[1] + ftoa(trGetN.mean.dVal);
 trGetN.tail.SetAttribute(STR_COMBO_ATTRIB, strAlter);
 }
 }

```
- Add a static function _check_sig_level()

This function is used to check the Significance Level edit box value.
```

static bool _check_sig_level(TreeNode\& trGetN, string\& strErr)
{
if(trGetN.siglevel.dVal > 0 \&\& trGetN.siglevel.dVal < 1)
{
return true;
}
else
{
strErr = "Significance Level should be between 0 and 1.";
return false;

```
```

 }
    ```
\}
- Add a static function _update_strErr()

This function is used to define the string for the conclusion of t -test at the bottom based on P -value.
```

static void _update_strErr(const TreeNode tr, string\& strErr)
{
if(tr.tprob.dVal >= tr.siglevel.dVal \&\& tr.tprob.dVal <= 1)
strErr.Format("Null Hypothesis is %s%s.\r\nAlternative Hypothesis is %s%s.
At the %s level, the population mean is %s the test mean(%s).",
vsNull[tr.tail.nVal], ftoa(tr.mean.dVal), vsAlter[tr.tail.nVal],
ftoa(tr.mean.dVal),
ftoa(tr.siglevel.dVal), vsAcceptNull[tr.tail.nVal], ftoa(tr.mean.dVal));
else if(tr.tprob.dVal < tr.siglevel.dVal \&\& tr.tprob.dVal >= 0)
strErr.Format("Null Hypothesis is %s%s.\r\nAlternative Hypothesis is %s%s.
At the %s level, the population mean is %s the test mean(%s).",
vsNull[tr.tail.nVal], ftoa(tr.mean.dVal), vsAlter[tr.tail.nVal],
ftoa(tr.mean.dVal),
ftoa(tr.siglevel.dVal), vsRejectNull[tr.tail.nVal], ftoa(tr.mean.dVal));
else
strErr = "There is not enough information to draw a conclusion.";
}

```

Note that the command is divided into several lines shown in the page. It should be a command of one line in the script.
- Add a static function _update_GUI()

This function is used to update edit boxes for results in the dialog.
```

static void _update_GUI(TreeNode\& trGetN)
{
vector vRes;
vRes = _one_sample_t_test(trGetN.nXFCorePointer.nVal, trGetN.mean.dVal,
trGetN.tail.dVal, trGetN.siglevel.dVal);
trGetN.stat.dVal = vRes[0];
trGetN.df.dVal = vRes[1];
trGetN.tprob.dVal = vRes[2];
trGetN.lcl.dVal = vRes[4];
trGetN.ucl.dVal = vRes[5];
}

```
- Add a static function _one_sample_t_test()

This function is used to perform One-Sample t-Test using an X-Function.
```

static vector _one_sample_t_test(const int nXFCorePointer, const double dMean,
const int nTail, const double dSiglevel)
{
DataRange drInput;
StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);

```
```

ASSERT(pstatwc);

```
vector vRes(6);
vRes [2] \(=-1\);
drInput \(=\) pstatwc->GetRange();
if ( !drInput )
    return vRes;
vRes[3] = 100 - \(100 * d S i g l e v e l ;\)
XFBase xfTTest("ttest1");
if( !xfTTest.SetArg("irng", drInput) )
\{
    error_report("Failed to set argument irng");
    return vRes;
\}
if ( !xfTTest.SetArg("mean", dMean) )
\{
    error_report("Failed to set argument mean");
    return vRes;
\}
if ( !xfTTest.SetArg("tail", nTail) )

Tutorials for Origin
\{
```

 error_report("Failed to set argument tail");
    ```
    return vRes;
\}
if( !xfTTest.SetArg("alpha", dSiglevel) )
\{
    error_report("Failed to set argument alpha");
    return vRes;
\}
if( !xfTTest.SetArg("stat", vRes[0]) )
\{
    error_report("Failed to set argument stat");
    return vRes;
\}
if( !xfTTest.SetArg("df", vRes[1]) )
\{
    error_report("Failed to set argument df");
    return vRes;
\}
if( !xfTTest.SetArg("prob", vRes[2]) )
\{
```

 error_report("Failed to set argument prob");
 return vRes;
 }
 if(!xfTTest.SetArg("lcl", vRes[4]))
 {
 error_report("Failed to set argument lcl");
 return vRes;
 }
 if(!xfTTest.SetArg("ucl", vRes[5]))
 {
 error_report("Failed to set argument ucl");
 return vRes;
 }
 if(!xfTTest.Evaluate())
 {
 error_report("Failed to evaluate the ttestl X-Function.");
 return vRes;
 }
 return vRes;
 }

```
- OnetTest()

Update the function body, which exports the result into a worksheet when the Finish button is pressed.
```

 DataRange drInput;
 StatTestWizCore* pstatwc =
 (StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
ASSERT(pstatwc);
drInput = pstatwc->GetRange();
if(!drInput)
return ;
string strBook, strSheet;
if(!drInput.GetBookSheet(strBook, strSheet))
{
error_report("Workbook and worksheet names can't be obtained.");
return;
}
WorksheetPage wpData(strBook);
int nLayer = wpData.AddLayer("One-Sample t-test");

```
```

 if(nLayer >= 0)
 {
 Worksheet wksRes = wpData.Layers(nLayer);
 vector<string> vsParaName = {"t Statistic", "DF","", "Conf. Levels in %",
 "Lower Limits", "Lower Limits"};
vsParaName[2] = vsProb[tail];
vector vRes;
vRes = _one_sample_t_test(nXFCorePointer, mean, tail, siglevel);
wksRes.SetSize(-1, 4);
wksRes.Columns(0).SetLongName("Test Statistics");
string strNull = "Null Hypothesis is " + vsNull[tail] + ftoa(mean);
wksRes.Columns(1).SetLongName(strNull);
wksRes.Columns(3).SetLongName("Confidence Intervals for Mean");
for(int ii=0; ii<3; ii++)
{
wksRes.SetCell(ii, 0, vsParaName[ii], false);
wksRes.SetCell(ii, 1, vRes[ii]);
wksRes.SetCell(ii, 2, vsParaName[ii + 3], false);

```
```

 wksRes.SetCell(ii, 3, vRes[ii + 3]);
 }
 }
else
{
error_report("New worksheet can't be created.");
}

```
- OnetTest_event1()

Update the function body, which will update results and show a conclusion at the bottom of the dialog according to the result. As settings change in the dialog, the Null edit box will be updated as the mean and hypothesis change, and the Significance Level edit box's value is checked.
```

if(0 == lstrcmp(lpcszNodeName, "mean"))
_update_null(trGetN, true);
if(0 == lstrcmp(lpcszNodeName, "tail"))
_update_null(trGetN);
if(O == lstrcmp(lpcszNodeName, "siglevel"))
bOKEnable = _check_sig_level(trGetN, strErrMsg);
_update_GUI(trGetN);
_update_strErr(trGetN, strErrMsg);
return false;

```
- OnetTest_before_execute()

Update the function body, to show/hide or disable the controls in the dialog.
```

 StatTestWizCore* pstatwc =
 (StatTestWizCore*)get_xf_core_handler(trGetN.nXFCorePointer.nVal);
ASSERT(pstatwc);
trGetN.prob.Show = 1 - pstatwc->nStep;
trGetN.prob.Enable = false;
trGetN.null.Enable = false;
trGetN.stat.Enable = false;
trGetN.df.Enable = false;
trGetN.tprob.Enable = false;
trGetN.lcl.Enable = false;
trGetN.ucl.Enable = false;

```

Click the Compile button to compile the file. Then click the Return to Dialog button to return to the XFunction Builder. Click the Save OXF file button to save the X-Function.

Close Origin. Then start Origin and you will notice that a new item Stat Test is added to Origin's menu Statistics: Hypothesis Testing.

\subsection*{12.4.4.7 How to Use the Wizard}

The following example shows how to use the wizard.
1. Select a column in the worksheet.
2. Select Statistics: Hypothesis Testing: Stat Test from the Origin menu or type the command "StatTest -d" in the command window. The Stat Test wizard dialog will open.

3. Click the Next button. The Normality Test dialog is opened. The result is shown in the Output branch. A conclusion is drawn at the bottom of the dialog.

4. Click the Next button. The One-Sample t-test dialog is opened. The result is shown in the Output branch. A conclusion is drawn at the bottom of the dialog. Previous step's result of normality test is shown at the top. You can also change the setting in the dialog, and notice the result changes.


5. Click the Finish button to end the wizard. Two worksheets for results are created.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\#\# Book1} & & & & & \(\square \square\) & X \\
\hline & A(x) & B(0) & & CO & \multirow[t]{2}{*}{Confidence} & \(\wedge\) \\
\hline Long Name & \multicolumn{2}{|l|}{Test Statisti Null Hypoth} & & & & \\
\hline Units & & & & & & \\
\hline Comments & & & & & & \\
\hline 1 & t Statistic & -1.50326 & Conf. & Levels in \% & 95 & \\
\hline 2 & DF & 31 & Lowe & Limits & -0.6201 & \\
\hline \multicolumn{2}{|r|}{3 Prob>|t|} & 0.14289 & Lowe & Limits & 0.09386 & \(v\) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{|l|l|}
\hline 1 & A Normality Test \\
\hline
\end{tabular}} & Sample t- & test/ & |< & \(\geqslant\) & , \\
\hline
\end{tabular}

\section*{Index}
2
2D Binning ..... 605
2D FFT and Filter ..... 380
2D Pie Chart of a Population Study ..... 1025
2D Vector Graph ..... 1778
2D Waterfall ..... 1785
3
3D and Contour ..... 18
3D Bar and Symbol ..... 1578
3D Bar on Flatten Surface ..... 1693
3D Bar with Labels ..... 743
3D Graphs ..... 1565
3D Pie Chart ..... 1566
3D Scatter Plot with Line Projections of Core Drilling Locations ..... 1573
3D Scatter with Colormap ..... 1665
3D Scatter with Droplines ..... 1674
3D Surface with Point Label ..... 1701
3D Ternary Colormap Surface with Contour Lines Projection ..... 1752
3D Vector ..... 1569
3D Waterfall ..... 1794
\(3 Y s\) Y-YY ..... 1114
A
Accessing Internal Origin Objects by Origin C ... 2035
Add multiple fitted curves in a Histogram ..... 1434
Adding a Data Plot to Existing Graph ..... 793
Adding and Arranging Layers ..... 886
Adding New Origin C Functions to Origin ..... 2016
Adding Objects to Worksheet. ..... 1815
Analysis Template ..... 31
Analysis Templates ..... 550
Analysis Themes ..... 562
ANOVA ..... 631
Apps in Origin ..... 33
ASCII ..... 1837
Axis ..... 844
B
Bar and Scatter Plot with Error Bar ..... 1044
Bar Graph of African Population ..... 1030
Basic 2D Plotting ..... 773
Basic 3D Plotting ..... 779
Batch Peak Analysis Using Theme with Script Before Each Process ..... 449
Batch Processing ..... 566
Batch Processing Grouped Datasets Using Analysis
Template with Multi-Data Sheets ..... 579
Batch Processing Multiple Datasets using Analysis Template ..... 566
Batch Processing Multiple Files using Analysis Template ..... 568
Batch Processing with Summary Report in External Excel File ..... 572
Batch Processing with Word Template for Reporting ..... 573
Box Plot ..... 1255
C
Categorical Values Ordering and Sharing ..... 544
Cluster Analysis ..... 701
Cluster Gadget ..... 82
Clustered-Stacked Column Chart ..... 1062
Coherence and Correlation ..... 409
Collaboration and Connectivity ..... 1975
Color Map Surface Graph ..... 1629
Colormap from Second Matrix ..... 1621
Column Graph with Error Bars ..... 1049
Column, Bar and Pie ..... 1024
Combine Quick Peaks Gadget with Peak Analyzer 453
Combining Line and Contour Plots ..... 1203
Command Window and X-Functions ..... 2044
Compare Graphs Dynamically by Changing Data Filters ..... 871
Complicated Fill Area. ..... 921
Connectivity ..... 1975
Contour ..... 1175
Contour Graph with XY Data Points and Z Labels1211 Contour Plot with Vector Overlay ..... 1216
Contour Plots and Color Mapping ..... 1185
Convert Data from Spherical Coordinate to XYZ and Make a 3D Plot. ..... 1721
Convolution ..... 388
Copy and Apply a Plot Format to Another Plot ..... 920
COX Model Estimator ..... 685
Create an 8 layer multi-panel plot template ..... 1158
Create and Subtract Baseline with Peak Analyzer 439
Create and Update Apps for Origin ..... 2038
Create Heat Map with Vritual Matrix and Colormap Bar Plot ..... 231
Creating a Custom Report Sheet ..... 557
Creating a Graph ..... 751
Creating Analysis Templates using Set Column Value ..... 553
Creating and Using Analysis Templates ..... 550
Creating Intersecting Surface Plots from Worksheets ..... 1599
Cross Tabulation ..... 597
Curve Fitting ..... 22, 137
Curve Intersection Gadget ..... 68
D
Data Analysis ..... 55
Data Exploration ..... 1823
Data Filter ..... 525
Data Management ..... 1809
Data Manipulation ..... 489
Data Reader Tool ..... 1823
Data Reduction ..... 511
Data Selection ..... 7
Decimation and Signal Envelope ..... 417
Descriptive Statistics ..... 586
Digitizer ..... 1932
Digitizer Tool ..... 1933
Discriminant Analysis ..... 710
Distribution Fit ..... 611
Distribution Fit with the Probability Density Function and Cumulative Distribution Function.. 282
Double Y......................................................... 1106
E
Energy-Level Structure of the Er3+ Ion in A YAG Crystal ..... 1148
Enhanced Digitizer ..... 1941
Error Bars with Fill Area ..... 800
Excel. ..... 1975
Exporting ..... 1959
Exporting and Presentation ..... 1959
Exporting Graphs ..... 1959
F
FFT and IFFT ..... 348
FFT Filter ..... 354
Fill Partial Area between Curves. ..... 929
Fit Curve Through Certain Points ..... 275
Fit Function with Non-constant Background ..... 266
Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets ..... 330
Fitting Complex Function ..... 254
Fitting Integral Function with a Sharp Peak ..... 285
Fitting Integral Function with parametric limit using NAG Library ..... 224
Fitting One Dataset as a Function of Other Datasets ..... 204
Fitting with a Piecewise Linear Function ..... 289
Fitting with an Ordinary Differential Equation ..... 294
Fitting with Convolution ..... 257
Fitting with Convolution of Two Functions ..... 303
Fitting with Integral using LabTalk Function ..... 238
Fitting with Integral using NAG Library ..... 231
Fitting With Multiple Independent Variables ..... 207
Fitting with NAG Special Function. ..... 220
Fitting with Piecewise Functions ..... 273
Fitting with Summation ..... 250
Fitting with Two Integrals using LabTalk Function ..... 245
Flattened Colormap Surfaces with Increasing Z Offset ..... 1747
G
Gadgets ..... 20, 58
Getting Started ..... 1
Global Fit for Different Functions with Shared Parameters ..... 180
Global Fitting with Parameter Sharing ..... 176
Global Vertical Cursor ..... 58
Graph Template and Theme ..... 920
Graph Templates and Batch Plotting ..... 4
Graphing ..... 739
Grouped Box Chart with Color Indexed Data Points1265
Grouped Box Plot ..... 1372
Grouped Column with Error Bars and Data Labels1070
Grouped Stacked Column ..... 1080
H
Histogram with Distribution Curve overlay ..... 1470
How to Create a Wizard ..... 2055
How to share Origin C based LabTalk Functions. ..... 1994
Hypothesis Tests ..... 620
I
I Shaped Box Plot ..... 1279
IIR Filter ..... 375
Implicit Fitting with Three Variables. ..... 338
Import Data from a Database ..... 1863
Import Data from a Database for Analysis ..... 1878
Import Time Data ..... 1853
Import Wizard ..... 1849
Importing Data ..... 1837
Importing Multiple Files into Workbooks Cloned from Active Workbook ..... 1859
Integrate Gadget ..... 62
Integrating Peaks ..... 463
Interpolate Gadget ..... 79
Intersecting Color Surfaces ..... 1608
Introduction to Origin C and Code Builder ..... 1998
Introduction to X-Functions ..... 2051

\section*{K}
Kaplan-Meier Estimator ..... 678
L
LabTalk ..... 1994
Layers ..... 886
Line and Symbol ..... 921
Line Graph with Masked Data ..... 985
Line Graph with Recession Bars ..... 944
Linear and Polynomial Fitting ..... 138
Linear Fit for Kinetic Models ..... 143
Linear Fitting and Outlier Removal ..... 138
Lock Filter with Analysis ..... 529
M
Marginal Distribution Curve ..... 1297
Mark out a segment of plot with different plot style805 Merge and Arrange Graphs ..... 11
Merging and Arranging Graphs ..... 888
Micro-Raman spectroscopy of complex nanostructured mineral systems ..... 964
Modifying Derived Parameters in Build-in Functions324
Multi-Axis and Multi-Panel ..... 1106
Multi-Data Dot Chart ..... 1411
Multi-line-plot with Special Position Annotation Line. ..... 972
Multiple Axis Breaks ..... 844
Multiple Axis Plot ..... 1140
Multiple Layers with Linked Axis ..... 898
Multiple Surfaces in Same Layer ..... 1652
Multivariate Analysis ..... 693
My First Graph ..... 1
N
Nonlinear Curve Fit Tool ..... 155
Nonlinear Fitting ..... 154
Nonlinear fitting using Orthogonal Distance Regression ..... 345
Nonlinear Fitting with System Function ..... 165
Nonlinear Multiple Variables Fitting ..... 320
Non-parametric Statistics Overview ..... 666
Nonparametric Tests ..... 666
Notched Boxes with Variable Width Control ..... 1386
0
One Way ANOVA ..... 631
One-Way Repeated Measures ANOVA ..... 637
Open-High-Low-Close-Volume Stock Chart ..... 1800
Organizing and Accessing Origin C Functions ..... 2018
Origin C ..... 1998
Origin GUI ..... 39
Overlapping Box Chart ..... 1313
Overview of Customization ..... 809
P
Panel Graph with Inset Plots of High-resolution Electron Energy-loss Spectra ..... 1160
Parameter Initialization for Rational Functions ..... 311
Parameters Initialization using LabTalk in NLFit ..... 186
Parametric Surface with Colormap from Data.... 1633
Partial Correlation Coefficient ..... 617
Partial Least Squares ..... 720
Pasting or Embedding Graphs in Other Applications1966Peak Analysis.25, 438
Peak Finding ..... 459
Peak Fitting ..... 469
Peak Fitting with Baseline ..... 469
Peak Fitting with Preset Peak Parameters ..... 476
Peak Integration ..... 463
Picking and Marking Peaks ..... 460
Piper Diagram ..... 1780
Pivot Table ..... 533
Plot and Customize Date Time Data on Graph ..... 866
Plot from User Defined Graph Template ..... 787
Plot Functions with Parameters Defined in a Worksheet ..... 1761
Plotting ..... 743
Plotting Overlapping Data and Setting Transparency ..... 831
Plotting using Plot Setup ..... 835
Polar ..... 1473
Polar Contour ..... 1473
Polar Crop ..... 1498
Polar Graph with Columns and Stack Columns ..... 1538
Polar Graph with Custom Angular Scale ..... 1556
Polar Graph with Custom Radial Axes ..... 1511
Polar Graph with Multiple Layers ..... 1524
Polar Plot with Error Bar ..... 1492
Post Processing with Import Filter ..... 1858
Power and Sample Size ..... 729
Presentation ..... 1965
Principal Component Analysis ..... 693
Programming ..... 1993
Publishing Graphs ..... 15
Q
Q-Q Plot ..... 1449
Quick Fit Gadget ..... 94
Quick Peaks Gadget ..... 106
Quick Sigmoidal Fit Gadget ..... 111
Quoting Built-in Functions in Your New Function ..... 262
R
Rise Time ..... 423
Rise Time Gadget ..... 72
ROC curve ..... 734
s
Scatter Central Plot ..... 978
Scatter Matrix ..... 1458
Scatter Plot of Decay and Recovery Curves ..... 953
Send Graphs to PowerPoint ..... 1970
Setting Column Values ..... 490
Setting the Fix, Share Status or Bounds for Multiple Peak Parameters Simultaneously ..... 483
Signal Processing ..... 348
Simple Dot Chart ..... 1403
Single ASCII ..... 1847
Smart Peak Labels with Leader Line ..... 795
Smoothing ..... 360
Sound Processing ..... 430
SQL Editor for Database Analysis ..... 1894
Stack Column and Bar Charts of Rechargeable Battery Statistics ..... 1102
Stack Column Plot with Different Positive and Negative Y Scale ..... 1089
Stack Column With Labels ..... 1054
Stack Lines by Y Offsets ..... 1125
Stacked 3D Surface Plots ..... 1644
Statistics ..... \(28,585,1254\)
STFT (Short-Time Fourier Transform) ..... 368
Surface Fitting with Multiple Peaks ..... 319
Surface with Missing Values. ..... 1592
Surface with Symbols and Droplines ..... 1613
Surface With Transparent Plane ..... 1682
Survival Analysis ..... 677
Symbol Plot with Color Transparency ..... 991
Symbol Plot with Size and Colormap from Other Columns. ..... 1004
T
Ternary Contour ..... 1198
The Code Builder Workspace ..... 2006
Three-Way ANOVA ..... 658
Transparent Parametric Surfaces combined with Scatter Plot ..... 1713
Tutorial
Calculating Double Integral with NAG Functions From Origin C ..... 2022
Calling NAG Functions From Origin C. ..... 2029
Importing Data ..... 1838
Two Way ANOVA ..... 642
Two Way Repeated Measures ANOVA ..... 648
Two-Level Grouped Box Chart ..... 1329
Two-Way Mixed-Design ANOVA ..... 653

\section*{U}
Unbalanced Grouped Box Chart ..... 1355
Update Database Importing By LabTalk Substitution ..... 1905
Update Graph By Reimport Data From Database 1915
Use Data Cursor to Show the Difference between the Data ..... 1831
Use Script to Search for Baseline Anchor Points in Peak Analyzer. ..... 446
User Defined Fitting Function ..... 193
User Defined Fitting Function using GNU Scientific Library ..... 210
User Interface ..... 39
User-Defined Arbitrary Tick Positions. ..... 856
Using Multiple Gadgets ..... 123
v
Variable Column Width ..... 1096
Vertical 2 Panel Line ..... 1132
Video Tutorials ..... 37
W
Waterfall ..... 1785
Wavelet ..... 391
Weibull Fit ..... 689
Weibull Probability Plot ..... 1441
Windrose Graph ..... 1767
Working with Excel ..... 1975
Working with Multi-Sheet Workbooks ..... 1809
Worksheet Data Operations ..... 506
Worksheet Query ..... 506
X
X-Functions ..... 2043
XYZ Contour ..... 1175```


[^0]:    Click the
    
    button beside the Function box to open the code builder then follow the steps below:

[^1]:    Reduced Chi-sqr $=17.4739966996$
    $\operatorname{COD}\left(R^{\wedge} 2\right)=0.9999258384619$
    Iterations Performed $=4$
    Total Iterations in Session $=4$
    Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.
    Standard Error was scaled with square root of reduced Chi-Sqr.

[^2]:    Null Hypothesis: mean1-mean2 $=0$
    Alternative Hypothesis: mean 1 -mean $2 \propto 0$
    At 0.05 level, when equal variance is assumed, Mean1 - Mean 2 is NOT significantly different from 0
    At 0.05 level, when equal variance is NOT assumed, Mean1 - Mean2 is NOT significantly different from 0

[^3]:    \1(1) Male
    \1(2) Female

[^4]:    Sig equals 1 indicates that the difference of the means is significant at the 0.05 level.
    Sig equals 0 indicates that the difference of the means is not significant at the 0.05 level.

[^5]:    Comparison between Years

[^6]:    6.10.4.3 Steps

[^7]:    Click
    $\rightarrow$ o add it to the right panel.

[^8]:    $\checkmark$ Add/Remove data filter
    Add/Remove data filter for selected columns, removing would clean up selected data filters' setting

